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Preferences and constraints occur in real-life problems in many forms.
Intuitively, constraints are restrictions on the possible scenarios. For a
scenario to be feasible, all its constraints must be satisfied. For example,
if we want to buy a personal computer (PC), we may pose a lower limit
on the size of its screen. Only PCs that respect this limit will be consid-
ered. Constraint programming (Rossi, Van Beek, and Walsh 2006) is an
area of AI that provides the formalisms and solving techniques to mod-
el and solve problems with constraints.

Preferences, on the other hand, express desires, satisfaction levels,
rejection degrees, or costs. For example, we may prefer a tablet PC to a
regular laptop, we may desire having a webcam, and we may want to
spend as little as possible. In this case, all PCs will be considered, but
some will be more preferred than others. Such concepts can be expressed
in either a qualitative or a quantitative way.

Preferences and constraints are closely related notions, since prefer-
ences can be seen as a form of “tolerant” constraints. For this reason,
there are several constraint-based frameworks to model preferences. One
of the most general frameworks, based on soft constraints (Meseguer,
Rossi, and Schiex 2006), extends the classical constraint formalism to
model preferences in a quantitative way, by expressing several degrees of
satisfaction that can be either totally or partially ordered. When there
are both levels of satisfaction and levels of rejection, preferences are bipo-
lar and can be modeled by extending the soft constraint formalism
(Bistarelli et al. 2006).

Preferences can also be modeled in a qualitative way (also called ordi-
nal), that is, by pairwise comparisons. In this case, soft constraints (or
their extensions) are not suitable. However, other AI preference for-
malisms are able to express preferences qualitatively, such as CP-nets
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(Boutilier et al. 2004). CP-nets and soft constraints
can be combined, providing a single environment
where both qualitative and quantitative prefer-
ences can be modeled and handled.

Specific types of preferences come with their
own reasoning methods. For example, temporal
preferences are quantitative preferences that per-
tain to distances and durations of events in time.
Soft constraints can be embedded naturally in a
temporal constraint framework to handle this kind
of preferences (Khatib et al. 2001; Peintner and
Pollack 2004).

While soft constraints generalize the classical
constraint formalism providing a way to model
several kinds of preferences, this added expressive
power comes at a cost, both in the modeling task
as well as in the solving process. To mitigate these
drawbacks, various AI techniques have been adopt-
ed. For example, abstraction theory (Cousot and
Cousot 1977) has been exploited to simplify the
process of finding a most preferred solution of a
soft constraint problem (Bistarelli, Codognet, and
Rossi 2002). Also, explanations have been consid-
ered to ease the understanding of the result of the
solving process (Freuder et al. 2003).

On the modeling side, it may be tedious or too
demanding of a user to specify all the soft con-
straints. Machine-learning techniques have there-
fore been used to learn the missing preferences
(Rossi and Sperduti 1998; Vu and O’Sullivan 2007).
Alternatively, preference elicitation techniques
(Chen and Pu 2004), interleaved with search and
propagation, have been exploited to minimize the
user’s effort in specifying the problem while still
being able to find a most preferred solution (Gelain
et al. 2007).

Constraints
Constraint programming (Rossi, Van Beek, and
Walsh 2006; Dechter 2003) is a powerful paradigm
for solving combinatorial search problems that
draws on a wide range of techniques from artificial
intelligence, computer science, databases, pro-
gramming languages, and operations research.
Constraint programming is currently applied with
success to many domains, such as scheduling,
planning, vehicle routing, configuration, net-
works, and bioinformatics. The basic idea in con-
straint programming is that the user states the con-
straints and a general-purpose constraint solver is
used to solve them.

Constraints are just relations, and a constraint
satisfaction problem (CSP) states which relations
should hold among the given decision variables.
For example, in scheduling activities in a company,
the decision variables might be the starting times
and the durations of the activities and the
resources needed to perform them, and the con-

straints might be on the availability of the
resources and on their use by a limited number of
activities at a time. Another example is configura-
tion, where constraints are used to model compat-
ibility requirements among components or user’s
requirements. For example, if we were to configure
a laptop, some video boards may be incompatible
with certain monitors. Also, the user may pose
constraints on the weight or screen size.

Constraint solvers take a real-world problem like
this, represented in terms of decision variables and
constraints, and find an assignment to all the vari-
ables that satisfies the constraints. Constraint
solvers search the solution space either systemati-
cally, as with backtracking or branch and bound
algorithms, or use forms of local search that may
be incomplete. Systematic methods often inter-
leave search and inference, where inference con-
sists of propagating the information contained in
one constraint to the neighboring constraints.
Such inference (usually called constraint propaga-
tion) is useful since it may reduce the parts of the
search space that need to be visited.

Rather than trying to satisfy a set of constraints,
we may want to optimize them. This means that
there is an objective function that measures the
quality of each solution, and the aim is to find a
solution with optimal quality, where the quality of
a solution can be expressed in terms of preferences.
For such problems, techniques such as branch and
bound are usually used to find an optimal solution.

Modeling Quantitative Preferences
through Soft Constraints

While constraints have been successfully applied
to many real-life combinatorial problems, in some
cases the classical constraint framework is not
expressive enough. For example, it is possible that
after having listed the desired constraints among
the decision variables, there is no way to satisfy
them all. In this case, the problem is said to be
overconstrained, and the model may be refined
manually to ignore certain constraints. This
process, when it is feasible, is rarely formalized and
is normally difficult and time consuming. Even
when all the constraints can be satisfied, we may
want to discriminate between the (equally good)
solutions. These scenarios often occur when con-
straints are used to formalize desired properties
rather than requirements that cannot be violated.
Such desired properties are not faithfully repre-
sented by constraints but should rather be consid-
ered as preferences whose violation should be
avoided as far as possible.

As an example, consider a typical timetabling
problem that aims at assigning courses and teach-
ers to classrooms and time slots in a university.
There are usually many constraints, such as the
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size of the classrooms, the opening hours of the
building, or the fact that the same teacher cannot
teach two different classes at the same time. How-
ever, there are usually also many preferences,
which state for example the desires of the teachers
(such as she or he prefers not to teach on Fridays),
or also university policies (such as, it is preferable
to use smaller classrooms if possible). If all these
preferences are modeled by constraints, it is easy
to find scenarios where there is no way to satisfy all
of them. However, there could be ways to satisfy
all hard requirements while violating the desires as
little as possible, which is what we are looking for
in the real situation. Moreover, modeling prefer-
ences in a faithful way allows us to discriminate
among all the solutions that satisfy the hard con-
straints. In fact, there could be two timetables that
both satisfy the hard requirements, but where one
of them satisfies better the desires, and this should
be the chosen one. Similar scenarios can be found
in most of the typical application fields for con-
straints, such as scheduling, resource allocation,
rostering, vehicle routing, and so on.

In general, preferences can be quantitative or
qualitative (for example “I like this at level 10” ver-
sus “I like this more than that”). Preferences can
also be conditional (for example, “If the main dish
is fish, I prefer white wine to red wine”). Prefer-
ences and constraints may also coexist. For exam-
ple, in a product configuration problem, there may

be production constraints (for example, a limited
number of convertible cars can be built each
month), marketing preferences (for example, that
it would be better to sell the standard paint types),
while the user may have preferences of various
kinds (for example, that if it is a sports car, she or
he prefers red).

To cope with some of these scenarios, classical
constraints have been generalized in various ways
in the past decades. The underlying observation of
all such generalizations is that classical constraints
are relations, and thus they can either be satisfied
or violated. Preferences need instead a notion that
has several levels of satisfiability. In the early
1990s, several attempts were made to generalize
the notion of constraint to an object with more
than just two levels of satisfiability, also called a
soft constraint.

For example, fuzzy constraints (Dubois, Fargier,
and Prade 1993; Ruttkay 1994) allow for (dis-
cretized) preferences between 0 and 1. Then, the
quality of a solution is the minimum preference
associated to constraints for that solution. The aim
is then to find a solution whose quality is highest.
Since only the minimum preference is considered
in a scenario, fuzzy constraints employ a pes-
simistic approach that can be useful or even nec-
essary in critical applications such as medical or
aerospace ones. However, this so-called drowning
effect (where the worst level of satisfiability
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Figure 1. A Fuzzy Constraint Problem (a) and a CP-Net (b).
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“drowns” all the others) is too pessimistic in some
cases. For this reason, lexicographic constraints
were introduced (Fargier, Lang, and Schiex 1993)
to obtain a more discriminating ordering of the
solutions: to order two solutions, we compare lex-
icographically the ordered sequence of all the pref-
erences given by the constraints to those two solu-
tions. In this way, solutions with different
minimum preferences are ordered as in the fuzzy
constraint setting, but also solutions with the same
minimum preference (that would be equally pre-
ferred in fuzzy constraints) can be discriminated.

An example of a fuzzy constraint problem can
be seen in figure 1a. We are deciding on what to
have for lunch and when to go swimming. The
fuzzy CSP has four variables (represented by the
circles), each with two values. For example, wine
can be either red or white. There are three con-
straints, represented by solid arrows, and giving a
preference value between 0 and 1 to each assign-
ment of the variables of the constraint. An optimal
solution of this fuzzy CSP is having fish with white
wine at 12 AM and going for a swim at 3 PM.

Another extension to classical constraints are
the so-called probabilistic constraints (Fargier and
Lang 1993), where, in the context of an uncertain
model of the real world, each constraint is associ-
ated to the probability of being present in the real
problem. Solutions are then associated to their
conjoint probability (assuming independence of
the constraints), and the aim is to find a solution
with the highest probability.

In weighted constraints, instead, each constraint
is associated with a weight, and the aim is to find
a solution for which the sum of the weights of the
satisfied constraints is maximal. A very useful
instance of weighted constraints are MaxCSPs,
where weights are just 0 or 1 (0 if the constraint is
violated and 1 if it is satisfied). In this case, we
want to satisfy as many constraints as possible.

While fuzzy, lexicographic, and probabilistic
constraints were defined to model real-life situa-
tions that could not be faithfully modeled by
means of classical constraints, weighted con-
straints and MaxCSPs have mainly been defined to
address overconstrained problems, where there are
so many constraints that the problem has no solu-
tion. In this case, the attempt was to satisfy as
many constraints as possible, possibly giving them
some importance levels.

This second line of reasoning lead also to the
definition of the first general framework to extend
classical constraints, called partial constraint satis-
faction (Freuder and Wallace 1992). In partial CSPs,
overconstrained problems are addressed by defin-
ing a metric over constraint problems, and by try-
ing to find a solution of a problem that is as close
as possible to the given one according to the cho-
sen metric. MaxCSPs are then just an instance of

partial CSPs where the metric is based on the num-
ber of satisfied constraints.

Another general constraint-based formalism to
model preferences is the semiring-based formalism
(Bistarelli, Montanari, and Rossi 1997; Meseguer,
Rossi, and Schiex 2006), which encompasses most
of the previous extensions with the aim of provid-
ing a single environment where properties can be
proven once and for all, and then inherited by all
the instances. At the technical level, this is done by
introducing a structure representing the levels of
satisfiability of the constraints. Such a structure is
just a set with two operations: one (written +) is
used to generate an ordering over the levels, while
the other one (×) is used to define how two levels
can be combined and which level is the result of
such combination. Because of the properties
required on such operations, this structure is usu-
ally a type of semiring. This gives semiring-based
soft constraint problems (SCSPs), where con-
straints have several levels of satisfiability, that are
(totally or partially) ordered according to the semi-
ring structure. Fuzzy, lexicographic, probabilistic,
weighted, and MaxCSPs are all instances of the
semiring-based framework.

In the same year in which semiring-based soft
constraints were introduced (1995), valued con-
straints were introduced as an alternative general
formalism to model constraints with several levels
of satisfiability (Schiex, Fargier, and Verfaillie
1995). Valued constraints are very similar to semi-
ring-based soft constraints, except that their levels
of satisfiability cannot be partially ordered
(Bistarelli et al. 1999), and thus they can model
only cardinal preferences.

The possibility of partially ordered sets of levels
of satisfiability can be useful is several scenarios.
When the levels are the result of the combination
of several optimization criteria, it is natural to have
a Pareto-like approach in combining such criteria,
and this leads to a partial order. Also, even if we
have just one optimization criterion, we may want
to insist on declaring some levels as incomparable
because of what they model. In fact, the elements
of the semiring structure do not need to be num-
bers but can be any object that we want to associ-
ate to a way of giving values to the variables of a
constraint. If, for example, the objects are all the
subsets of a certain set, then we can have a partial
order under subset inclusion.

Given two solutions of a soft constraint problem,
checking whether one is preferable to the other one
is easy: we compute the desirability values of the
two solutions and compare them in the preference
order. However, finding an optimal solution for a
soft constraint problem is a combinatorially diffi-
cult problem. Many search techniques have been
developed to solve specific classes of soft con-
straints, like fuzzy or weighted. However, all have
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an exponential worst-case complexity. Systematic
approaches like backtracking search and constraint
propagation can be adapted to soft constraints. For
example, backtracking search gives branch and
bound where the bounds are given by the prefer-
ence levels in the constraints. Constraint propaga-
tion, which is very successful in pruning parts of
the search tree in constraint solving, can also be
generalized to certain classes of soft constraints.

By the way soft constraints are defined, they are
able to model quantitative preferences. They can-
not model directly conditional or qualitative pref-
erences.

Other Kinds of Preferences
In this section we provide a brief description of
other kinds of preferences and we relate them to
the constraint-based formalism. We begin with a
discussion of bipolar preferences, move on to qual-
itative preferences and quantitative and qualitative
preferences, and end with a discussion of temporal
preferences.

Bipolar Preferences
Bipolarity is an important topic in several fields,
such as psychology and multicriteria decision mak-
ing, and it has recently attracted interest in the AI
community, especially in argumentation (Am g-
oud, Bonnefon, and Prade 2005), qualitative rea-
soning (Dubois and Fargier 2005, 2006), and deci-
sion theory (Labreuche and Grabisch 2006).
Bipolarity in preference reasoning can be seen as
the possibility of stating both degrees of satisfac-
tion (that is, positive preferences) and degrees of
rejection (that is, negative preferences).

Positive and negative preferences can be
thought as two symmetric concepts, and thus one
might try to deal with them through the same
operators. However, this may not model what one
usually expects in real scenarios. For example, if we
have a dinner menu with fish and white wine, and
we like them both, then having both should be
more preferred than having just one of them. On
the other hand, if we don’t like any of them, then
the preference of the having them both should be
smaller than the preferences of each of them alone.
In fact, the combination of positive preferences
should usually produce a higher (positive) prefer-
ence, while the combination of negative prefer-
ences should usually give us a lower (negative)
preference.

When dealing with both kinds of preferences, it
is natural to express also indifference, which
means that we express neither a positive nor a neg-
ative preference over an object. Moreover, we also
want to be able to combine positive with negative
preferences. The most natural and intuitive way to
do so is to allow for compensation. Comparing

positive against negative aspects and compensat-
ing them with regard to their strength is one of the
core features of decision-making processes, and it
is, undoubtedly, a tactic universally applied to
solve many real-life problems.

Positive and negative preferences might seem as
just two different criteria to reason with, and thus
techniques such as those usually adopted by mul-
ticriteria optimization (Ehrgott and Gandibleux
2002), such as Pareto-like approaches, could
appear suitable for dealing with them. However,
this interpretation would hide the fundamental
nature of bipolar preferences, that is, positive pref-
erences are naturally the opposite of negative pref-
erences.

Soft constraints can only model negative prefer-
ences, since in this framework preference combi-
nation returns lower preferences. However, soft
constraints can be generalized to model both pos-
itive and negative preferences (Bistarelli et al.
2006), and preference compensation is allowed.

Bipolarity has been considered also in qualita-
tive preference reasoning (Benferhat et al. 2002,
2006), where fuzzy preferences model the positive
knowledge and negative preferences are interpret-
ed as violations of constraints. Precedence is given
to negative preference optimization, and positive
preferences are used to distinguish among the opti-
mals found in the first phase, thus not allowing for
compensation. Another approach (Grabisch, de
Baets, and Fodor 2003) considers totally ordered
unipolar and bipolar preference scales and defines
an operator, the uninorm, which can be seen as a
restricted form of compensation.

Qualitative Preferences
Conditional preference networks (CP-nets) (Boutili-
er et al. 2004) are a graphical model for compactly
representing conditional and qualitative preference
relations. Qualitative preferences are also called
ordinal preferences, because they are modeled
through an ordering over a set of alternatives.

CP-nets exploit conditional preferential inde-
pendence among the features of a problem by
structuring a user’s possibly complex preference
ordering through a set of preference statements
(called cp-statements), interpreted under the ceteris
paribus assumption. For instance, the statement “I
prefer red wine to white wine if meat is served”
asserts that, given two meals that differ only in the
kind of wine served and both containing meat, the
meal with a red wine is preferable to the meal with
a white wine.

Figure 1b shows a CP-net with the following cp-
statements: fish is better than meat; swimming lat-
er is preferred; white wine is preferred to red wine
if fish is served, otherwise red wine is better; an ear-
lier lunch is preferred to a late one if there is fish,
otherwise later is better.
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CP-nets bear some similarity to Bayesian net-
works, as both utilize directed acyclic graphs where
each node stands for a domain variable and
assume a set of features with finite, discrete
domains (these play the same role as variables in
soft constraints). Given a CP-net, an ordering is
induced over the set of assignments of its features.
This ordering is, in the most general case, a pre-
order (that is, reflexive and transitive). However,
this preorder is not general, since two assignments
that differ for the value of one variable are always
ordered in a CP-net (that is, they are never incom-
parable).

Given an acyclic CP-net, finding an optimal
assignment to its features can be done in linear
time. However, for cyclic CP-nets, it becomes NP-
hard. Moreover, comparing two outcomes is
PSPACE-complete in general, and remains NP-hard
even when the CP-net is acyclic.

Quantitative and Qualitative Preferences
It would be nice to have a single formalism for rep-
resenting preferences of several kinds. To achieve
this goal, we start by comparing the expressive
power of soft constraints and CP-nets.

We could say that a formalism B is at least as
expressive as a formalism A if and only if from a
problem expressed using A it is possible to build in
polynomial time a problem expressed using B such
that the optimal solutions are the same. If we apply
this definition to soft constraints, we see, for exam-
ple, that fuzzy CSPs and weighted CSPs are at least
as expressive as classical constraints. If instead we
use it to compare CP-nets and soft constraints, we
see that classical constraints are at least as expres-
sive as CP-nets. In fact, it is possible to show that,
given any CP-net, we can obtain in polynomial
time a set of classical constraints whose solutions
are the optimal outcomes of the CP-net (Brafman
and Dimopoulos 2004). On the contrary, there are
some classical constraint problems for which it is
not possible to build in polynomial time a CP-net
with the same set of optimals.

However, we could be more fine-grained in the
comparison and say that a formalism B is at least as
expressive as a formalism A if and only if from a
problem expressed using A it is possible to build in
polynomial time a problem expressed using B such
that the orderings over solutions are the same.
Here we must maintain not only the set of opti-
mals but also the rest of the ordering over the solu-
tions. In this case, CP-nets and soft constraints are
incomparable.

However, it is possible to approximate a CP-net
ordering through soft constraints, achieving
tractability while sacrificing precision to some
degree. Different approximations can be character-
ized by how much of the original ordering they
preserve, the time complexity of generating the

approximation, and the time complexity of com-
paring outcomes in the approximation. It is vital
that such approximations are information preserv-
ing; that is, what is ordered in the given ordering
is also ordered in the same way in the approxima-
tion. Another desirable property of approxima-
tions is that they preserve the ceteris paribus prop-
erty. CP-nets can be approximated by soft
constraints where the optimization criterion is the
minimization of the sum of the preferences and
also by soft constraints where a fuzzy-based order-
ing is adopted. In both cases, the approximation is
information preserving and satisfies the ceteris
paribus property (Domshlak et al. 2003). For exam-
ple, the CP-net in figure 1b is approximated by the
fuzzy CSP in figure 1a.

Summarizing, CP-nets and soft constraints have
complementary advantages and drawbacks. CP-
nets allow one to represent conditional and quali-
tative preferences, but dominance testing is expen-
sive. On the other hand, soft constraints allow
representation of both hard constraints and quan-
titative preferences and have a cheap dominance
testing.

Many problems have both constraints and pref-
erences. Unfortunately, reasoning with them both
is difficult, as often the most preferred outcome is
not feasible and not all feasible outcomes are
equally preferred. If we put together a CP-net and
a set of constraints, it is possible to obtain all the
optimal outcomes by solving a set of hard “opti-
mality constraints” (Prestwich et al. 2005). In well-
defined cases, this avoids expensive dominance
testing.

Temporal Preferences
Soft constraints have been used also to model pref-
erences in the context of temporal reasoning. Rea-
soning about time is a core issue in many real-life
problems, such as planning and scheduling for
production plants, transportation, and space mis-
sions. Several approaches have been proposed to
reason about temporal information. Temporal con-
straints have been among the most successful in
practice.

In temporal constraint problems, variables
either represent instantaneous events, such as
“when a plane takes off,” or temporal intervals,
such as “the duration of the flight.” Temporal con-
straints allow one to put temporal restrictions
either on when a given event should occur, for
example “the plane must take off before 10 AM,” or
on how long a given activity should last, for exam-
ple “the flight should not last more than two
hours.” Several quantitative and qualitative con-
straint-based temporal formalisms have been pro-
posed, stemming from pioneering works by Allen
(1983) and by Dechter, Meiri, and Pearl (1991).

In general, solving temporal constraint prob-
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lems is difficult. However, there are tractable class-
es, such as quantitative temporal constraint prob-
lems where there is only one temporal interval for
each constraint (Dechter, Meiri, and Pearl 1991).
The expressive power of classical temporal con-
straints may be insufficient to model faithfully all
the aspects of the problem. For example, one may
want to say that “the earlier the plane takes off, the
better.” Both qualitative and quantitative tempo-
ral reasoning formalisms have been extended with
quantitative preferences to allow for the specifica-
tion of such a kind of statements. More precisely,
Allen’s approach has been augmented with fuzzy
preferences (Badaloni, Falda, and Giacomin 2004),
that are associated with the relations among tem-
poral intervals allowed by the constraints. Such
problems are solved by exploiting some properties
of fuzzy preferences, in order to decompose the
optimization problem into solving a set of classical
constraint problems.

Fuzzy preferences have been combined also with
nondisjunctive and disjunctive quantitative tem-
poral constraints (Khatib et al. 2007; Peintner and
Pollack 2004). The results are soft temporal con-
straints where each allowed duration or occurrence
time for a temporal event is associated to a fuzzy
preference representing the desirability of that spe-
cific time. The decomposition approach is the
most efficient solving technique also in the quan-
titative setting (Khatib et al. 2001, 2007; Peintner
and Pollack 2004).

Quantitative temporal constraints have also
been extended with utilitarian preferences: prefer-
ences take values in the set of positive reals and the
goal is to maximize their sum. Such problems have
been solved using adapted branch and bound tech-
niques as well as SAT and weighted constraint sat-
isfaction approaches (Moffitt and Pollack 2006;
Peintner and Pollack 2005).

Mastering the Complexity 
of Soft Constraints

In constraint satisfaction problems we look for a
solution, while in soft constraint problems we look
for an optimal solution. Thus, soft constraint prob-
lems are more difficult to handle by a solver. To
ease this difficulty, several AI techniques have been
used. Here we cite just two of them: abstraction
and explanation generation. Abstraction works on
a simplified version of the given problem, thus
hoping to have a significantly smaller search space,
while explanation generation helps in under-
standing the result of the solver. It is not always
easy for a user to understand why no better solu-
tion is returned.

An added difficulty in dealing with soft con-
straints comes also in the modeling phase, where a
user has to understand how to model faithfully his

real-life problem through soft constraints. In many
cases, we may end up with a soft constraint prob-
lem where some preferences are missing. To reason
in this scenario, we may use techniques like
machine learning and preference elicitation to
solve the problem.

Abstraction
Soft constraints are much more expressive than
classical CSPs, but they are also more difficult to
process and to solve. Therefore, sometimes it may
be too costly to find all, or even only one, optimal
solution. Also, although classical propagation tech-
niques like arc-consistency can be extended to soft
constraints (Meseguer, Rossi, and Schiex 2006),
such techniques can be too costly to be used,
depending on the size and structure of the partial
order associated to the problem. Finally, some-
times we may not have a solver for the class of soft
constraints we need to solve, while we may have a
solver for another “simpler” class of soft con-
straints. For these reasons, it may be reasonable to
work on a simplified version of the given soft con-
straint problem, trying not to lose too much infor-
mation. Such a simplified version can be defined
by means of the notion of abstraction, which takes
an SCSP and returns a new one that is simpler to
solve. Here, as in many other works on abstraction,
“simpler” may mean many things, like the fact
that a certain solution algorithm finds a solution,
or an optimal solution, in a fewer number of steps,
or also that the abstracted problem can be
processed by machinery that is not available in the
concrete context.

To define an abstraction, we may use, for exam-
ple, the theory of Galois insertions (Cousot and
Cousot 1977), which provides a formal approach to
model the simplification of a mathematical struc-
ture with its operators. Given an SCSP (the concrete
one), we may get an abstract SCSP by just simplify-
ing the associated semiring and relating the two
structures (the concrete and the abstract one)
through a Galois insertion. Note that this way of
abstracting constraint problems does not change
the structure of the problem (the set of variables
remains the same, as well as the set of constraints)
but just the semiring values to be associated to the
tuples of values for the variables in each constraint
(Bistarelli, Codognet, and Rossi 2002).

Abstraction has been used also to simplify the
solution process of hard constraint problems
(Lecoutre et al. 2000). Also, the notion of value
interchangeability has been exploited to support
abstraction and reformulation of hard constraint
problems (Freuder and Sabin 1997). However, in
the case of hard constraints, abstracting a con-
straint problem means dealing with fewer variables
and smaller domains.

Once we reason on the abstracted version of a
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problem, we can bring back to the original prob-
lem some (or possibly all) of the information
derived in the abstract context and then continue
the solution process on the transformed problem,
which is a concrete problem equivalent to the giv-
en one. The hope is that, by following this route,
we get to the final goal faster than by just solving
the original problem.

It is also possible to define iterative hybrid algo-
rithms that can approximate an optimal solution
of a soft constraint problem by solving a series of
problems that abstract, in different ways, the orig-
inal problem. These are anytime algorithms since
they can be stopped at any phase, giving better and
better approximations of an optimal solution.

Explanation Generation
One of the most important features of problem
solving in an interactive setting is the capacity of
the system to provide the user with justifications,
or explanations, for its operations. Such justifica-
tions are especially useful when the user is inter-
ested in what happens at any time during search,
because he or she can alter features of the problem
to facilitate the problem solving process.

Basically, the aim of an explanation is to show
clearly why a system acted in a certain way after cer-
tain events. Explanations have been used for hard
constraint problems, especially in the context of
overconstrained problems (Junker 2004; Jussien and
Barichard 2000; Amilhastre, Fargier, and Marquis
2002), to understand why the problem does not
have a solution and what can be modified in order
to get one. In soft constraint problems, explana-
tions should also take preferences into account and
provide a way to understand, for example, why
there is no way to get a better solution.

In addition to providing explanations, interac-
tive systems should be able to show the conse-
quences, or implications, of an action to the user,
which may be useful in deciding which choice to
make next. In this way, they can provide a sort of
“what-if” kind of reasoning, which guides the user
towards good future choices. Fortunately, in soft
constraint problems this capacity can be imple-
mented with the same machinery that is used to
give explanations.

Configurators are a typical example of an inter-
active system where constraints and preferences
may be used, and where explanations can be very
useful. A configurator is a system that interacts
with a user to help him or her to configure a prod-
uct. A product can be seen as a set of component
types, where each type corresponds to a certain
finite number of concrete components, and a set
of compatibility constraints among subsets of the
component types. A user configures a product by
choosing a concrete component for each compo-
nent type, such that all the compatibility con-

straints as well as personal preferences are satisfied.
For example, in a car configuration problem, a user
may prefer red cars but may also not want to com-
pletely rule out other colors.

Constraint-based technology is currently used in
many configurators both to model and solve con-
figuration problems: component types are repre-
sented by variables, having as many values as the
concrete components, and both compatibility and
personal constraints are represented as constraints
(or soft constraints) over subsets of such variables.
At present, user choices during the interaction
with the configurator are usually restricted to spec-
ifying unary constraints, in which a certain value
is selected for a variable.

Whenever a choice is made, the corresponding
(unary) constraint is added to existing compatibil-
ity and personal constraints, and some constraint
propagation notion is enforced, for example arc-
consistency (AC) (Rossi, Van Beek, and Walsh
2006), to rule out (some of the) future choices that
are not compatible with the current choice. While
providing justifications based on search is difficult,
arc-consistency enforcing has been used as a source
of guidance for justifications, and it has been
exploited to help the users in some of the scenar-
ios mentioned above. For example, it has been
shown that AC enforcement can be used to pro-
vide both justifications for choice elimination, and
also guidance for conflict resolution (Freuder, Lik-
itvivatanavong, and Wallace 2001).

The same approach can be used also for config-
urators with preferences, using a generalized ver-
sion of arc- consistency, whose application may
decrease the preferences in some constraints.
Explanations can then describe why the prefer-
ences for some values decrease, and suggest at the
same time which assignment has to be retracted,
in order to maximize the evaluation of a solution.

Configurators with soft constraints should help
users not only to avoid conflicts or to make the
next choice so that a smaller number of later choic-
es are eliminated but also to get to an optimal (or
good enough) solution. More precisely, when the
user is about to make a new choice for a compo-
nent type, the configurator should show the con-
sequences of such a choice in terms of conflicts
generated, elimination of subsequent choices, and
also quality of the solutions. In this way, the user
can make a choice that leads to no conflict and
that presents a good compromise between choice
elimination and solution quality.

Learning
In a soft constraint problem, sometimes one may
know his or her preferences over some of the solu-
tions, but have no idea on how to code this knowl-
edge into the constraints of the problem. Such a
scenario has been theoretically addressed (Rossi
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and Sperduti 1998) by using machine-learning
techniques based on gradient descent. Soft con-
straint learning has also been embedded in a gen-
eral interactive constraint framework, where users
can state both usual preferences over constraints
and also preferences over solutions proposed by the
system (Rossi and Sperduti 2004). Other approach-
es to learning soft constraints that provide a unify-
ing framework for soft CSP learning have recently
been developed (Vu and O’Sullivan 2007). More-
over, soft constraint learning has been exploited in
the application domain of processing and inter-
preting satellite images (Michalowski et al. 2007).

Machine-learning techniques have also been
used to learn hard constraints (that is, to learn
allowed and forbidden variable instantiations). For
example, an interactive technique based on a
hypothesis space containing the possible con-
straints to learn has been used to help the user for-
mulate his constraints (O’Connell, O’Sullivan, and
Freuder 2002).

Elicitation
Preference elicitation is a well-studied discipline in
AI and other fields (Chen and Pu 2004). Preference
elicitation may be costly. For example, asked pref-
erences may need some work to be computed, or
users may be reluctant to provide some of their
preferences for privacy concerns. Therefore the
usual aim is to minimize the amount of preference
elicited.

With soft constraints, the task is to find an opti-
mal solution. When some preferences are missing,
we can consider two notions of optimal solutions:
possibly optimal solutions are assignments to all
the variables that are optimal in at least one way
currently unspecified preferences can be revealed,
while necessarily optimal solutions are assign-
ments to all the variables that are optimal in all
ways in which currently unspecified preferences
can be revealed.

Given an incomplete soft CSP, its set of possibly
optimal solutions is never empty, while the set of
necessarily optimal solutions can be empty. Of
course what we would like to find is a necessarily
optimal solution: such solutions are optimal
regardless of how the missing preferences would be
specified. However, if this set is empty, we can
interleave search and preference elicitation. More
precisely, we can ask the user to provide some of
the missing preferences and try to find, if any, a
necessarily optimal solution of the new incom-
plete soft CSP. Then we can repeat the process until
the current problem has at least one necessarily
optimal solution. Experimental results show that
this process ends after eliciting a very small per-
centage (as low as 10 percent) of the missing pref-
erences (Gelain et al. 2007).

Other approaches elicit not just preferences but

also values in the variable domains (Faltings and
Macho-Gonzalez 2005), and consider either fuzzy
or weighted constraints. Moreover, preference elic-
itation can also be used to elicit hard constraints
(that is, to know if some partial assignments are
allowed or not). In this context, the approach in
Wilson, Grimes, and Freuder (2007) associates a
cost to each missing item, as well as a probability
of being allowed. Then, while still interleaving
search and elicitation, search is guided by such
costs and probabilities, with the aim of minimizing
the elicitation effort.

Future Perspectives
There are many directions for future work, both
from a representational and a reasoning perspec-
tive. For instance, a very active area of research cur-
rently is reasoning about incompletely specified
preferences. This line of research involves also
issues related to preference elicitation, sensitivity
analysis, uncertainty, and robustness. Another
active line of research is in developing soft global
constraints. Global constraints are very useful in
CSPs since they are equipped with very efficient
propagation algorithms. It would be very useful to
define similar global constraints also in the soft
constraint framework. It would also be interesting
to study quantified soft constraint problems,
where preferences can be associated to quantified
statements.

The recently born area of computational social
choice is devoted to exploit computer science
results in the field of social choice and addresses
issues in topics like multiagent preference aggrega-
tion. Like other multidisciplinary topics, this area
shows considerable promise. Some work in this
area has already lead to interesting results where
complexity has been used to mitigate some of the
classical impossibility results proven by social
choice for aggregating multiagent preferences.

Many classical CSP applications, such as sched-
uling and resource allocation, can benefit from the
ability to handle preferences. Moreover, newly
emerging applications are heavily based on a flex-
ible, adaptive, and tolerant behavior that can be
found only in preference-based approaches. For
example, as synthetic avatars interact more and
more with humans, it is crucial to equip them with
the ability to extract, model, and handle humans’
preferences.
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