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■ To construct a perpetual self-aware cognitive agent
that can continuously operate with independence,
an introspective machine must be produced. To
assemble such an agent, it is necessary to perform
a full integration of cognition (planning, under-
standing, and learning) and metacognition (con-
trol and monitoring of cognition) with intelligent
behaviors. The failure to do this completely is why
similar, more limited efforts have not succeeded in
the past. I outline some key computational require-
ments of metacognition by describing a multi-
strategy learning system called Meta-AQUA and
then discuss an integration of Meta-AQUA with a
nonlinear state-space planning agent. I show how
the resultant system, INTRO, can independently
generate its own goals, and I relate this work to the
general issue of self-awareness by machine. 

Although by definition all AI systems can
perform intelligent activities, virtually
none can understand why they do what

they do, nor how. Many research projects have
sought to develop machines with some
metacognitive capacity, yet until recently no
effort has attempted to implement a complete,
fully integrated, metalevel architecture. Many
in the AI community argue that base-level cog-
nition in isolation is insufficient and that a ful-
ly situated agent is necessary. Similarly I claim
that a metalevel cognitive theory must be com-
prehensive if it is to be successful. Previous
attempts, including the research of Cox and
Ram (1999a, Cox 1996b), Fox and Leake (1995,
Fox 1996), and Murdock and Goel (2001, Mur-
dock 2001), to build introspective agents have
been insufficient because of their limited
extent and scope. This article examines a
broader approach to the design of an agent

that understands itself as well as the world
around it in a meaningful way.1

Figure 1 shows a decomposition of the inter-
relationships among problem solving, compre-
hension, and learning. These reasoning
processes share a number of intersecting char-
acteristics. As indicated by the intersection
labeled A on the lower left, learning can be
thought of as a deliberate planning task with
its own set of learning goals (Cox and Ram
1995). Instead of a goal to alter the world such
as having block X on top of block Y, a learning
goal might be to obtain a semantic segregation
between concepts X and Y by altering the back-
ground knowledge through a learning plan. As
indicated by the B intersection of figure 1, the
learning process and the story understanding
task within natural language processing share
many traits (Cox and Ram 1999b). In both
explanation is central. To understand a story
completely, it is necessary to explain unusual
or surprising events and to link them into a
causal interpretation that provides the motiva-
tions and intent supporting the actions of char-
acters in the story. To learn effectively an agent
must be able to explain performance failures by
generating the causal factors that led to error
so that similar problems can be avoided in the
future. Here I discuss in some detail issues relat-
ed to the letter D intersection.2

The area labeled D represents the intersec-
tion of planning and comprehension, normal-
ly studied separately. Planning is more than
generating a sequence of actions that if execut-
ed will transform some initial state into a giv-
en goal state. Instead planning is embedded in
a larger plan-management process that must
interleave planning, execution, and plan
understanding (Chien et al. 1996, Pollack and
Horty 1999). Furthermore while many AI sys-
tems accept goals as input or have inherent
background goals that drive system behavior,
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Figure 1. Hierarchical Decomposition of Reasoning.
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few if any systems strategically derive their
own explicit goals given an understanding
(that is, comprehension) of the environment. 

A major objective of this article is to show
how a preliminary system called INTRO (initial
introspective cognitive-agent) can systematical-
ly determine its own goals by interpreting and
explaining unusual events or states of the
world. The resulting goals seek to change the
world in order to lower the dissonance between
what it expects and the way the world is. The
mechanism that INTRO uses for explanation is
the same as the mechanism its metareasoning
component uses when explaining a reasoning
failure. The resulting goals in the latter case
seek to change its knowledge in order to reduce
the chance of repeating the reasoning failure
(that is, a learning goal is to change the disso-
nance between what it knows and what it
should know).

I begin by describing the Meta-AQUA com-
prehension component that implements a the-
ory of introspective multistrategy learning. The
general idea is that an agent needs to represent
a naive theory of mind to reason about itself. It
does not need a complete and consistent
axiomization of all mental activities and com-
putations; rather it need only represent basic,
abstract patterns within its mental life like “I
was late for my appointment, because I forgot
where I parked the car.” Next I present the
PRODIGY planning component that creates
action sequences for INTRO to perform in the
Wumpus World simulated environment. I then
examine the current implementation of the
INTRO cognitive agent and follow with a sec-
tion that discusses the difficult choice an agent
has between doing something or learning
something in the face of anomalous input. I
conclude by considering what it might mean
for an artificial agent to be self-aware. 

Self-Understanding 
and Meta-AQUA

Meta-AQUA3 (Cox 1996b; Cox and Ram 1999a;
Lee and Cox 2002) is an introspective multi-
strategy learning system that improves its sto-
ry-understanding performance through a
metacognitive analysis of its own reasoning
failures. The system’s natural language per-
formance task is to “understand” stories by
building causal explanatory graphs that link
the individual subgraph representations of the
events into a coherent whole where an exam-
ple measure of coherency is minimizing the
number of connected components. The per-
formance subsystem uses a multistrategy
approach to comprehension. Thus, the top-lev-

el goal is to choose a comprehension method
(for example, script processing, case-based rea-
soning, or explanation generation) by which it
can understand an input. When an anomalous
or otherwise interesting input is detected, the
system builds an explanation of the event,
incorporating it into the preexisting model of
the story. Meta-AQUA uses case-based knowl-
edge representations implemented as frames
(Cox 1997) tied together by explanation-patterns
(Schank 1986; Schank, Kass, and Riesbeck
1994; Ram 1993) that represent general causal
structures. 

Meta-AQUA uses an interest-driven, variable
depth, interpretation process that controls the
amount of computational resources applied to
the comprehension task. Consider the example
in figure 2. Sentences S1 through S3 generate
no interest, because they represent normal
actions that an agent does on a regular basis.
But Meta-AQUA classifies S4 to be a violent
action and, thus according to its interest crite-
rion (discussed in more detail later), interest-
ing. It tries to explain the action by hypothe-
sizing that the agent shot the Wumpus because
she wanted to practice sport shooting. An
abstract explanation pattern, or XP, retrieved
from memory instantiates this explanation,
and the system incorporates it into the current
model of the actions in the story. In sentence
S6, however, the story specifies an alternate



explanation (that is, the shoot action is in
response to a threat). This input triggers an
expectation failure, because the system had
expected one explanation to be the case, but
another proved true instead.

When Meta-AQUA detects an explanation
failure such as this one, the performance mod-
ule passes a trace of the prior reasoning to the
learning subsystem. Three sequences of events
then need to occur for effective learning to take
place. First, it must explain the failure by map-
ping the failure symptom to the causal fault.
Second, it must decide what to learn by gener-
ating a set of learning goals. Third, it must con-
struct a learning strategy by planning to
achieve the goal set.

To explain why the failure occurred, Meta-
AQUA assigns blame by applying an introspec-
tive explanation to the reasoning trace. A meta-
explanation pattern (Meta-XP) is developed by

retrieving an XP using the failure symptom as
a probe into memory. Meta-AQUA instantiates
the retrieved meta-explanation and binds it to
the trace of reasoning that preceded the failure.
The resulting structure (see figure 3) is then
checked for applicability. If the Meta-XP does
not apply correctly, then another probe is
attempted. An accepted Meta-XP either pro-
vides a set of learning goals (determines what
to learn) that are designed to modify the sys-
tem’s background knowledge or generates
additional questions to be posed about the fail-
ure. Once a set of learning goals is posted, they
are passed to a nonlinear planner for building
a learning plan (strategy construction).

Figure 3 represents the following pattern.
Meta-AQUA posed an initial question. In this
case the question was “Why did the agent
shoot the Wumpus?” A memory probe re -
turned an inappropriate explanation that con-

Articles

34 AI MAGAZINE

S1: The Agent left home.
S2: She traveled down the lower path through the forest.
S3: At the end she swung left.
S4: Drawing her arrow she shot the Wumpus.
S5: It screamed. 
S6: She shot the Wumpus, because it threatened her.

Figure 2. The Wumpus Story.

Table 1. Learning from Explanation Failure.

* Out of the set of beliefs with respect to the background knowledge (Cox 1996b, Cox and Ram 1999a).

Description Correspondence to Figure 3

Failure Symptoms Contradiction between expected explanation and
actual explanation.

(E = Wumpus-as-target-XP)¹

(A2 = Wumpus-as-threat-XP)

Faults Novel situation.
Erroneous association.

outBK(M')*
index: I = physical-obj.

Learning Goals Segregate competing explanations.
Acquire new explanation.

goal 1: G1
goal 2: G2

Learning Plan Generalize threat explanation.

Store and index new explanation.
Mutually reindex two explanations.

specific threat explanation: A2

general threat explanation: E'
memory items: M and M'

Plan Execution Results New general case of shoot explanation acquired.

Index new explanation.
Reindex old explanation.

generalize(A2) E'

store(E') M'

index(M') I' = inanimate-obj
index(M) I = animate-obj
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Figure 3. Meta-explanation Graph Structure for Why the Reasoner 
Failed to Explain Correctly Why the Agent Shot the Wumpus.

EF corresponds to the expectation failure and 
RF corresponds to the retrieval failure.

tradicted the actual explanation from the story.
This resulted in an expectation failure and was
accompanied by a failure to retrieve the correct
explanation. But the agent’s memory did not
contain the correct explanation, so Meta-
AQUA could not have made the right infer-
ence. 

Table 1 lists the major state transitions that
the three learning processes (explaining the
failure, deciding what to learn, and construct-
ing a learning strategy) produce. Figure 3
depicts the meta-explanation structure as a
graph, and the third column of table 1 cross-
references each row with nodes and links from
the graph. The learning plan is fully ordered to
avoid negative interactions. For example, the
generalization step must precede the other
steps. A knowledge dependency exists between
the changes on the explanation as a result of
the generalization and the use of this concept
by the indexing. After the learning is executed
and control returns to sentence processing,
subsequent sentences concerning the shoot
predicate trigger the appropriate explanation. 

The key to effective learning and hence
improved comprehension performance in
Meta-AQUA is that the system explicitly repre-
sents not just the actions in the story but also
its own cognitive processes (for example, expla-
nation). Because such declarative knowledge
structures exist, it can introspectively explain
anomalous or otherwise interesting mental
events. This enables it to reason about the pos-
sible factors responsible for its failure to
explain the shooting correctly. For example fig-
ure 3 shows not only what happened in the
reasoning but what did not happen. That is, it
retrieved an inappropriate explanation (the
Wumpus was being used for target practice)
and did not retrieve the actual explanation (the
Wumpus posed a threat, and the threat was
being eliminated). Furthermore it represents a
novel situation where no item exists in memo-
ry to retrieve as opposed to one where the cor-
rect explanation was forgotten because the
right memory indexes did not exist. This alter-
nate meta-explanation pattern (that is, forget-
ting) is in Meta-AQUA’s repertoire (see Cox
1994b), but it does not apply to the current
mental trace. 

The metacognitive process above is a form of
blame assignment called case-based introspec-
tion (Cox 1994a), and it supports the genera-
tion of explicit learning goals. The learning
goals that are attached to the Meta-XPs allow
the system to change its background knowl-
edge and hence its performance as a function
of the explanation of failure. Cox and Ram
(1999a) describe technical details concerning

the planning to learn approach (that is, the A
intersection of figure 1). In short a set of learn-
ing operators represented in Nonlin’s4 schema
representation language (Ghosh et al.1992,
Tate 1976) encapsulate the strategies of gener-
alization, abstraction, memory indexing, and
others. The learning goals are presented to
Nonlin, and it then creates a sequence of calls
to the learning algorithms as a standard plan-
ner creates a sequence of environmental
actions. 

A pseudorandom story generator allows the
testing of the system on thousands of input
examples. I tested three different systems by
feeding them 105 stories and asking them com-
prehension questions about each one. The sys-
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gy4.0. It follows a means-ends analysis back-
ward-chaining search procedure that reasons
about both multiple goals and multiple alter-
native operators from its domain theory.
PRODIGY uses a STRIPS-like operator represen-
tation language whose Backus-Naur form (BNF)
is provided in Carbonell et al. (1992). PRODI-
GY is actually a set of programs, each of which
explores a different facet of the planning and
learning processes.

The core generative planner is currently
Prodigy4.0. It uses the following four-step deci-
sion process to establish a sequence of actions
that transforms an initial state of the world
into the given goal state: (1) It selects a goal to
solve from a list of candidate goals; (2) it selects
an operator from a list of candidate operators
that can achieve the selected goal; (3) it selects
object bindings for open operator variables
from a set of candidate bindings; and (4) if
instantiated operators exist having no open
preconditions and pending goals also exist, it
chooses either to apply the instantiated opera-
tor (forward chain) or to continue subgoaling
(backward chain).

A set of planning operators compose the rep-
resentation of action in the domain. Table 2
shows an operator that enables PRODIGY to
navigate forward in a grid environment where
all movement is constrained along the direc-
tions north, south, east, and west. The operator
contains four variables: an agent; a start loca-
tion and a destination location; and a facing
orientation for the agent. The operator precon-
ditions specify that the agent is at the start
location and that the start and destination are
traversable. The facing and is-loc predicates
constitute conditions that constrain search giv-
en a set of static domain axioms such as (is-loc
Loc12 north Loc11) for all adjacent locations in
the environment. An add list and a delete list
represent the effects of the operator by chang-
ing the agent’s location from the start to the
destination. PRODIGY navigates from one
location to another by recursively binding the
goal location with the destination variable and
subgoaling until the destination can be bound
with an adjacent cell to the current location of
the agent. 

Prodigy/Analogy (Veloso 1994) implements
a case-based planning mechanism (Cox,
Muñoz-Avila, and Bergmann 2006) on top of
the Prodigy4.0 generative planner. The main
principle of case-based or analogical reasoning
is to reuse past experience instead of perform-
ing a cognitive task from scratch each and
every time a class of problems arises. This prin-
ciple applies to both comprehension tasks such
as was the case with explanation in Meta-

tem scored points for each correct answer. Fur-
ther details of the experiment can be found in
Cox and Ram (1999a). The data in figure 4
show that the approach sketched here outper-
forms an alternative that does not use the
learning goals mechanism, and the alternate
outperforms no learning at all. However, Cox
and Ram (1999a) report specific cases in these
experiments where learning algorithms nega-
tively interact and thus nonintrospective learn-
ing actually performs worse than the no learn-
ing condition.

Given that the XP application algorithm is
involved in both, Meta-AQUA understands
itself as it understands stories. That is, the
AQUA system (Ram 1991, 1993), a microver-
sion of which exists as the performance com-
ponent within Meta-AQUA, explains explicitly
represented stories using the XP application.
Meta-AQUA explicitly represents traces of the
explanation process and uses the algorithm to
explain explanation failure and, thus, to
understand itself through meta-explanation.

Awareness and PRODIGY
The PRODIGY5 planning and learning archi-
tecture (Carbonell, Knoblock, and Minton
1991; Veloso et al. 1995) implements a general
problem-solving mechanism that builds a
sequence of actions given a domain descrip-
tion, initial state, and goal conjunct. At its core
is a nonlinear state-space planner called Prodi-
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AQUA and to problem-solving tasks such as
planning. The task in case-based planning is to
find an old solution to a past problem that is
similar to the current problem and to adapt the
old plan so that it transforms the current initial
state into the current goal state (Muñoz-Avila
and Cox 2006). In Prodigy/Analogy the case-
based approach takes an especially appropriate
direction relative to self-aware systems. 

Carbonell (1986) argues that two types of
analogical mappings exist when using past
experience in planning. Transformation analo-
gy directly changes an old plan to fit the new
situation so as to achieve the current goals.
Alternatively derivational analogy uses a repre-
sentation of the prior reasoning that produced
the old plan to reason likewise in the new con-
text. Prodigy/Analogy implements derivational
analogy by annotating plan solutions with the
plan justifications at case storage time and, giv-
en a new goal conjunct, replaying the deriva-
tion to reconstruct the old line of reasoning at
planning time (Veloso and Carbonell 1994).
Figure 5 illustrates the replay process in the
Wumpus World domain from the PRODIGY
User Interface 2.0 (Cox and Veloso 1997).
Veloso (1994) has shown significant improve-
ment in performance over generative planning
using such plan rationale.

The justification structures saved by Prodi-
gy/Analogy begin to provide a principled
mechanism that supports an agent’s awareness
of what it is doing and why. In particular the
representation provides the goal-subgoal struc-
ture relevant to each action in the final plan.
But beyond recording goal linkage to action
selection, Prodigy/Analogy records the deci-
sion basis and alternatives for each of the four
decision points in its planning process. Like
Meta-AQUA Prodigy/Analogy can reason about
its own reasoning to improve its performance.
One difference is that Prodigy/Analogy capital-
izes upon success to learn, whereas Meta-AQUA
depends upon failure for determining those
portions of its knowledge that require improve-
ment. Yet both systems require an outside
source to provide the goals that drive the per-
formance task. In both cases the programs halt
once the achievement or comprehension goal
is solved. 

INTRO
This section describes a preliminary imple-
mentation of an initial introspective cognitive
agent called INTRO6 that is designed to exist
continually and independently in a given envi-
ronment. INTRO can generate explicit declara-
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Table 2. PRODIGY Operator for Forward Movement in a Grid Environment.

(OPERATOR FORWARD
(params <agent1> <location1> <location2>)
(preconds 
  ((<agent1> AGENT)
   (<location1> LOCATION)
   (<location2> (and LOCATION 
                     (diff <location1> <location2>)))
   (<orient1> ORIENTATION))
  (and
   (traversable <location1>)
   (traversable <location2>)
   (at-agent <agent1> <location1>)
   (facing <orient1>)
   (is-loc <location2> <orient1> <location1>))) 
(effects 
   ()
   ((del (at-agent <agent1> <location1>))
    (add (at-agent <agent1> <location2>)))))



tive goals that provide intention and a focus
for activities (see Ram and Leake [1995] for a
functional motivation for the role of explicit
goals). This work is very much in the spirit of
some recent research on persistent cognitive
assistants (for example, Haigh, Kiff, and Ho
[2006]; Myers and Yorke-Smith [2005]), but it
examines issues outside the mixed-initiative
relationship with a human user. 

The agent itself has four major components
(see figure 6). INTRO has primitive perceptual
and effector subsystems and two cognitive
components. The cognitive planning and
understanding subsystems consist of the Prodi-
gy/Agent and Meta-AQUA systems respective-
ly. The base cognitive cycle is to observe the
world, form a goal to change the world, create
a plan to achieve the goal, and finally act in
accordance with the plan, observing the results
in turn.

The Wumpus World
INTRO operates in a very simple environment
described by Russell and Norvig (2003). The
Wumpus World7 contains an agent whose goal
is to find a pot of gold while avoiding pits and
the Wumpus creature. Unlike the Wumpus, the

INTRO agent can perform actions to change
the environment including turn, move ahead,
pick up, and shoot an arrow. Unlike a classical
planning domain, the environment is not ful-
ly observable, but rather the agent perceives it
through percepts. The percepts consist of the 5-
tuple [stench, breeze, glitter, bump, scream] that
represents whether the Wumpus is nearby, a pit
is nearby, gold is colocated with the agent, an
obstacle is encountered, and the Wumpus is
making a sound.

For the purposes of this example, the envi-
ronment has been limited to a four by two cell
world (see figure 7). The agent, depicted as the
character 1, always starts in cell [1,1] facing east
at the southwesternmost end of the grid. The
Wumpus (W), pits (O), and the gold ($) can be
placed in any of the remaining cells. In a major
change to the interpretation of the game, the
Wumpus is rather benign and will not injure
the agent. It screams when it is hungry and an
agent is adjacent, as well as when it is shot with
an arrow. The agent can choose either to feed
the Wumpus or to shoot it with the arrow.
Either will prevent continuous screaming.

The original Wumpus World agent maps a
given input tuple to an output action choice by
following an interpretation program and a
memory of previous percepts and actions. The
agent control code was modified to accept
instead an action taken from plans output by
the Prodigy/Agent component of INTRO. The
simulator then simply presents a visualization
of the events as the actions execute. As the
implementation currently stands, the output
of the simulator is not used. Ideally (as shown
in the dashed arrow of figure 6) the 5-tuple per-
cept output should be input into the perceptu-
al component. The one exception is that the
simulator was changed so that when the agent
enters the same grid cell as the Wumpus, the
sound state of the Wumpus will change to
scream. Code was added so that this action is
reported to Meta-AQUA as it occurs. 

The Perceptual Subsystem
The perception subsystem [sic] does not model
a realistic perceptual filtering of the world and
its events. Instead the module in its present
form acts as a translator between the represen-
tation of Prodigy/Agent and Meta-AQUA. It
serves more as a means for input than it does
for perception.

The main problem of translation is one of
mapping a flat STRIPS operator to an arbitrari-
ly deep, hierarchical, slot-filler event. For
example the action FORWARD(agent1,loc11,
loc12) must translate into an appropriate hier-
archical frame representation. Problems exist
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Figure 5. Prodigy/Analogy Replays a Past Derivational 
Trace of Planning on a New Problem.



when the parameters do not match in terms of
both names and content, when they differ in
relative order, or when extraneous parameters
exist. For example the Meta-AQUA frame defi-
nition in table 3 does not directly correspond
to the PRODIGY operator in table 2. To resolve
such problems, a mapping function exists for
translation. 

The Meta-AQUA Comprehension
Component
Understanding the actions of a story and the
reasons why characters perform such actions is
very similar to comprehending the actions and
motivations of agents in any environment. So
within the INTRO cognitive agent, Meta-AQUA
performs this task to understand the results of
its own actions using the approach described
in the self-understanding and Meta-AQUA sec-
tion. In both cases Meta-AQUA inputs the
events in a conceptual representation and
builds an internal model to reflect the causal
connections between them. In both cases an
anomaly or otherwise interesting event causes
Meta-AQUA to generate an explanation of the
event. However, instead of using the explana-
tion to modify its knowledge, INTRO uses the
explanation to generate a goal to modify the
environment. Stated differently, its central role
is that of problem recognition. That is, how can a
persistent agent recognize when a novel prob-
lem exists in the world and form a new goal to
resolve it? 

As is shown in the example output of figure
8, Meta-AQUA processes three forward move-
ments that are not interesting in any signifi-
cant way. These actions (displayed in the low-
er right Prodigy/Agent plan window) are
therefore skimmed and simply inserted into
the model of the Wumpus World actions. How-
ever when the system encounters the scream
action, it processes it differently, because sex,
violence, and loud noises are inherently inter-
esting (Schank 1979).8 Notice that Meta-AQUA
presents two large shaded windows that dis-
play internal representations of the cognitive
processing. In the “Goal Monitor” window (far
left of figure), the system shows a goal (that is,
ID.3206) to identify interesting events in the
input. The scream input causes Meta-AQUA to
spawn a new goal (that is, GENERATE.3264) to
generate an explanation for the scream. This
goal is a knowledge goal or question whose
answer explains why the Wumpus performed
the action (Ram 1991).9 The “Memory Moni-
tor” window (upper right) displays a represen-
tation of the memory retrieval and storage
activities along with the indexes and mental
objects that occupy memory.

Articles

SPRING 2007   39

S

Sí

Plan

Translate

Wumpus
Environment

Simulator

Prodigy/Agent Meta-AQUA

effector subsystem perceptual
subsystem

Goal

Figure 6. INTRO Architecture.

    |-----|-----|-----|-----|
 2  |     |     |  O  | W$  |
    |-----|-----|-----|-----|
 1  |  1  |     |     |     |
    |-----|-----|-----|-----|

1 2 3 4

A

B

Figure 7. Initial Wumpus World State.

A. Pictorial representation. B. ASCII representation.



As a result of this activity, the Meta-AQUA
component attempts to explain the scream.
The background memory contains a conceptu-
al network, a case/script library, a set of causal
explanation patterns (XPs) and meta-explana-
tion patterns (Meta-XPs), and a suite of learn-
ing algorithms. Meta-AQUA then retrieves a
simple XP of the form �→� such that the
antecedent (alpha) is hunger and the conse-
quent (beta) is screaming. That is, the Wumpus
screams, because it is hungry (XP-WUMPUS-
SCREAMS.3432). 

Now the system attempts to resolve the situ-
ation. Usually Meta-AQUA will seek a change
of its knowledge to compensate for an appar-
ent anomaly in a situation. The assumption is
that the observer is passive. INTRO entertains
instead that a goal can be spawned to resolve
the anomaly by planning and executing
actions that remove the antecedent of the XP.
Once the antecedent is gone, the screaming
will cease. Thus the resulting goal is to remove
the hunger, and the goal is passed to the Prodi-
gy/Agent component.

The algorithm is defined more formally in
table 4. Cox and Ram (1999a) provide techni-
cal details related to steps 1 and 2.

Step 3 determines the substitution set with
which to instantiate the explanation of the
event. Step 4 checks the instantiated precondi-
tions of the explanation. If the preconditions
hold, the negation of the explanation’s
antecedent is posted as a goal.

Although this example is extremely simple
and rather contrived, more realistic and
detailed examples exist. In general, an XP con-

tains a set of antecedents (rather than the sin-
gle antecedent �) called the XP asserted nodes
(Ram 1993). Each of them must be true for the
explains node (the event being explained) to
hold. If any are removed by achieving their
negation, then the causal structure will no
longer hold. So in principle our simple Wum-
pus example can generalize to more complex
behavior. Whether it scales well is another
(future) issue. However, using this mechanism,
Meta-AQUA has successfully processed thou-
sands of short randomly generated stories (Cox
1996a) similar to the hundred stories from fig-
ure 4. 

The Prodigy/Agent Planning 
Component
Prodigy/Agent10 (Cox et al. 2001, Elahi and
Cox 2003) is an independent state-space plan-
ning agent that uses a predefined communica-
tion protocol represented in KQML to accept
planning requests and to return a sequence of
actions that achieve the planning goals. It is
built around the PRODIGY planning and learn-
ing architecture described in the “Awareness
and PRODIGY” section. 

Planners are traditionally given specific goals
to achieve by generating a sequence of actions
that alters the physical environment. Yet a per-
petual agent should be able to generate its own
goals. We as humans have expectations about
the world, how it should behave, and how we
like it. When we detect something anomalous
that violates these expectations, we attempt to
explain the situation to make sense of the situ-
ation. Given a satisfactory explanation, the
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(define-frame FORWARD
   (isa  (value (ptrans)))
 (actor  (value (agent)))
 (object (value =actor))
 (from (value (at-location
                (domain    (value =actor))
                (co-domain (value (location))))))
 (to   (value (at-location
                (domain    (value =actor))
                (co-domain (value (location)))))))

Table 3. Frame Definition for Forward Movement.



anomaly will be resolved. Hence we have an
opportunity to learn something new about the
world. Similar situations should no longer
appear to be anomalous for us in the future.
Given an unsatisfactory explanation, however,
we may determine that something needs to be
done to make the situation more to our liking.
The result is a self-determined planning goal. 

So given the goal to remove the hunger state
and the initial state of the world by the Meta-
AQUA module, Prodigy/Agent generates a new
plan containing the action of feeding the
Wumpus. When this plan is executed, no
anomalous event occurs, because the reason
for the unexpected behavior is no longer pres-
ent in the environment. That is, in response to
an active environment, INTRO generates its
own goals to change the world. 

Now to be clear, INTRO begins this task by
providing Prodigy/Agent the standard goal to
possess the gold, and this goal is given without
appeal to experience. PRODIGY then creates a
plan to enter the hex with the gold, look for it,
and grab it (thereby possessing it). However
when the agent enters the cell with the gold,
the Wumpus is there also. Because the agent is

in the same cell and the Wumpus is hungry, it
screams. This event then triggers the explana-
tion, which leads to the new goal of not having
the Wumpus hungry and to feeding the Wum-
pus and stopping the screaming. The INTRO
program then halts. Nevertheless this sequence
outlines a mechanism that relaxes the depend-
ency upon user-supplied goals; it starts to pro-
vide a locus of inquiry regarding the origin of
independent planning goals and offers up a
knowledge-level alternative to the blind maxi-
mization of value functions and the program-
mer’s burden of supplying all possible back-
ground goals. 

The agent enters the location and can simply
grab the gold to achieve its given goal. The
Wumpus is benign and does not pose an actu-
al threat to the goal, but something is missing
in this interpretation. The screaming demands
attention and a response. But why? Why do we
stop to help a stranger in need or stoop to pick
up a piece of garbage along the curb when we
recognize such problems in an otherwise unre-
lated context? Our implementation starts to
answer these questions, but just barely. A
rational person would not decide to stop loud
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Figure 8. INTRO Output and Interface.



traffic noises by putting sugar in gas tanks, giv-
en the explanation that car engines make noise
only when having clean fuel. This is the case
despite the fact that if sugar is in all of the gas
tanks, the fuel is not clean, and the noise will
cease. Such a strategy is impractical and has
undesirable consequences. Yet one might call
the police on a single loud muffler. But note
also that the choice of notifying the police has
nothing to do with the direct mechanical
explanation of why the car is making the noise.
The police choice follows from an explanation
of social convention, volitional decision mak-
ing, legal responsibilities, and agency. 

In the limit, we wish for an agent that can
tinker. It must be able to push on and explore
the boundaries of its own knowledge. An agent
needs to discover some of the interactions
between actions and animate objects, the
causal connections between agents in a social
network, and the relationship between the
physical and mental environments in which it
exists to be able to effectively explain the
observations it encounters and to create new
goals or to change existing goals11 as a result. 

Between Learning Goals and
Achievement Goals

One of the most significant outstanding issues
involved with the research presented here
relates to distinguishing the requirements asso-
ciated with learning goals and with achieve-
ment goals. When a system understands that
its knowledge is flawed, it needs to generate a
goal to change its own knowledge so that it is
less likely to repeat the reasoning error that
uncovered the flaw. When the world is
“flawed,” a system needs to generate a goal to
achieve an alternative state of the world. The
main issue is detecting the conditions under
which a system does the latter versus the for-
mer. How does INTRO know that its knowledge

of screaming is not the problem that needs to
be resolved in the Wumpus World scenario? 

Currently the system is simply hard-coded
to automatically generate achievement goals
and then to plan for them. Future research
remains to implement a sufficient decision
process to differentiate the two goal types. But
consider that clues will exist in the context
provided by the series of events experienced
and the introspective trace of the reasoning
that accompanies action and deliberation in
the environment. Besides it is stretching our
imagination to entertain that somehow modi-
fying our definition of a screaming event will
result in the Wumpus not screaming in the
future. Wishing that the Wumpus not be loud
does not make it so.

Moorman (1997; Moorman and Ram 1999)
presents a theory of reading for science fiction
and similar stories that require the willing sus-
pension of (dis)belief. The theory presents a
matrix of conceptual dimensions along which
a knowledge structure can be moved to ana-
logically map between inputs. Thus to view a
robot as human is a smaller shift in the matrix
than is to view a robot somehow as a space-
time event. Understanding science fiction
requires such conceptual shifts, even though
the reasoner may not believe that a robot is tru-
ly human (a living organism).

When understanding events and objects in
any environment (fictional or not), judgments
as to the reasonableness of possibilities do exist
in the natural world. Thus it is rational to con-
sider feeding the Wumpus, because an action
actually exists to achieve the goal; whereas the
alternative is too strange. A system might also
make the decision to generate an achievement
goal over a learning goal based upon its experi-
ence with general screaming events and the rel-
ative certainty of such knowledge. Note that to
do so, a system must evaluate its own knowl-
edge, experience, and capability; it must use or
create metaknowledge. 
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1. Detect interesting event, βʹ
2. Retrieve an explanation, E: , α → β, that covers anomaly 
3. σ ← Unify(β, βʹ)
4. Verify Subst(σ, precond(E))
5. Post goal,  G = Achieve (¬ Subst(σ, α))

Table 4. Explanation-Based Goal Formulation.



Problems exist with these speculations, how-
ever. For example, basing a decision upon the
fact that the system can execute a plan to feed
the Wumpus requires that the system reason
about the structure of a plan before the plan is
computed. Similarly to reason about the poten-
tial learning goal (to change the concept of
screaming) requires the system to consider
steps in a learning plan before the system can
perform the planning. In either case the solu-
tion is not to be found solely within the tradi-
tional automated planning community nor
within the knowledge representation commu-
nity. Rather the capability to determine the cat-
egory of goal worth pursuing is tightly coupled
with metacognitive activity. 

Self-Awareness
A renewed interest exists in machines that
have a metacognitive or introspective capacity,
implement metareasoning, incorporate meta-
knowledge, or are otherwise in some way self-
aware (see Cox [2005] for a thorough review).
Yet little consensus exists in the AI community
as to the meaning and use of such mental
terms, especially that of self-awareness. But
before considering what it might mean for a
machine to be self-aware, consider what it
means to be aware at all. A weak sense of the
word does exists. For example your supervisor
may tell you that “I am aware of your prob-
lem.” Here awareness appears to be less empa-
thetic that in the statement “I understand your
problem.” In the first sense awareness is simply
a registration of some state or event, ignoring
for the moment consciousness. Awareness
need not be magical.

Consider then what it means to be aware in
the sense of understanding the world. To
understand it is not simply to classify objects
in the environment into disjunct categories.
Rather it is to interpret the world with respect
to the knowledge and experience one (human
or machine) currently has in memory. The
case-based reasoning community suggests that
it is to find a piece of knowledge, schema, or
case most relevant to its conceptual meaning
and to apply it to the current situation so that
a new structure can be built that provides
causal linkages between what has already
occurred and what is likely to occur next; that
is, it provides causal explanation and expecta-
tion (Kolodner 1993; Leake 1992; Ram 1993;
Schank 1986; Schank, Kass, and Riesbeck
1994). Understanding or awareness is not just
perceiving the environment. It is certainly not
logical interpretation as a mapping from sys-
tem symbols to corresponding objects, rela-

tions, and functions in the environment. Here
I claim that acute awareness of the world
implies being able to comprehend when the
world is in need of change and, as a result,
being able to form an independent goal to
change it. 

Likewise, being self-aware is not just perceiv-
ing the self in the environment, nor is it simply
possessing information about the self; rather it
is self-interpretation (see also Rosenthal [2000]).
It is understanding the self well enough to gen-
erate a set of explicit learning goals that act as
a target for improving the knowledge used to
make decisions in the world. It is also under-
standing the self well enough to explain our-
selves to others (for example, see Johnson
[1994]; Core et al. [2006]; van Lent, Fisher, and
Mancuso [2004]). To equate self-awareness
with conscious direct experience is missing the
point. Many nonconscious correlates such as
implicit memory are highly associated with
self-awareness and metacognition (Reder and
Schunn 1996). Some (for example, at the
DARPA Workshop on Self-Aware Computer
Systems [McCarthy and Chaudri 2004]) have
suggested that self-aware systems are linked in
a special way with metacognition. But if one
follows a straightforward definition of
metacognition as cognition about cognition,
then representing a trace of reasoning and then
reasoning about the trace is sufficient. Prodi-
gy/Analogy does represent the rationale for its
planning decisions and can reason about the
rationale when applying further planning. Yet
the program has no reference to itself other
than the annotations of justifications on its
search tree nodes. Meta-AQUA represents goals
as relations between a volitional agent (itself)
and the state it desires. Yet it never relies upon
the symbol for itself in any of its processing at
the base level or metalevel. However, to reason
about the self without an explicit structural
representation of the self seems less than satis-
factory. 

Thus, as currently implemented, INTRO is
just that, an introduction. What is required is a
more thorough integration of the metacogni-
tive knowledge and processes in a system like
INTRO. This article and the INTRO implemen-
tation have concentrated on a cognitive inte-
gration of planning, comprehension, and
learning; a metacognitive integration between
Meta-AQUA and PRODIGY remains unfin-
ished.
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Notes
1. But see also Singh (2005) and Minsky,
Singh, and Sloman (2004) for a comple-
mentary approach. Brachman (2002) has
also called for a greater emphasis upon the
integration of cognitive and metacognitive
capabilities.

2. Cox (1996b, pp. 294–299) discusses some
of the intersections between problem solv-
ing and comprehension represented in the
letter C region in the top center of the fig-
ure. For example, a problem solver must be
able to monitor the execution of a solution
to confirm that it achieves its goal. If the
comprehension process determines that
the goal pursuit is not proceeding as
desired, then the execution failure must be
addressed and the solution changed.

3. The Meta-AQUA home page is at meta-
aqua. mcox.org. Version 6 of the code
release, related publications, and support
documents exist there.

4. The University of Maryland Nonlin
home page exists at www.cs.umd.edu/pro-
jects/plus/Nonlin/. 

5. The PRODIGY home page exists at
www.cs. cmu.edu/afs/cs.cmu.edu/pro-
ject/prodigy/Web/ 

prodigy-home.html. 

6. The INTRO home page exists at meta-
aqua.mcox. org/intro.html. 

7. The code we modified is located at
aima.cs.berkeley.edu/code.html. See the
acknowledgments. 

8. The system also finds all anomalies that
diverge from expectations to be interesting
as well as concepts about which it has
recently learned something. In any case the
situation is surprising, and this constitutes
sufficient grounds for being interesting and
in need of explanation. 

9. In the main INTRO window, the goal is
shown as the frame ACTOR.3068. The
actor frame represents the relation between
the action and the agent who did the
action. That is, it is the relation facet of the
actor slot whose value facet is the Wumpus.
The explanation (that is, answer to the
question) is a representation of why the
Wumpus “decided” to perform the scream
event.

10. See www.mcox.org/Prodigy-Agent/ for
a public version of the implemented sys-
tem, the user manual, and further details. 

11. See Cox and Veloso (1998) and Cox and
Zhang (2005) for a theory of goal change in
planning
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