
Learning by demonstration technology has long held the
promise to empower nonprogrammers to customize and
extend software. Recent technical advances have enabled

its use for automating increasingly complex tasks (Allen et al.
2007; Blythe et al. 2008; Burstein et al. 2008; Leshed et al. 2008;
Cypher et al. 2010). However, fielded applications of the tech-
nology have been limited to macro recording capabilities,
which can only reproduce the exact behavior demonstrated by
the user.

This article describes the successful deployment of learning
by demonstration technology that goes well beyond macro
recording by enabling end users to create parameterized proce-
dures that automate general classes of repetitive or time-con-
suming tasks. This task-learning technology originated as a
research system within DARPA’s Personalized Assistant That
Learns (PAL) program, where it was focused on automating tasks
within a desktop environment (Gervasio, Lee, and Eker 2008;
Eker, Lee, and Gervasio 2009; Gervasio and Murdock 2009). 

From those research roots, PAL task learning has evolved into
a fielded capability within the Command Post of the Future
(CPOF) — a military command and control (C2) system used
extensively by the U.S. Army. The CPOF software is part of the
Army’s Battle Command System, and as such is standard equip-
ment for virtually every Army unit. Since its inception in 2004,
thousands of CPOF systems have been deployed. 
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n Learning by demonstration technology has
long held the promise to empower nonprogram-
mers to customize and extend software. We
describe the deployment of a learning by
demonstration capability to support user cre-
ation of automated procedures in a collabora-
tive planning environment that is used widely
by the U.S. Army. This technology, which has
been in operational use since the summer of
2010, has helped to reduce user work loads by
automating repetitive and time-consuming
tasks. The technology has also provided the
unexpected benefit of enabling standardization
of products and processes. 



CPOF is a geospatial visualization environment
that enables multiple users to collaborate in devel-
oping situational awareness and planning military
operations. Much of CPOF’s power comes from its
generality, providing tremendous flexibility for
handling a wide range of missions. The flip side of
this flexibility, however, is that CPOF provides few
built-in processes to support specific work flows. As
a result, CPOF can require significant user interac-
tion to complete tasks (that is, it is “click inten-
sive”). 

Task learning provides tremendous value for
CPOF by enabling individual users and collective
command staffs to create customized, automated
information-management schemes tailored to
individual preferences and the staff’s standard
operating procedures, without needing software
engineers for extensive recoding. Task learning can
reduce work load and stress, can enable managing
more tasks with better effectiveness, and can facil-
itate consideration of more options, resulting in
better decisions. 

In Learning by Demonstration to Support Mili-
tary Planning and Decision Making (Garvey et al.
2009), we described the core task-learning tech-
nology, its integration into an initial PAL-CPOF
prototype, and an extensive exercise-based evalua-
tion of the prototype conducted by the U.S. Army
in December, 2008. At this evaluation, users over-
whelmingly endorsed the capabilities provided by
task learning. Users stressed that task learning
“saves time and that time equals lives.” The results
led to a recommendation by the Army to fully
incorporate PAL task learning into CPOF, with the
objective of deploying it for operational use. 

That objective has been realized: PAL task learn-
ing has been integrated into the mainline CPOF
system and its incremental fielding throughout the
U.S. Army was begun in the summer of 2010. For
CPOF users, task learning speeds time-critical pro-
cessing, eases task loads, reduces errors in repeti-
tive tasks, and facilitates standardization of opera-
tions. 

This article describes our experiences in transi-
tioning the initial PAL-CPOF prototype to the field,
summarizing valuable lessons learned along the
way. As one would expect, the deployment process
involved refining and hardening the prototype
capabilities along with significant systems integra-
tion work. In addition, we continuously engaged
with users to ensure the technology’s usability and
utility. This engagement included working closely
with a U.S. Army unit that was preparing for
deployment, to help personnel incorporate task
learning into their operational processes. 

One unexpected outcome of the interactions
with the unit was an expanded value proposition
for task learning, moving beyond the original
motivation of automating time-consuming

processes to further include standardization of
processes and products. We collaborated exten-
sively with the unit to develop a comprehensive
library of learned procedures that capture critical
work flows for their daily operations. Interestingly,
the unit made fundamental operational changes to
take greater advantage of the automation enabled
by task learning. 

We begin with an overview of CPOF followed by
a summary of the PAL task learning. We then
describe the process of getting to deployment, cov-
ering technical challenges encountered, unit
engagement activities, and an Army-led assess-
ment of the technology. Next, we discuss the field-
ing of the technology, including trade-offs made to
ensure deployability, the impact of the deployed
technology, and lessons learned. We close with a
summary of ongoing work to deploy additional
functionality and to broaden the user base for task
learning in CPOF.

Command Post of the Future
Command Post of the Future (see figure 1) is a
state-of-the-art command and control visualiza-
tion and collaboration system. CPOF originated in
a DARPA program focused on advanced user inter-
face design for C2 environments. It grew out of a
need to enable distributed command posts to
process greater amounts of information and to col-
laborate effectively on operations. CPOF is built on
the CoMotion platform, which was derived from
visualization research on SAGE (Roth et al. 1994)
and Visage (Roth et al. 1996). 

Three design concepts lie at the heart of CoMo-
tion: information centricity, direct manipulation,
and deep collaboration.

Information Centricity. CPOF is organized round
the principle of direct interaction with informa-
tion. In any C2 environment, the ability to incor-
porate new information dynamically is critical to
the success of an operation. CPOF uses geospatial,
temporal, tabular, and quantitative visualizations
specifically tailored to accommodate information
in the C2 domain. Though many prior visual ana-
lytics tools operate on static data dumps, CPOF’s
“live” visualizations continually update in
response to changes sourced from users’ interac-
tions or from underlying data feeds. CPOF is high-
ly composable, permitting users to author new
information directly in visualizations or to create
composite work products by assembling multiple
visualizations in a single container “product.” 

Direct Manipulation. CPOF makes heavy use of
drag-and-drop and other direct manipulation ges-
tures to afford users content management, editing,
and view control operations. By employing a small
set of interactions with great consistency, simplic-
ity and predictability emerge.
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Deep Collaboration. CPOF offers a deep collabo-
ration capability, beyond pixel sharing and chat.
Any visualization or composite product in CPOF
supports simultaneous interaction by every user
with access to it, supporting the collaborative cre-
ation of plans and analysis products. Leveraging an
“over the shoulder” metaphor, sharing in CPOF
happens as a natural side effect of user activities,
providing shared visibility among distributed team
members (just as sharing occurred naturally
among colocated users in command posts prior to
CPOF). 

CPOF is used daily at hundreds of distributed
command posts and forward operational bases.
The software spans organizational echelons from
corps to battalion, with users in functional areas
that include intelligence, operations planning, civ-
il affairs, engineering, and ground and aviation
units. CPOF is used extensively to support C2 oper-
ations for tasks covering information collection

and vetting, situation understanding, daily brief-
ings, mission planning, and retrospective analysis.
A detailed description of CPOF’s operational utili-
ty is provided in Croser (2006).

The CPOF interface enables users to compose
and share many “simultaneous but separate” prod-
ucts tailored to task and area of responsibility. One
such product is a storyboard, an example of which
is depicted in figure 2. A storyboard is typically cre-
ated in response to a significant event, such as a
downed aircraft. While the content and layout
vary for different classes of events, storyboards typ-
ically provide a summary of key details, relevant
operational graphics, impact analyses, and recom-
mended actions. Other products created within
CPOF include information briefings, common
operating pictures, resource-level estimates, and
fragmentary orders. 

Users can collaborate synchronously in CPOF by
interacting with a set of shared products. The live-
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Information along with Palettes for Quick Drag-and-Drop Insertion of Information.



ness of visualizations ensures data updates flow
rapidly to users, and the “over the shoulder”
metaphor allows one user to monitor another’s
work, thus minimizing interruptions with requests
for information. Collaboration group size spans
the spectrum from individual (analysis, event
tracking) to small group (mission planning) to
organization wide (update briefings, mission
rehearsals). 

Each major deployment typically has several
data partitions (each a CPOF repository) that allow
the U.S. Army to manage risk and redundancy for
the overall system. Each major deployment has
dedicated field support representatives and senior
trainers residing with the unit on their bases to
administer the system and support its users.

Task Learning in PAL-CPOF 
The simplicity of interaction with CPOF affords
users great flexibility in creating rich visualizations
over a wide variety of data. But this powerful capa-
bility often comes at the cost of time-consuming,
click-intensive processes. Task learning addresses
this problem by letting users automate repetitive

processes, allowing them to focus on more cogni-
tively demanding tasks. For example, the outline
for the storyboard depicted in figure 2 can take
many minutes to create manually, thus slowing
down the process of responding to time-critical
events. Task learning can be used to create a pro-
cedure that generates a storyboard template auto-
matically when invoked, enabling the soldier to
focus immediately on content for the storyboard
rather than having to devote precious time to rote
visualization construction. 

In the paper by Garvey et al. (2009), we
described the initial integration of task learning
into CPOF. Here, we provide a brief overview of the
learning technology, the procedure execution and
editing functionality, and the rules and work flows
that together constitute the task-learning capabili-
ty added to CPOF. 

LAPDOG: Learning by Demonstration
The LAPDOG system (Gervasio, Lee, and Eker
2008; Eker, Lee, and Gervasio 2009; Gervasio and
Murdock 2009), depicted in figure 3, provides the
learning by demonstration capabilities from the
PAL program that support task learning within
CPOF. Given a trace consisting of a sequence of
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Figure 2. A Sample CPOF Storyboard.



actions performed by a user to achieve a particular
task, LAPDOG generalizes the trace into a proce-
dure for achieving similar tasks in the future. 

An action model provides the semantic descrip-
tion of the demonstrable actions in an application,
together with mechanisms for the instrumentation
and automation of those actions. An early chal-
lenge in the development of the CPOF action mod-
el was finding the right level of abstraction. Cap-
turing actions at the level of primitive data
changes (for example, create an entity, move a con-
tained entity to the front/back of its container)
allowed for a very compact action model and
greatly simplified instrumentation but led to
lengthy procedures with minimal generalization
and poor comprehensibility. To support an action
model at the level humans typically describe their
actions (for example, dispense a frame, center a
map on an entity) required investing in a transla-
tion layer to convert lower-level events into corre-
sponding higher-level actions. The resulting action
model thus comes at a higher cost of instrumenta-

tion but enables more successful generalization
and increased understandability for visualization
and editing. The current action model covers most,
although not all, of the core user activities in
CPOF.

LAPDOG employs a data flow model in which
actions are characterized by their inputs and out-
puts, with outputs serving as inputs to succeeding
actions. LAPDOG generalizes demonstrations into
procedures in two ways. First, it performs parame-
ter generalization, unifying action outputs and
inputs and replacing constants with variables or
expressions over variables to capture the data flow
in the demonstration. Second, it performs structure
generalization, inducing loops over collections of
objects by generalizing repeated sequences of
actions. 

LAPDOG’s loop induction algorithm supports
advanced features such as the ability to learn loops
that iterate over ordered or unordered collections
of objects (lists and sets), involve expressions over
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those collections, process multiple lists simultane-
ously, and accumulate outputs. Although a power-
ful generalization technique, loop induction has
been surprisingly difficult to see fully realized in
CPOF for two primary reasons: (1) iteration is a dif-
ficult concept for end users, and (2) identifying col-
lections in CPOF currently involves idiosyncratic
gestures in the user interface.

LAPDOG features the ability to infer action
sequences for completing data flow in situations
where the linkage between outputs and inputs is
implicit. For example, in preparing a text message
based on an incident report, the user will typically
use information from particular fields in the
report.  Because instrumentation will not capture
this linkage, without data flow completion the
learned procedure would require the message text
to be input by the user, thus losing the implicit
relations between the report fields and portions of
the message.  However, by inferring these relations,
LAPDOG can instead induce a parameterized mes-
sage template for use in preparing text messages for
the procedure.  This inference of implicit data flow
improves LAPDOG’s ability to generalize across the
parameters of procedure actions, reducing the
inputs required for a learned procedure and so sim-
plifying its use. 

LAPDOG was not specifically designed to learn
from a single example but that has become its pri-
mary mode of use in CPOF since users have gener-
ally been unwilling to provide multiple demon-
strations. LAPDOG generalizes from a single
example with the aid of heuristics for filtering the
set of alternative hypotheses. Specifically, it prefers
more recent or more direct supports, action out-
puts over procedure inputs, existing procedure
inputs over new ones, and loops over straight-line
alternatives. 

Procedure Execution and Editing
In the initial PAL-CPOF prototype, the SPARK
agent framework (Morley and Myers 2004) was
used to execute learned procedures. SPARK is a fea-
ture-rich system designed to support the sophisti-
cated control and reasoning mechanisms required
by practical agent systems (for example, Morley,
Myers, and Yorke-Smith 2006; Yorke-Smith et al.
2009). The execution of learned procedures within
the deployed system is provided by a lightweight
version of SPARK focused specifically on procedure
execution. 

Because many CPOF users have no program-
ming experience, it is important to provide com-
prehensible visualizations that communicate what
a learned procedure does and to assist users in
making valid edits. This is particularly important
in collaborative environments such as CPOF, to
allow users to benefit from being able to modify
and reuse procedures created by others. On the PAL

project, we developed technology for procedure
visualization and assisted editing (Spaulding et al.
2009). Our approach, refined through feedback
from numerous user engagements, augments the
action model with a flexible metadata capability to
improve visualization and editing. It also employs
procedure analysis techniques to detect editing
problems and suggest fixes. 

Composing Higher-Level Work Flows 
Learned procedures provide significant value by
automating time-consuming functions in CPOF,
such as the creation of storyboard templates
described earlier. Our earlier interactions with the
U.S. Army revealed that the value of task learning
was greatly enhanced by introducing rules to
enable automatic invocation of learned procedures
based on some triggering event. Rules were used
extensively in the original PAL-CPOF prototype to
facilitate rapid response to a range of operational
events. Three types of rules were supported: time
rules, data rules, and area rules. Time rules invoke
procedures at absolute or relative times or with a
specific frequency, data rules invoke procedures
based on particular changes to properties of objects
in the system, and area rules invoke procedures
based on particular changes to predefined areas on
a map. For example, a data rule could be created
that invokes a procedure for creating a storyboard
template tailored to a particular event class when
an event of that type is recorded in the system. 

Taking this concept a step further, as shown in
figure 4, it is possible to compose collections of
related rules and procedures into more complex
work flows that automate larger chunks of func-
tionality. Work flows open the door to automating
critical responses to significant events in accord
with standard operating procedures (SOPs). For
example, PAL work flows have been created that
automatically construct and arrange work spaces,
notify selected staff of events, track assets, and pre-
pare simple reports for the user’s approval and dis-
semination. As discussed below, work flows proved
instrumental to our deployment strategy but intro-
duced some additional challenges. 

Given that work flows encompass multiple pro-
cedures and rules that can interact in potentially
subtle ways, creating complex work flows requires
a level of sophistication not met by most CPOF
users. Successful management of work flows
required us to consider classes of users with differ-
ent capabilities and responsibilities, A significant
part of our design effort leading up to deployment
was devoted to creating tools and best practices to
facilitate understanding and management of an
ecosystem of interacting procedures and rules by
users of differing skill levels. 
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Getting to Deployment 
Our efforts to deploy the PAL task-learning tech-
nology within CPOF involved two main thrusts.
One focused on the hardening and refinement of
the task-learning capabilities, along with their inte-
gration into the mainline CPOF system. The sec-
ond focused on user engagement to ensure the
operational effectiveness of the technology. This
section describes key challenges that arose on the
technical side, along with our user engagement
efforts and their impact on the development and
deployment processes.

Technical Challenges 
Transitioning the task-learning technology into
CPOF presented numerous software-engineering
challenges, independent of the learning capability
itself. The collaborative nature of CPOF requires
integration to be sensitive to problems inherent to

distributed, multiuser systems. CPOF is a fielded
platform but also continues to evolve over time.
Finally, the data that CPOF manages is dynamic
and voluminous. 

Deployment of the technology also raised a
number of challenges more directly linked to task
learning. One was developing an expressive yet
sustainable action model. To address this chal-
lenge, we evolved our action model framework to
be extensible so that it could both grow to accom-
modate changes in CPOF and enable procedures
from prior versions to be upgraded easily to new
versions.

High-volume, concurrent procedure execution
presented a second challenge. The PAL task-learn-
ing technology was developed originally as part of
an intelligent desktop assistant, for which execu-
tion typically involved small numbers of proce-
dures executed one (or a few) at a time under
explicit user control. During exploration of the use
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of the task-learning technology within CPOF, the
automatic invocation of procedures through rules
took on an increasingly significant role. In the
deployed version of the system, rule-based invoca-
tion can lead to hundreds of procedures executing
simultaneously, which was well beyond the design
parameters for the desktop assistant. Addressing
concurrency with high volumes of procedure exe-
cution required a complete reimplementation of
the PAL-CPOF communications infrastructure to
eliminate timing problems triggered by these high-
er than anticipated invocation rates.

Another significant challenge was the difficulty
of porting PAL products (procedures or work flows)
between units, which have data elements specific
to their needs. Task learning generates parameters
based on the data elements referenced in a demon-
stration. Procedures easily fit into user work
processes because dependencies on the unit-spe-
cific data partition are encoded as default parame-
ters. However, ensuring that a PAL product works
for other units requires “rewiring” those defaults to
the appropriate local data sources. For example,
one key data element within a CPOF repository is
the SigActs table, which records the significant
actions of relevance to a particular unit. A unit
linked to a different CPOF repository would have
its own local SigActs table. For a procedure taught
within the context of one repository to work on a
second repository, default references to the SigActs
table would need to be reset accordingly. For com-
plex products, this localization process proved to
be particularly demanding, requiring deep knowl-
edge of both the author’s intent and the unit’s data

configuration. For the initial deployment, we
relied on human experts to perform this task.

User Engagement Prior to Fielding
Our transition plan emphasized continuous user
interactions to develop and refine the task-learn-
ing concept in CPOF. To this end, we conducted a
series of user-centered design exercises with the
deploying unit. These exercises were conducted
using the Double Helix methodology that was
applied successfully to the development and
deployment of the initial CPOF system.

The name Double Helix derives from simultane-
ous technology refinement based on insights from
user interactions and refinement of the Concept of
Operations (CONOPS) for its use within the opera-
tional domain (see figure 5). In the Double Helix
methodology, technologists work with users in
realistic settings to uncover technology issues,
understand the operational “sweet spot” for the
capability, and identify opportunities for its use to
solve relevant operational problems.

Our Double Helix exercises yielded several
insights that informed our deployment effort. 

Initial demonstrations of simple PAL capabilities
facilitated user acceptance of the technology. In gener-
al, introducing new technology into a large-scale,
distributed operational environment requires strict
feature specifications and configuration control. In
addition, deployment typically requires safety and
encapsulation for users with limited training while
placing unfortunate restrictions on more experi-
enced users. Such requirements run counter to the
spirit of end-user task learning and could be
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expected to reduce user acceptance of such tech-
nology. To mitigate this risk, our engagement team
introduced PAL by initially creating small proce-
dures that automated routine, repetitive tasks
rather than complex work flows. By first under-
standing these simple examples, users were more
likely to embrace the technology and to conceive
of more complex support that PAL could provide.
This approach proved successful in enabling low-
risk, progressive adoption of the technology. 

Creation of a library of automation products built by
expert users greatly increased adoption of the technolo-
gy. During user engagements, we identified
CONOPS common to multiple units that could be
supported by generic, but sophisticated, PAL work
flows. Expert users were able to automate several of
these “best practice” work flows using task learn-
ing. This led to the introduction of a PAL Library as
a way to disseminate these more advanced work
flows. 

The PAL Library significantly strengthened the
capability deployment process. First, it conveyed
to users the “art of the possible” (that is, what can
be done with the PAL technology). Prior to devel-
opment of the library, users often had limited
understanding of how PAL products could help
them. Afterward, there was a marked increase in
capability expectations among the user base. Sec-
ond, it provided complete interactive products
with more compelling functionality than individ-
ual procedures. Third, it enabled users to reap the
benefits of PAL without having to understand how
to create procedures and rules. Finally, the library
created an effective conduit to introduce enhanced
capabilities into the field. 

Incremental integration of PAL capabilities into
operational SOPs was essential for successful technolo-
gy transition. Initial attempts to automate collabo-
rative processes monolithically failed because the
changes imposed on the users were too substantial.
Based on these early experiences, we switched to a
more gradual approach that would enable PAL
work flows to be adopted incrementally into exist-
ing SOPs. Our adoption path consisted of the fol-
lowing steps: (1) an isolated work flow for a single
user, (2) an individual work flow shared by multi-
ple users, (3) a set of individual work flows within
a PAL-initialized organizational process, and (4) a
set of collaborative work flows supporting multiple
users. Following this path facilitated incremental
adoption rather than an all-or-nothing change,
which led to increased user acceptance for the
technology. In this way, adoption could be “con-
tagious.” This approach enabled the use of task
learning to expand beyond automating current
SOPs to providing higher-order decision support
that would not otherwise have been practical. 

NTC Assessment
The U.S. Army performed an assessment of the PAL
software midway through the project to determine
whether to proceed with deployment. The assess-
ment targeted both the operational utility of the
PAL capabilities and system performance metrics
(for example, bandwidth utilization, server/client
performance, software quality). To enable realistic
operating conditions, the Army chose to perform
the assessment in conjunction with the unit’s stan-
dard three-week rotation at the National Training
Center (NTC) at Ft. Irwin in May of 2010. 

The purpose of the NTC rotation was to prepare
the unit for operational deployment through a
variety of training exercises, culminating in a
“final exam” executing a realistic mission overseen
by an experienced team of observer/controllers.
The unit was provided with an engineering release
of a version of CPOF that included the learning
technology and the PAL Library that it had helped
to develop in the months leading up to the event.
The unit had the freedom to use PAL capabilities
to the extent that it found them helpful for com-
pleting their assigned mission; however, evalua-
tion of the PAL capabilities was not an explicit
objective for the soldiers. 

Assessment of the PAL technology was done
through a series of questionnaires that were
administered to members of the unit and the
observers/controllers. These questionnaires solicit-
ed feedback on both the usability of the PAL tech-
nology and the extent to which it enabled the unit
to conduct its operations more effectively. Based
on the responses to these questionnaires, the Army
concluded that the PAL technology significantly
improved CPOF operations throughout the rota-
tion, in certain situations reducing hours of work
to minutes. A report summarizing the assessment
stated that PAL capabilities “improve a unit’s capa-
bility to efficiently execute their roles, functions
and missions through better collaboration and
information sharing.” It was also determined that
the PAL capabilities did not negatively affect the
system performance metrics of interest. Given
these results, the Army decided to proceed with the
full integration of PAL task learning into CPOF and
to allow the unit to deploy with the PAL capabili-
ties. 

Fielding 
The original plan for deployment involved a
roughly two-year effort split over two phases. The
first phase was to begin integration into the main-
line CPOF system while concurrently developing
new functionality (informed by user engagement)
that would further enhance the value of task learn-
ing within CPOF. The second phase was to focus
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on hardening and integration, with the objective
of delivering the final capability for operational
deployment. 

Early in the effort, the U.S. Army requested that
the deployment cycle be accelerated in order to get
the task-learning technology into the hands of
users faster. This expedited fielding led to a require-
ment for a hardened capability that was fully inte-
grated into CPOF roughly nine months after the
start of the effort. Not all of the planned technical
functionality could be sufficiently hardened and
integrated to meet this aggressive new schedule.
The end result was that capabilities would be lim-
ited in the first release, with additional functional-
ity planned for incorporation into subsequent
releases of CPOF. 

Functionality Trade-offs
Two main considerations determined what func-
tionality to make available in the first deployment. 

One consideration was the potential for users to
teach and execute procedures with deleterious side
effects, such as compromising critical data or inter-
fering with system operation. 

A second consideration was the need for train-
ing to take full advantage of the capabilities afford-
ed by the PAL technologies. Our Double Helix
interactions introduced us to the real world of
deployment, redeployment, and assignment rota-
tion, wherein the pool of users available for train-
ing changed frequently, never really reaching the
critical mass of skill needed to fully understand
CPOF and PAL. Indeed, many of the users with
whom we interacted obtained the bulk of their
CPOF knowledge through informal, on-the-job
training in the form of interactions with more
skilled colleagues. This sort of informal training
rarely affords the trainee the opportunity to create
a mental model sufficient to understand the con-
sequences of end-user programming.

Based on these considerations, we decided not
to make the learning by demonstration capability
directly available to all users of CPOF in the initial
deployment. Rather, a typical user could instead
access prebuilt procedures and work flows con-
structed by a small team of well-trained library
builders. A typical user has permission to run any
available library product (work flow or procedure)
but not to extend or modify library products, or
even create stand-alone procedures that address
their individual needs. Library builders have access
to the core learning by demonstration capability in
order to extend and modify the library in theater.
In our initial deployment, the library builders are
field support and training personnel, who are more
readily trained and have greater facility with pro-
gramming constructs, making it easier for them to
demonstrate and manipulate procedures. It is
important to note, however, that these library

builders are typically not professional software
engineers and gain a great deal of flexibility and
power from the task-learning capability.

Imposing this restriction was a difficult decision
to make, as the team is fully committed to making
the learning technology available to all CPOF
users. Ultimately, however, we decided that it
would be advisable to roll out the technology
incrementally to provide some of the benefits of
the learning capability while minimizing associat-
ed risks. As discussed in the Ongoing Work section
below, we are continuing to extend the range of
the capabilities that are available to all users of the
system and are on track to deploy those in future
releases of CPOF. 

Operational Deployment
For approximately six months beginning in late
summer of 2010, a team deployed first to Iraq and
then to Afghanistan to upgrade CPOF to a version
containing the PAL learning technology. The
upgrade team consisted of senior trainers to con-
duct classes and teach best practices, software
developers to oversee the upgrade and collect per-
formance and debugging information, and a unit-
engagement team to help tailor and extend the
PAL Library using task learning. Over several
months, the upgrade team visited each of the
CPOF installations and spent 2–5 weeks conduct-
ing training classes, upgrading the repository, and
providing one-on-one support.

Despite the military’s reputation as a regiment-
ed organization, its processes can be surprisingly
decentralized; each unit has a unique operating
environment and is given a fair degree of leeway
to accomplish its missions. Further, each com-
mander sets his own operating procedures and
reporting requirements. The engagement team first
collected information from the unit about its local
processes, then used this data to customize the
generic, previously developed library work flows to
the needs of the individual unit. The engagement
team iterated with the commanders and CPOF
operators to teach them how to customize and use
these work flows, and helped with further refine-
ments. Concurrently, the team trained the field
support representatives to provide ongoing sup-
port for the new capabilities.

There was substantial variability in adoption lev-
els for the task-learning technology. One unit that
had just arrived in theater was adapting the
processes left behind by the outgoing unit and wel-
comed the assistance to refine and automate their
processes. In cases like this, the engagement team
observed substantial adoption of PAL work flows
and a high level of enthusiasm for the new capa-
bilities (with one unit giving the team a standing
ovation and high-fives after a demonstration of the
capability). In contrast, a unit that was close to
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rotating out of theater had little interest in taking
on the risk of new processes and tools. 

One indicator of the degree of adoption of PAL
was the number of modification requests received.
In a few cases, the engagement team had little con-
tact with the unit after customizing its PAL work
flows and conducting training; in other cases, the
team received a steady stream of requests for
changes and new features. The ability to receive a
requested enhancement in days to weeks rather
than the typical 18-month software release cycle
for CPOF generated tremendous excitement, open-
ing the door for units to adapt CPOF on the fly to
in-theater dynamics.1

In several instances, the engagement team
worked with users who had minimal CPOF experi-
ence. This inexperience was a disadvantage during
training because it meant spending a substantial
amount of time on basic system usage. However,
this inexperience also provided a substantial
advantage — these users drew little distinction
between native CPOF capabilities and PAL
enhancements. This allowed them to leapfrog their
more experienced peers: rather than first learn a
manual process and then understand the PAL pro-
cedures to automate that process, these users grav-
itated straight to using the automation. 

One of the biggest lessons learned was the
inverse correlation between the user-perceived
complexity of a PAL work flow and the degree to
which it was adopted. For example, the “story-
board creator” work flow allowed an individual
soldier to create a visual summary of a significant
event in only a few clicks. This work flow fit well
within existing processes and produced story-
boards that looked similar to those that the sol-
diers created manually. As such, soldiers could
incorporate this work flow into existing processes
with minimal change. This incremental adoption
allowed a few soldiers to try the new tools, while
others took a wait-and-see approach. Adoption
spread as word-of-mouth recommendation over-
came initial reluctance. 

On the other hand, a powerful but complex
SigAct (that is, significant action) management
work flow saw substantially less adoption. This
may have been partially due to the modeled
processes being overly specific to the unit that we
worked with prior to deployment. Worse, its bene-
fits were dependent on having all of the partici-
pants in the SigACT reporting process switch to the
new work flow at once. Beyond the original unit,
there was little enthusiasm for moving everyone to
this new process simultaneously. Based on these
findings, the engagement team made modifica-
tions to the SigACT work flow so that soldiers can
use portions of it without requiring a specific pre-
scribed reporting structure.

As units embraced the PAL technology, some

began to formulate new automated work flows
based on their individual operational needs. Many
of these work flows centered on automating exist-
ing processes. However, a handful, such as an asset
tracker, suggested entirely new unit SOPs (for
example, making a transition from manually edit-
ing text tables to tracking and recording asset sta-
tus automatically), thus showing evidence of users
modifying their behavior to more fully take advan-
tage of the technology. 

Ongoing Work 
As noted above, concerns about safety, usability,
and training led to our decision to restrict access to
task learning in the initial deployment. To address
these concerns, we have delivered several capabili-
ties for incorporation into the next release of CPOF
and are continuing to develop others for a third
and final planned integration phase. We expect
that incorporating these mechanisms will enable
responsible extension of the task-learning capabil-
ity to all users of CPOF. 

One strategy has been the introduction of safe-
guards to limit inappropriate procedure execu-
tions. These safeguards range from permissions
and type checking for identifying procedures that
are expected to fail during execution, to identify-
ing loops with inordinately large numbers of itera-
tions at execution time (which could signal a mis-
guided application of the procedure). A second
strategy has been additional support for navigating
the library, making it easier for users to locate work
flows of interest and instantiate them to work in
their local environments. 

Finally, we have built an interactive editor with-
in CPOF that enables users to visualize and modi-
fy learned procedures. The editor, derived concep-
tually from the original PAL prototype, is expected
to increase understanding, and hence acceptance,
of the task-learning technology among basic users
while providing advanced users with the means to
adapt learned procedures quickly rather than
demonstrating them again from scratch to incor-
porate changes. The ability to modify and reuse
procedures created by others is particularly valu-
able in CPOF, where sharing is inherent to the
underlying collaborative user experience.

Conclusions
The PAL learning by demonstration technology
has seen wide adoption within CPOF, a U.S. Army
system of record employed daily by thousands of
soldiers as an integral part of their mission opera-
tions. The open-ended composability of CPOF
makes it an ideal target for the end-user automa-
tion enabled by the learning by demonstration
technology. Although integration into CPOF pre-
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sented numerous technical and operational chal-
lenges, the result is a customizable system that
reduces time spent on tedious tasks while also facil-
itating standardization of best practices. By freeing
soldiers to focus on higher-level tasks, PAL signifi-
cantly improves mission-execution capabilities.

Our experiences in fielding the task-learning
technology to the U.S. Army offers guidance for
future such efforts. User acceptance is greatly facil-
itated by a deep understanding of the processes
that the technology will support, flexibility to
allow incremental adoption, and ongoing user
engagement that includes technology demonstra-
tions to highlight “the art of the possible.”
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