
A writing system is a culture-preserving device and a defin-
ing feature of civilization. The continual improvements and
refinements of writing systems throughout history are a testa-
ment to their importance. In the last 10,000 years, the media of
writing systems have changed from cave walls, rune stones, and
sand to papyrus, wax tablets, parchment, paper, and—in our
age—networked computers. Carvings, pieces of scribble, and
elaborate texts have been generated from tools ranging from
stones, iron rods, and fingers to styli, quills, pens, typewriters,
and keyboards. In parallel the very heart of writing systems has
also changed and adapted. The original logographic writing sys-
tems, such as the hieroglyphs, have throughout the course of
Western civilization gradually been replaced by refined alpha-
betic systems. Between the 16th and 19th centuries the need for
fast and accurate transcriptions of proceedings in courts and
parliaments motivated research into various shorthand systems,
culminating in the Pitman and Gregg shorthand writing sys-
tems that are still with us today.

This article is about the latest generation of writing systems—
intelligent text entry methods. Such text entry methods use AI
techniques to improve our writing systems. The high-perform-
ing speech and handwriting recognition systems we have avail-
able today would be impossible without decades of research and
optimization. However, there is more to these systems than
engineering. I explain why research on intelligent text entry
methods is important in the next section. Then I sample select-
ed text entry methods and set them into their historical con-
text. I argue that for text entry methods to make a difference in
society, we need to leave the narrow objective functions of high
entry rates and low error rates. To that end I raise five challenges
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n For text entry methods to be useful they have
to deliver high entry rates and low error rates.
At the same time they need to be easy to learn
and provide effective means of correcting mis-
takes. Intelligent text entry methods combine AI
techniques with human-computer interaction
(HCI) theory to enable users to enter text as effi-
ciently and effortlessly as possible. Here I sam-
ple a selection of such techniques from the
research literature and set them into their his-
torical context. I then highlight five challenges
for text entry methods that aspire to make an
impact in our society: localization, error correc-
tion, editor support, feedback, and context of
use.



for intelligent text entry: localization, error correc-
tion, editor support, feedback, and context of use.

Beyond the Desktop Keyboard
Our desktop keyboard has been with us with its
familiar QWERTY layout since the typewriter was
invented in the late 19th century. Contrary to pop-
ular belief, the main motivation behind the
QWERTY layout was probably not to reduce typ-
ing speed (touch-typing was not invented at the
time). Instead it solved an engineering problem:
how to minimize the risk of mechanical jamming
of the keys. Old typewriters worked much like
pianos. When the user hit a key a hammer fell
down onto an ink tape, which in turn caused an
imprint on the paper. If two neighboring keys were
hit in close succession there was a risk the two cor-
responding hammers would jam. The QWERTY
layout solved this by distributing frequent letter-
pair combinations to the left and right hand sides
of the keyboard. This minimized the probability
that two keys next to each other would be hit at
the same time. As it turned out, such a bimodal dis-
tribution was reasonably efficient for touch-typing
with the left and right hands, which is also why it
provides us with a rather high entry rate and rea-
sonably low error rate. This, in combination with
society’s tendency to keep technologies that are
“good enough,” is probably the primary reason
why the desktop keyboard is still the de facto text
entry method today (David 1985, Gould 1992).

However, some users suffer from repetitive strain
injury (RSI) and prefer to avoid using a keyboard
and mouse. Other users have a severe disability,
such as paralysis, that prevents them from enter-
ing text except by using their eyes or perhaps by
activating a few muscles. These users need alterna-
tive text entry methods.

Modern mobile phones easily support web
browsing, e-mail, blogging, and so on. These appli-
cations all require a text entry method. Since the
desktop keyboard is too large for a phone it is nec-
essary to conceive practical alternative text entry
methods that offer as high text entry rates as pos-
sible. If we also consider that users might want to
enter text while walking outside on a windy and
noisy street, the problem becomes even more com-
plex. Is it possible to engineer efficient text entry
methods that work well even under such difficult
circumstances?

Leaving the mobile world aside for a moment,
emerging mainstream technologies, such as wall-
sized displays, multitouch tables, and volumetric
displays, do not lend themselves to the use of desk-
top keyboards. For all these reasons, it is worth
exploring text entry beyond the desktop keyboard.
And let’s not forget, it takes many hours of practice
to become a skilled typist. Perhaps a more intuitive

and efficient text entry method lies ahead of us
and will replace the desktop keyboard altogether. If
we don’t search, we will never know if we are cur-
rently at a local or global optimum.

Exploring AI in Text Entry
AI opens up unique possibilities to create new text
entry methods or improve upon existing ones. The
main reason is that human languages are highly
redundant (Shannon 1948). These redundancies
can be captured in language models. Intelligent
text entry methods take advantage of language
redundancies in multiple ways. For example, they
can reason about users’ input and deduce users’
intended words; or they can display predictions in
a way that allow users’ input to be used more effi-
ciently.

Curiously, language redundancy has been
exploited since at least the creation of Nova Ars
Notaria (“the new note art”) in 12th century
Europe. This was a shorthand system attributed to
the monk John of Tilbury. In it, letters were sim-
plified into simple line marks. To enable faster writ-
ing of common word stems, they were compressed
into sequences of simple line marks and dots.
These word stems were found by frequency analy-
sis of the Book of Psalms. (Melin 1927).

Despite being eight centuries old Nova Ars
Notaria neatly illustrates the basic principles
behind efficient text entry. First, users’ efforts in
articulating their intended words should be mini-
mized. Second, language redundancies should be
modeled and exploited (Kristensson 2007, Melin
1927). In this vein, there is a long history of AI
contributions to text entry design, particularly in
the early work on handwriting and speech recog-
nition.

However, as this special issue illustrates, making
efficient use of AI techniques in user interfaces is
often easier said than done. Jameson alludes in the
introduction of this special issue to the need for a
binocular view that takes both AI and HCI per-
spectives into account. This article takes this per-
spective by presenting five challenges for intelli-
gent text entry: localization, error correction,
editor support, feedback, and context of use. To set
the stage, we start by sampling the state of the art
in intelligent text entry.

Intelligent Text Entry Methods
The usefulness of text entry methods is directly
linked to entry and error rates. Unfortunately, the
literature is inconsistent in how to measure text
entry performance, and there are not even stan-
dardized measures of entry and error rate. In this
article entry rate is measured in words per minute,
where a word is defined as five consecutive charac-
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ters. Unless otherwise specified, error rate is meas-
ured as the character-level edit distance between
the stimulus text and users’ response text, divided
by the number of characters in the stimulus text.
This provides an error rate between zero and one.

Text entry research has resulted in literally hun-
dreds of systems, and as a consequence it is not fea-
sible to survey them all. What follows is a sampling
of recent intelligent text entry methods. Also note
that entry and error rates cannot be readily com-
pared across different studies because experimental
setups are rarely consistent across studies, and par-
ticipants’ general performance may vary dramati-
cally across samples. The accepted procedure to
definitely conclude one method is better than
another is to compare the methods directly against
each other in the same experiment. Nevertheless,
it is informative to get a sense of the text entry per-
formance of various techniques, even if those per-
formance measures are not directly comparable. So
with that caveat, the sampling below lists entry
rate measurements for all techniques, if such data
is available.

Speech and Handwriting Recognition
Perhaps the most natural form of input besides a
keyboard is to enable users to write text using
speech or handwriting recognition.

Speech recognition has the potential to be very
fast. A user can speak up to 200 words per minute
(Rosenbaum 1991). In practice, individual per-
formance, fatigue, recognizer design, accents, and
noise characteristics of the environment and the
microphone dramatically affect recognition per-
formance, which in turn affects users’ entry and
error rates. Encouragingly, our recent findings indi-
cated that novice users could speak at a mean entry
rate of 13 words per minute while walking around
outdoors in a windy environment. Ignoring recog-
nition delay, an expert user had a mean entry rate
of 45 words per minute while walking around out-
doors. The corrected error rate (on the word level)
was less than 2 percent. This indicates that speech
recognition has the potential to be an efficient
mobile text entry method (Vertanen and Kristens-
son 2009).

Another possibility is to use handwriting recog-
nition. Handwriting recognition has evolved
tremendously (Tappert, Suen, and Wakahara 1990;
Plamondon and Srihari 2000). Our recent longitu-
dinal user study showed that state-of-the-art hand-
writing recognition results in a text entry rate of
about 25 words per minute after several hours of
practice (Kristensson and Denby 2009). In addition,
both entry and error rates were almost identical to
what was provided by a de facto QWERTY on-screen
keyboard. This means that a modern handwriting
recognizer can be regarded as a reasonably fast text
entry method for pen-based interfaces.

Intelligent On-Screen Keyboards
One of the most common text entry methods on
today’s mobile touch-screen devices is an on-
screen keyboard. This is an image of a keyboard
layout rendered on a touch-sensitive screen. The
typical on-screen keyboard uses the familiar
QWERTY keyboard layout, and this is the only key-
board layout that will be considered in this article.1

On-screen keyboards are easy to learn and use as
users benefit from transfer learning from their
experience with their desktop keyboard counter-
parts. Since they lack tactile sensation feedback,
users do not have a sense of the difference of being
between two keys or at the center of one. This caus-
es users to easily mistakenly hit an unintended
neighboring key. In addition, unlike desktop key-
boards, users are not provided any tactile feedback
when a key press is registered by the system. This
may cause users to mistakenly believe a key press
was registered when it in fact was not.

On-screen keyboards are not very fast when used
with a stylus or a single finger, such as the index
finger. The mean entry rate varies depending on
the study but is typically in the range of 15–30
words per minute (MacKenzie and Soukoreff
2002). This is in part because of the bimodal dis-
tribution of frequent letter key pairs, as mentioned
earlier in this article.

However, both entry and error rates offered by
on-screen keyboards can be improved by making
two observations. First, the landing points on an
on-screen keyboard pixel grid are of a much high-
er resolution than registered key presses on a phys-
ical keyboard. Second, human languages are high-
ly redundant, and the regularities can be captured
and exploited by a language model (Kristensson
and Zhai 2005).

These two observations make it possible to infer
a user’s intended letter key, even though the user
mistakenly hit a neighboring key. As we discussed
previously above, such errors are easy to make on
an on-screen keyboard. Further, Fitts’s law (Fitts
1954) tells us that the time it takes to hit an indi-
vidual key is proportional to both the size of a key
and the distance to it. By relaxing the constraint
that a user must hit an intended key exactly with-
in its boundary we in effect temporarily artificially
magnify the user’s intended key. According to
Fitts’s law this increases the mean entry rate if users
exploit the extra tolerance by pointing at keys
faster (and therefore less precisely) than on a regu-
lar on-screen keyboard.

Goodman et al. (2002) present an on-screen key-
board that achieves this effect by combining a
probabilistic model of users’ landing points with a
character-level language model. Their system uses
this model to infer users’ intended letter keys, as
they are writing the text letter by letter.

We have previously explored an alternative
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approach that pattern-matches users’ tapping
traces against ideal point templates that represent
entire words. We call it the elastic stylus keyboard
(ESK). This system performs corrections by geo-
metric pattern matching. A correction occurs on
the word level and is triggered when the user slides
the pen (or finger) from the left to the right. In fig-
ure 1, the user intended to tap the letter keys T, H,
and E in succession (indicated by filled rhombi
centered on the keys). However, the user acciden-
tally missed all the intended keys and instead hit
the neighboring keys R, J, N, and E in succession
(landing points indicated by outlined circles).
Despite the user missing all the intended keys, and
despite a spurious extra tap when trying to hit the
H key, the system would correctly infer that the
user intended to hit the word the. In our experi-
ments we used a lexicon with about 57,000 words.
In a small formative expert study (involving the
authors only) we found we could reach an entry
rate of 45 words per minute using this system (Kris-
tensson and Zhai 2005).

ShapeWriter (Zhai and Kristensson 2003, Kris-
tensson and Zhai 2004) uses a radically different
approach (figure 2). Instead of serially tapping the
keys, ShapeWriter lets users gesture the shapes of
words over an on-screen keyboard. Each word in a
large lexicon has a corresponding template gesture
that is defined as the connected lines that sequen-
tially intersect the center points of the letter keys
of the word. For example, the word the is a v-like
shape on the QWERTY keyboard layout (see figure
3). The user’s intended word is found by a pattern
recognizer that primarily looks at the scale-transla-
tion invariant shape similarity between the user’s
gesture and the set of template gestures. In our user
studies we found that ShapeWriter enabled novice
users to write at a mean entry rate of 25 words per
minute. In an accelerated learning study, where
users repeatedly wrote multiple phrases, the same
novice users reached a mean entry rate of 44 words
per minute. The peak entry rate was 99 words per
minute (Kristensson 2007).

Other Methods
A plethora of intelligent text entry methods have
been proposed beside speech, handwriting, and
on-screen keyboards. Darragh, Witten, and James
(1990) present a system for typing prediction for
desktop keyboards, and Masui (1998) uses such a
system for a mobile text entry system.

Intelligent text entry methods are about infer-
ence, and inference is closely related to compres-
sion. Taking this thought one step further, one
realizes that instead of predicting users’ text one
can try to decompress users’ abbreviations. Abbre-
viations have a long history. Monks in medieval
European monasteries often abbreviated words
when copying bibles. For example, the Latin word
uerbum (“word”) was often abbreviated into ūbū
(Janson 2004). Shieber and Nelken (2007) propose
an intelligent text entry method that enables users
to enter abbreviated words, thereby reducing the
number of letter keys that have to be pressed by
the user to write words. Their system automatical-
ly decompresses the abbreviations to full words as
the user is typing. Unfortunately their experiments
did not indicate that their system provided any
higher entry rates in comparison to typing out the
full words.

Clawson et al. (2008) correct physical thumb
keyboard typing errors using a machine-learning
algorithm. Physical thumb keyboards have previ-
ously been shown to be very fast, up to 60 words
per minute. However, at such a high entry rate the
error rate exceeds 8 percent (Clarkson et al. 2005).
Therefore, an effective automatic error correction
mechanism would have the potential to improve
efficacy.

AI techniques have also been explored to
improve text entry in eye-tracking interfaces.
Salvucci (1999) presents a system that recognizes
words in a small vocabulary by decoding eye-track-
ing traces over an on-screen keyboard. This system
enabled study participants to write at a mean entry
rate of 15 words per minute (derived from their
reported results of 822 milliseconds per character).

A completely different approach to writing
using eye-trackers is Dasher (Ward and MacKay
2002). In Dasher the user navigates a cursor
through graphical boxes that contain the desired
characters. The boxes’ sizes and positions are based
on a language model. In a sense, with Dasher the
user is driving to the intended destination—the
desired sequence of words. The driving is efficient
for common word sequences because the system
provides the most likely letter sequences with the
largest areas on the display. For less common
words, the driving will be more involved and the
user has to steer carefully toward smaller areas (less
likely letters). This system enabled one of the
expert users to reach an entry rate up to 25 words
per minute.
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Using the Elastic Stylus Keyboard.



Challenges
As is illustrated in the above sampling, intelligent
text entry methods span many areas, some of
which have transformed into their own specialized
research fields, such as handwriting and speech
recognition. The fact that some of the above intel-
ligent text entry methods are commercially avail-
able for desktop computers and mobile phones
shows that decades of research within the inter-
section of AI and HCI have to some extent suc-
ceeded.

Nevertheless, there are still many issues that
need to be solved. Below are five major challenges
that I believe we need to tackle: localization, error
correction, editor support, feedback, and context
of use.

Challenge 1: Localization
Depending on your country, the topology of your
desktop keyboard layout will vary. For example,
the first six top-left letter keys read QWERTZ on a
German keyboard and AZERTY on a French key-
board. However, since desktop keyboards are typed
one character at a time, a different keyboard lay-
out simply means that the operating system needs
to switch key map.

In contrast, any text entry method that relies on
a list of words (a lexicon) will need to collect such
a list for every language supported. Collecting and
verifying high-quality lexicons is a labor-intensive
task that may require access to native speakers of
each language.

Text entry methods that require higher-order
language models, for example unigram, bigram, or
trigram models, also require sufficient text data
(corpora) to train those models. For language mod-
els to be useful the corpora need to be representa-
tive of what users are intending to write. It is cur-
rently difficult to get access to high-quality corpora
for different languages that properly model what
users intend to write on their mobile phones.

Some intelligent text entry methods, such as
handwriting and speech recognition, also require
models of users’ articulations. For example, a
speech recognizer needs at the very least an
acoustic model to function. This model needs to be
rebuilt for different languages.

In the literature, the issue of localization tends
to be underestimated, particularly when complete-
ly new text entry methods are proposed. Never-
theless, a good example of a novel text entry
method proposed by researchers that quickly sup-
ported many different languages is Dasher (Ward
and MacKay 2002). Currently Dasher supports
more than 60 languages. Since Dasher models each
language as an adaptive character-level language,
it can be seeded with a relatively small corpus and
still function acceptably while it gradually adapts
to a user’s writing.

Challenge 2: Error Correction
With or without a proper language model, in text
entry, errors are unavoidable. Here we divide users’
errors into two broad categories: cognitive errors
and motor errors. Cognitive errors are due to the
user having an improper model of an intended
word. For example, a user may not be able to spell
or pronounce an intended word correctly. Motor
errors are due to mistakes that occur due to tremor
or stress. Both classes of errors, but particularly
motor errors, tend to increase as the task becomes
more complex. For example, a user who is simul-
taneously walking and interacting with a touch-
screen will find it more difficult to precisely hit tar-
gets on the screen (Crossan et al. 2005).

Another class of errors is not due to the user but
to the system.2 If the recognizer has an incorrect
model of the user, then some errors are inevitable.
In practice, it is difficult to design a perfect model.
For example, the standard tri-gram language mod-
el of a speech-recognition system makes many
assumptions of users’ speech that are clearly not
true, such as the assumption that all users’ utter-
ances are only dependent on the two last spoken
words (that is, a trigram model). Another obvious
model mismatch exists in word recognizers, such
as the one used in ShapeWriter. Here the system
uses a dictionary of words. If users’ intended words
are not in the dictionary the system cannot possi-
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Figure 2. ShapeWriter on the iPhone. 

The user is in the process of writing the word using.



bly infer the correct words (so-called out-of-vocab-
ulary errors).

Since errors are unavoidable, users need support
to correct them. At the very least, some mecha-
nism to correct errors is required. Furthermore,
error correction may be carried out in the same or
a different modality. Karat et al. (1999) observe
that correcting speech-recognition errors using
speech alone is problematic since it may lead to
cascading errors when utterances intended to cor-
rect errors are themselves misrecognized. One solu-
tion is to use a correction interface that uses a dif-
ferent modality, such as a touch-screen. Figure 4
shows a word confusion network correction inter-
face for a mobile speech-recognition system (Ver-
tanen and Kristensson 2009). The best hypothesis
is shown at the top row. The individual words in
the best hypothesis can be changed by touching
alternative words in the corresponding row posi-
tions. A word can be deleted by touching the X
button in the corresponding row. The words repre-
sent the best hypothesis in the recognition result

If it is desirable to support hands-free error cor-
rection in speech recognition the problem

becomes more challenging. McNair and Waibel
(1994) propose a technique that enables users to
correct speech-recognition errors by simply res-
peaking the intended words. In previous systems
in the literature, users had to first select the error
region in the text by speaking the misrecognized
text. Thereafter, users replaced the text by respeak-
ing their intended words. McNair and Waibel
(1994) explain that their one-step method better
resembles how we resolve misunderstandings in
our daily human-human communication.

Depending on the circumstances, efficient error
correction techniques can be critical for the success
of a system. As an example, we carried out a form-
ative study where users dictated text while they
walked around outdoors. Our users were able to
enter text at 15 words per minute with a corrected
word-level error rate of about 2 percent, despite the
fact that the word-level error rate of the speech rec-
ognizer was 26 percent (Vertanen and Kristensson
2009).

In conclusion, we are still searching for efficient
error correction interfaces. Well implemented,
they improve entry rates and reduce frustration
among users.

Challenge 3: Editor Support
Effective error correction methods ultimately
depend on good editor support. Modern operating
systems are designed for text entry by means of a
desktop keyboard. Whenever a user types an indi-
vidual key the keyboard’s scan code is translated
into a keyboard-independent key code that is stored
in a queue and sequentially dispatched to the win-
dow the user is currently working on. If the user
makes a mistake the user presses the Delete and
Backspace keys, which are processed and dispatched
in the same manner as all other key presses.

The aforementioned process is one directional
and there is no reliable way for a text entry method
to retrieve text that has previously been dispatched
to the user’s working window. When text entry is
operating on a unit more complex than a single
character, two issues arise.

First, a number of intelligent text entry methods
calculate the probability of a recognized word
based on previous words already written by the
user. If there is no reliable way to detect these pre-
vious words in the user’s document this cripples
practical implementations of these methods.

Second, an intelligent text entry method may
output several word candidates. However, only the
highest ranked word candidate is dispatched to the
user’s document. Since recognition is error prone,
it is convenient to enable users to revisit previous-
ly written words and let them explore the alterna-
tive choices. Such interaction requires support by
operating systems. Unfortunately, this support is
lacking. As a result, text entry systems have to
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Figure 3. The Ideal Shape of the Word the in ShapeWriter.

Figure 4. Example of a Word Confusion Network Correction Interface for
a Mobile Speech-Recognition System.



resort to manually monitoring and modeling all
user interface messages (Watanabe, Okada, and
Ifukube 1998). Such mechanisms are error prone
and may not be possible to implement on all oper-
ating systems.

This issue is not likely to disappear until intelli-
gent text entry methods, such as speech recogni-
tion, become mainstream text entry methods on
both desktop and mobile computers. Better toolk-
its and input method frameworks would mitigate
the current situation.

Challenge 4: Feedback
Another aspect that requires attention is user feed-
back. The immediate feedback users receive from a
recognizer is the recognized text presented to them
by the system. The quality of recognition is most
likely a highly influential feedback mechanism in
itself. Curiously, the effect of immediate versus
withheld feedback on users’ performance with,
and perception of, a text entry method does not
appear to have been formally studied. Recognition-
based text entry methods have a degree of toler-
ance toward imprecise “sloppy” input. This can
result in a positive feedback loop that causes users
to write increasingly sloppily as they observe how
much the recognizer tolerates. Such an effect may
be positive, as it drives users to find their own opti-
mal operating point (Kristensson and Denby
2009).3 Of course, at a certain point the input will
be too noisy for any recognizer, and the system will
fail with a recognition error. Figure 5 exemplifies
how we tried to preempt this situation by visualiz-
ing to users how close their input gestures are to
the recognized ideal templates in ShapeWriter
(Kristensson and Zhai 2004).

Annotating Words Based on Confidence.
In most modern word processing applications a
spelling checker annotates words not found in a
dictionary. The popularity of spelling checkers
indicates that users perceive them as effective
when using a text entry method, such as the desk-
top keyboard. With a character-per-character text
entry method, it is easy to make mistakes on the
character level. Such errors can be reliably detect-
ed by a spelling checker.

In contrast, intelligent text entry methods often
work by recognizing and outputting entire indi-
vidual words into a document. This effectively
eliminates spelling errors and the need to detect
them. However, it does not necessarily mean that
words outputted by the recognizer are words
intended by the user. Since these unintended
words are undetectable by spelling checkers,
researchers have tried to use other sources of infor-
mation to detect them. Aside from a grammar
checker, another source of information is the rec-
ognizer’s confidence scores. If these confidence
scores are sufficiently accurate, they can be used as

a basis to annotate words. An early example of the
use of confidence visualization, possibly the first, is
described by Schmandt (1981). He presents a
speech-recognition system that displayed recog-
nized key words in different shades depending on
the recognizer’s confidence scores.

It is plausible that annotating low-confidence
words would help users detect more misrecognized
words.4 To investigate this hypothesis, we built a
speech-recognition user interface that annotated
recognized words based on the speech recognizer’s
confidence values (figure 6). Our experiment
showed that annotating words based on their con-
fidence did not result in a measurable difference in
the number of errors users were able to detect and
correct. Examining the material further, we found
that misrecognized words were indeed found sig-
nificantly more often when they were annotated
in comparison to a baseline where no words were
annotated at all. However, unannotated misrecog-
nized words in the annotation condition were also
discovered less often than in the baseline. In other
words, users tended to look only at the annotated
words. Unless confidence scores are highly accu-
rate, this means that users will not be able to iden-
tify that many misrecognized words, since these
will often fail to be correctly annotated by the sys-
tem (Vertanen and Kristensson 2008).

Galletta et al. (2005) reached a similar conclu-
sion when they investigated the efficacy of spelling
checkers. They found that when spelling checkers
correctly annotated misspelled words users indeed
benefited. However, they also found that users
tended to trust spelling checkers too much. This
meant that when the spelling checker made a mis-
take users tended to believe the spelling checker
and made incorrect changes prompted by it. In
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Figure 5. Ideal Shape in Comparison to User’s Input.

The ideal shape of the word the (indicated by a solid polyline) is visualized in
comparison to the user’s input gesture (indicated by a dotted spline) in
ShapeWriter. For clarity the keyboard is omitted in this illustration.



addition, if the spelling checker was unable to
detect a spelling error, users tended to not detect
the error themselves.

In conclusion, until confidence scores are more
accurate they are unlikely to aid users. We have
shown that if confidence scores are accurate
enough they do indeed benefit users (Vertanen and
Kristensson 2008). However, to reach such levels it
may be necessary to incorporate external knowl-
edge outside the speech recognizer. Since speech
recognizers already use statistical knowledge of the
preceding word context, an alternative source
might for example be commonsense reasoning.
Commonsense reasoning has earlier been explored
as a means to disambiguate between speech-recog-
nition hypotheses (Lieberman et al. 2005).

Challenge 5: Context of Use
The last challenge is to design for the heteroge-
neous contexts that users of mobile devices are
exposed to on a daily basis. The by far most com-
mon experimental situation is to let the partici-
pant sit down in a quiet office and enter a set of
given phrases or sentences. This experimental set-
up has completely dominated mobile text entry
research, with very few exceptions. However, as
modern mobile phones and their text entry meth-
ods become increasingly sophisticated, users are
probably going to expect that they will be able to
enter text at reasonable speeds, even on a shaky
bus or when walking down a street. Suddenly a
high entry rate and a low error rate is not enough.
A text entry method will be required to also under-
stand and support users’ needs in particular situa-
tions. For example, if the user is walking toward
the departure gate, a speech recognizer may be the
most effective text entry method. On the other
hand, if the user is attending a committee meeting
a completely silent text entry method is desired. A
context-aware system could model such situations
and automatically switch input modality.

Oulasvirta et al. (2005) carried out one of the
first comprehensive studies of users interacting
with their mobile devices while walking around
outdoors. They discovered that users cope with
their environment in fragmented bursts, constant-
ly shifting attention between their device and their
surroundings. This finding inspired the design of
our static error correction interface in our mobile
speech-recognition system Parakeet (Vertanen and
Kristensson 2009).

Proper modeling of different contexts of use rais-
es many currently unanswered questions. We do
not have sufficient knowledge of how users use,
and would like to use, mobile text entry methods
today. Nor do we know which modalities they pre-
fer in different situations and contexts. A seamless
multimodal text entry system needs to be able to
accurately sense and reason about its surrounding
based on models of both the environment and the
user’s preferences. It will require a user interface
that enables users to easily monitor, understand,
and control its behavior. Such multimodal adap-
tive text entry systems provide users with more
flexible options than what is currently offered.

Walking the Last Mile
It is worth noting that a clever algorithm does not
guarantee a successful intelligent text entry
method. Even though it may be possible to show
theoretical quantitative advantages with certain
approaches, there is always a risk that the user
interface is cumbersome, or that the algorithm is
perceived as brittle by users.

An example is our work on designing the elastic
stylus keyboard that was presented earlier in this
article (Kristensson and Zhai 2005). The design of
this system followed an iterative design process.
Two user studies were conducted using an early
incarnation called the linear correction system.
The primary difference between the linear correc-
tion system and the final design was that the for-
mer could not cope with insertion and deletion
errors (the user omitting a tap, or introducing a
spurious extra tap). The efficacy of the linear
matching algorithm was evaluated in a user study.
Theoretically, it should enable users to write more
quickly than a traditional system since it provides
a certain degree of error tolerance. However, in the
user study the system achieved almost the same
entry rate as a baseline system that performed no
corrections at all. When analyzing the material fur-
ther, we discovered that while the system did auto-
matically correct the majority of users’ errors, it
also caused a couple of errors that most likely made
users trust the system less. It is well established that
interactive systems that do not behave as expected
undermine users’ trust in them (Tseng and Fogg
1999). Thus, this deficiency resulted in a system
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Figure 6. Example of Confidence Visualization. 

The user’s utterance has been recognized and the inferred
words are shown to the user. The words are annotated
based on the recognizer’s confidence. The intensity of the
gray underlining is proportional to the recognizer’s belief
that the underlined word is misrecognized. The large
underlined gap represents the recognizer’s belief that a
word is likely missing in the recognition result.



that was perceived as brittle by users. For example,
if a single tap was accidentally omitted a com-
pletely different word would be outputted, which
puzzled users.5 Since users did not trust the system
they chose to be overly careful. As a result, the text
entry rate did not increase as expected.

In contrast, the final elastic stylus keyboard sys-
tem took into account the fact that users may omit
or accidentally add spurious taps. As a result, the
final system eliminated almost all errors detected
in the first user study. This indicates that marginal
improved performance of the AI algorithm can
dramatically determine the end-user benefits of the
intelligent text entry method.6 It also shows that
theoretical benefits remain theoretical until they
are empirically verified. In the end, engineering
and evaluation have to go hand in hand if we hope
to create better systems.

Conclusions
During the last decades, several intelligent text
entry methods have been conceived, improved
upon, and evaluated by researchers from both the
AI and HCI communities. Unlike perhaps most
other research on interactive systems, the text
entry research field has maintained close connec-
tions to AI and engineering. A possible explanation
is that text entry methods have always had clear
objective functions insofar that a good text entry
method has a high entry rate and a low error rate.

However, these objective functions have been
optimized to a point where further progress is most
likely incremental. In this article, I have presented
five challenges that set a broader view on intelli-
gent text entry. It is not enough to design a clever
algorithm and show empirical benefits. The moti-
vation behind text entry research is to ensure we
have practical writing systems available for every-
one, everywhere. Thus, successful text entry meth-
ods need to work in the real world. Researchers
need to walk the last mile and ensure their meth-
ods have a purpose in our society. In this process,
several neglected, but often critical, challenges
arise that may very well be deciding factors in the
success of a text entry method. By addressing these
challenges, intelligent text entry methods will
have greater impact in our society.
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Notes 
1. The use of a keyboard layout optimized for efficient
one-finger typing can increase the asymptotic perform-
ance of expert users, but it creates a learning hurdle for

beginning users. The usability side-effects theme article
in this issue discusses the special importance of avoiding
excessive learning demands during early use. Offering a
familiar, though less efficient, keyboard with a new text
entry technique is consistent with this point.

2. The remainder of this section provides concrete illus-
trations of many of the general points made in the sec-
tion on errors in the theme article on usability side
effects.

3. The attempt of users to find their own “ideal operating
point” can be seen as an example of a type of learning
discussed in the usability side-effects theme article: learn-
ing which of various alternative ways of using the system
works best for the user in question (and perhaps in par-
ticular situations). The novelty of this learning problem
in the case of ShapeWriter is typical, in that it is due to
the novelty of the intelligent technology being intro-
duced. The visualization shown in the figure is an ingen-
ious way of speeding up the learning by providing perti-
nent feedback.

4. The need to learn to make appropriate use of the con-
fidence values of an interactive intelligent system is
another example of the difficulty that users face in figur-
ing out how to take advantage of what is offered by an
intelligent system. It illustrates the worst case, discussed
in the section on learning in the usability side-effects
theme article, in which even extensive experience may
not enable a user to discover the best method. Note that
the researchers cited here had to perform a controlled
study to determine the consequences of relying on con-
fidence values; normal users could hardly be expected to
reach reliable conclusions on their own.

5. This response of users to unexpected system behavior
illustrates a point made in the section on comprehensi-
bility in the usability side-effects theme article: a user’s
operation of a system can be influenced by the user’s abil-
ity to understand and predict the system’s responses to
his or her actions. In this example, lack of predictability
and comprehensibility led to overly cautious user behav-
ior that did not fully exploit the potential of the system’s
intelligent interpretation algorithms.

6. This example illustrates a point made in the section on
errors in the usability side-effects theme article: instead of
globally maximizing accuracy according to some stan-
dard metric, researchers and designers should find out
what particular errors are likely to occur and what conse-
quences are associated with them, so as to be able to
ensure that the system’s performance parameters and cor-
rection mechanisms handle the most important cases
effectively.
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