
The lifelong disability that can result from oxygen depriva-
tion during childbirth is rare but devastating for families,
clinicians, and the health-care system. Between 1 and 7 in

1000 fetuses experience oxygen deprivation during labor that is
severe enough to cause fetal death or brain injury (Saphier et al.
1998); the range of this estimate reflects considerable regional
variation and some clinical debate on the definition of brain
injury. The main source of information used by clinicians to
assess the fetal state during labor is cardiotocography (CTG),
which measures maternal uterine pressure (UP) and fetal heart
rate (FHR). These signal are routinely recorded during labor,
using monitors of the type presented in figure 1. 

Clinicians look at these signals and use visual pattern recog-
nition and their prior experience to decide whether the fetus is
in distress and to pick an appropriate course of action (such as
performing a Cesarean section). However, there is great vari-
ability among physicians in terms of how they perform this
task (Parer et al. 2006). Furthermore, because signicant hypox-
ia is rare, false alarms are common, leading physicians to disre-
gard truly abnormal signals. Indeed, approximately 50 percent
of birth-related brain injuries are deemed preventable, with
incorrect CTG interpretation leading the list of causes (Draper
et al. 2002; Freeman, Garite, and Nageotte 2003). The social
costs of such errors are massive: intrapartum care generates the
most frequent malpractice claims and the greatest liability costs
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n Labor monitoring is crucial in modern
health care, as it can be used to detect (and help
avoid) significant problems with the fetus. In
this article we focus on detecting hypoxia (or
oxygen deprivation), a very serious condition
that can arise from different pathologies and
can lead to lifelong disability and death. We
present a novel approach to hypoxia detection
based on recordings of the uterine pressure and
fetal heart rate, which are obtained using stan-
dard labor monitoring devices. The key idea is
to learn models of the fetal response to signals
from its environment. Then, we use the param-
eters of these models as attributes in a binary
classification problem. A running count of
pathological classifications over several time
periods is taken to provide the current label for
the fetus. We use a unique database of real clin-
ical recordings, both from normal and patho-
logical cases. Our approach classifies correctly
more than half the pathological cases, 1.5
hours before delivery. These are cases that were
missed by clinicians; early detection of this type
would have allowed the physician to perform a
Cesarean section, possibly avoiding the nega-
tive outcome. 



of all medical specialties (Saphier et al. 1998).
Thus, there is great motivation to find better
methods to discriminate between healthy and
hypoxic conditions. 

In this article, we summarize our recent work on
a novel approach to this problem, which relies
heavily on machine-learning methods; a more
detailed account of the methods is presented in
two biomedical journal publications (Warrick et al.
2009; 2010) as well as in a Ph.D. dissertation (War-
rick 2010). Although the system we present was
designed specifically for labor monitoring, we
believe that the general steps we took can inform
other AI medical monitoring systems, as well as,
more generally, applications for time-series predic-
tion and analysis. 

We built an automated detector of fetal distress
by using data from normal and pathological cases.
We had access to a unique database, which con-
tains labor monitoring data from an unusually
large number of births; a significant number of the
cases are pathological examples (well above the
natural frequency of occurrence of such problems).

All the data has been collected under clinical con-
ditions; as a result, it is very noisy. To handle this
problem, we modeled the fetal heart rate signal
through several components. The parameters of
these models, which have been learned from data,
are then used to build a classifier for a given time
period. Because the state of the fetus can change
during labor, classification is performed repeatedly
on data segments of limited duration. A majority
vote of recent labels determines if and when a fetus
is considered pathological. 

The article is organized as follows. First, we give
some background on the problem and type of data
used. Then, we describe our general approach. We
present empirical results and a discussion of the
main findings, as well as the next steps towards
clinical deployment. 

Background 
Clinicians’ interpretation of intrapartum CTG sig-
nals relies on the temporary decreases in FHR (FHR

Articles

80 AI MAGAZINE

Figure 1. A Standard Bedside Labor Monitor.

The electrodes are attached to the mother’s abdomen, and they record the uterine pressure and fetal heart rate (seen on the paper above). 



decelerations) in response to uterine contractions.
FHR decelerations are due mainly to two contrac-
tion-induced events: (1) umbilical-cord compres-
sion and (2) a decrease in oxygen delivery through
an impaired utero-placental unit. There is general
consensus that deceleration depth, frequency, and
timing with respect to contractions are indicators
of both the insult and the ability of the fetus to
withstand it. Figure 2 shows an example CTG dur-
ing 10 minutes. Contractions and decelerations are
marked by an expert.

There have been numerous studies in the litera-
ture that describe fetal-state assessment based on
computerized interpretation of the CTG signal, for
example, the papers by Georgoulas, Stylios, and
Groumpos (2006a; 2006b) and Ozyilmaz and
Yildirim (2004). By far the majority of these have
been based on a paradigm of detection and esti-
mation of attributes selected to mirror the obste-
trician’s visual interpretation of the UP and FHR
graphs, or to reflect assumed physiological events.
For example, one can attempt to detect the start
and end of a contraction, the start and end of the
following deceleration, the depth of the decelera-
tion, and more (Signorini et al. 2003). Georgoulas
et al. (2006a, 2006b) use principal component
analysis and support vector machines on top of
features computed from the heart signal in order
to provide a classification for the fetus. Ozyilmaz
and Yildirim (2004) use neural networks and radi-
al basis function with features of the heart signal
and the gestational age. In similar work in the past

(Warrick, Hamilton, and Macieszczak 2005) we
have also used combinations of neural networks
and feature extraction. 

Unfortunately, several problems hamper the use
of such features. First, the UP and FHR signals are
very noisy, especially when collected under clinical
conditions, as is the case for our data. Because the
sensors are attached to the maternal abdomen,
there is often a problem of sensor contact or miss-
ing data when the mother wishes to be more
mobile and is temporarily detached from monitor-
ing. These sensor disturbances result in frequent
artifacts, where the signal drops to a lower value.
The FHR can also include interference from the
maternal heart rate, causing the signal to drop to a
lower value. 

Other problems arise from the fact that detect-
ing events like the start of a deceleration is very
hard to do automatically. The response of the fetus
is not always the same: while most of the time, a
contraction is followed by a deceleration, some-
times it may actually be followed by an accelera-
tion. Furthermore, a missed detection can throw
off the timing information for future contractions
and skew all subsequent results. 

Finally (and perhaps most importantly) looking
at features of the FHR in isolation does not give
information on how the fetus is reacting to the
labor. Pathology is often indicated by the response
of the fetus to contractions; but the relationship
between the UP and FHR is not captured explicitly
in the FHR features. 
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Figure 2. CTG Signal over 10 Minutes, Including Four Contraction-Deceleration Pairs. 

Top: UP signal with contraction onsets (C) indicated. Bottom: FHR signal with deceleration onsets (D) indicated. 



Because of the problems attributed to feature
detection, we decided to build data-driven models
of the CTG. Our models are structured based on
clinical knowledge, capturing information about
the main physiological determinants of the fetal
heart rate. However, we do not attempt to mimic a
doctor’s visual interpretation of the CTG, since this
is difficult for an automated system to match.
Instead, we focus on the crucial interaction
between the uterine pressure, as an input signal,
and the fetal heart rate, as an output signal. Doc-
tors take this relationship into account in their
visual assessment of contraction-deceleration tim-
ing. We use the recorded data to fit the models,
without trying to impose prior knowledge of what
the relationship of the two signals should be. The
parameters of the models are learned from data.
There are two potential advantages to this
approach. First, as we already stated, we avoid the
difficulty of trying to mimic visual interpretation.
Second, it is much easier to detect changes in the
state of the fetus as labor progresses, rather than
trying to refer to some “golden standard” as is
often done in the feature-based approach. This can
allow detection to be more attuned to the individ-
ual characteristics of each labor. Once we have the
model parameters, we will use these as features for
a supervised learning mechanism that can dis-
criminate between normal and hypoxic condi-
tions. 

We would also like to contrast our approach to
latent variable approaches, such as hidden Markov
models (HMMs) and their variations. While con-
ceptually we can think of the fetus as going
through different internal states during labor, how
many states there should be and how they should
be connected is not known. Early attempts that we
have made at learning HMM-style models have
failed, because of our lack of initial model knowl-
edge, as well as the fact that the data we have is not
sufficient to fit hidden model parameters. Based on
roughly 15 years of work on this problem, we
strongly believe that models that are free of latent
variables and that are learned from data will work
successfully. 

Data Description 
We used a database consisting of 264 intrapartum
CTG recordings for pregnancies having a birth ges-
tational age greater than 36 weeks and having no
known genetic malformations. The majority of the
recordings were from normal fetuses (221 cases);
the rest were severely pathological. This propor-
tion of pathological cases was much higher than
their natural incidence (Freeman, Garite, and
Nageotte 2003). The normal cases were collected
from a large university hospital in an urban area,
which always monitors CTG during labor. The very

low natural incidence of pathology necessitated
collecting cases from a number of hospitals and
medico-legal files. All CTG records comprised at
least three hours of recording. We note that this is
a larger database than other previous studies, for
example, Georgoulas, Stylios, and Groumpos
(2006a, 2006b) and Ozyilmaz and Yildirim (2004). 

Data collection was performed by clinicians
using standard clinical fetal monitors to acquire
the CTG. The monitors reported at uniform sam-
pling rates of 4 Hz for FHR (measured in beats per
minute [bpm]) and 1 Hz for UP (measured in
mmHg), which we up-sampled to 4 Hz by zero-
insertion and low-pass filtering. In the majority of
cases, the UP or FHR sensors were attached to the
maternal abdomen; the FHR was acquired from an
ultrasound probe and the UP was acquired by
tocography (the process of recording uterine con-
tractions during labor, using external pressure sen-
sors attached to the maternal abdomen). In a few
exceptional cases, they were acquired internally
through an intrauterine (IU) probe and/or a fetal
scalp electrode. Because the relationship between
UP and FHR is preserved (in a qualitative sense)
across different methods for measuring UP, the
same modeling strategy applies to all these differ-
ent types of data. 

Each example was labeled by the outcome at
birth, as measured both by blood gas levels and
signs of neurological impairment. Preprocessing
was needed to deal with loss of sensor contact,
which causes a sharp drop in the signal followed
by a sharp increase back to normal. We used a
Schmitt trigger, which defines separate detection
thresholds for down-going and up-going transi-
tions (see Warrick et al. [2009] for details). Once
dropouts are eliminated, the signal becomes a set
of segments. If the dropout lasted less than 15 sec-
onds, we used linear interpolation to reconnect
these segments. Otherwise, they were left separate.
Note that the data that we had to work with is par-
ticularly messy—for example some of the traces
were obtained by digitizing paper printouts, rather
than by saving the sensor signal directly. 

System Architecture 
Conceptually, the fetal heart rate can be viewed as
the result of three main factors: (1) baseline heart
rate (producing average cardiac output), which we
model with a term fBL; (2) response to maternal
uterine contractions, modeled using a term fSI; and
(3) variability due to sympathetic-parasympathet-
ic modulation, modeled as fHRV. Consequently, we
model the fetal heart rate f as the sum of three
components: f = fBL + fSI + fHRV. This decomposition
is unique to our approach, compared to standard
methods that extract FHR features. We now
explain each term in more detail. 
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The baseline signal fBL is obtained by low-pass
filtering the FHR and computing a linear trend
over the data window. The variability signal fHRV is
obtained by high-pass filtering the FHR and esti-
mating an autoregressive model from the result. 

The response to contraction fSI refers to the
effect that the increase in UP has on the FHR. This
component of the FHR is modeled using a non-
parametric linear model, based on a low-pass fil-
tered version of the UP and the FHR with fBL and
fHRV removed. More precisely, let these transforms
of uterine pressure and fetal heart rate at time n be
denoted by un and fn respectively. We modeled fn as
a convolution: 

where t is the sampling period and hi is a set of
coefficients or parameters. From the point of view
of machine learning, this is a linear model, in
which the output of the system is computed by a
linear combination of the inputs to the system
over a history window. In signal processing, it is
called an impulse response function (IRF). Two
important parameters are the number of input val-
ues used in the computation, or the memory size
M, and the delay d; together, d and M define the
window of input signal values that will be used to
estimate the output. Intuitively, for a causal sys-
tem, d should be positive (that is, the output will
be determined by the values of the past input).
However, for our problem there is an additional
measurement delay introduced by the sensor
measuring the uterine pressure. Hence, since the
input u is recorded by this sensor with a possible
measurement delay (which depends on the quali-
ty of the sensor contact to the skin), d may be pos-
itive or negative. 

For fixed values of M and d, the parameters hi
can be determined simply by least-squares estima-
tion. However, determining the best M and d is
problematic. If the system generating the data were
stationary, we would expect that using more sam-
ples to estimate the output would yield lower error
on the training data. However, the problem we are
facing is nonstationary: the state of the fetus typi-
cally degrades over time, due to the effort of labor.
This suggests that a shorter length of data should
be considered, to reduce nonstationarity. To
resolve this trade-off, we extracted 20-minute
epochs with 10-minute overlap between successive
epochs; this epoch length is much longer than the
typical FHR deceleration response to a contraction
(that is, 1–2 minutes). We extracted as many such
epochs as possible starting from the beginning of a
clean (artifact-free) segment; to include any
remaining data at the end of the segment (that is,
less than 10 min), the overlap was increased for the
last epoch. The overlap itself was motivated by a
desired to generate as much data as possible, while

fn ! (hi"t )
i=0

M#1

$ un#d#i

maintaining the correlations between epochs at a
reasonable level. 

Within these data restrictions, we still want to
determine a good model size. The main figure of
merit that we used for a model was the variance-
accounted-for (VAF). Let f be a vector of FHR sam-
ples from a segment and U be the corresponding
input matrix. The error is given by: 

The variance-accounted-for is given by: 

where s2
e and 2

f are the variances of the error
and the output signal, respectively. Ideally, this fig-
ure should be close to 100 percent (signaling that
all the variance in the signal is accounted for by
the model). 

Increasing M typically yields better VAF figures,
but this may be due to overfitting (which is a big
problem in this task, due to the amount of noise).
We use two mechanisms to avoid overfitting. First,
after we obtain the least-squares fit for the coeffi-
cients, we use principal component analysis (PCA)
on the set of coefficients to reduce the dimension-
ality. Intuitively, this eliminates parameters that
capture noise. 

Furthermore, we need to limit the size of the
memory M. To do this, we use the minimum
description length (MDL) principle and add to the
squared error a penalty term, proportional to the
sum of the absolute differences of the consecutive
coefficients. If this sum is high, the signal oscillates
a lot, which is an indication of noise. To give an
intuition of the effect of these choices, in figure 3
we plot, on the left, the first six principal compo-
nents obtained for a particular pathological case.
Note that as more components are added, the esti-
mated output signal contains an increasing
amount of high-frequency oscillations. Intuitively,
this means that in the beginning we are capturing
true influences, but later on we start to capture
noise. The VAF continues to improve, but this
improvement is marginal. Our MDL penalty
increases with the amount of oscillations; using it
forces the optimization to choose a lower-order
model (order 2, in this case, corresponding to the
point marked with a blue star), even if the higher-
order models fit the observed data marginally bet-
ter. Note that applying the MDL penalty results in
models with different values of M for different data
segments. 

Once the memory parameter M is determined,
the delay parameter d of the model is selected by a
simple search over a range of values that were
picked in an acceptable clinical range (Warrick et
al. 2009). 

From the clinical point of view, another impor-
tant feature is the “strength” of the response of the
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fetus to contractions. To capture this type of infor-
mation, we estimate a third parameter for each
model, the gain, which is the sum of the coeffi-
cients: 

Intuitively, the larger the gain, the stronger the
response to contractions will be. If the gain is close
to 0, there is almost no response to contractions.
Note that the gain is well-defined regardless of the
exact values of M and d. In particular, there are no
statistically significant differences between the
gains of models with different values of M, which
means that the gain is a useful measure when com-
paring models over different data segments. 

An example of data, the model, and the IRF (that
is, coefficients obtained) are shown in figure 4. The
FHR signal is reconstructed very well, but the high-
frequency variability is not captured by this mod-
el. This is to be expected, because the contraction

G= hi
i
!

frequency is typically low; hence, the response to
contractions must (by definition) generate a low-
frequency signal. 

The high-frequency content of the FHR, fHRV, is
clinically viewed as the result of the modulating
influence of the central nervous system; in order to
capture it, we high-pass filter the signal and use an
autoregressive model to predict the high-passed
signal. The model is also linear, but computes fn as
function of fn – 1 ... fn–d–M. We use the same MDL
principle to determine the length of the model.
The details are very similar to those described so
far and are described in Warrick et al. (2009). Note
that this high-frequency component is biological-
ly due to the fetal nervous system, so this model
captures information that is complementary to the
influence of the UP. 

With this setup, we are now ready to use the
data set in a supervised learning setting, in order to
learn how to discriminate between normal and
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pathological babies based on their response to con-
tractions. We labeled each segment with the fetal
outcome at birth. This is an approximation,
because the fetus may have started off well and

degraded with time. However, this is the only reli-
able information available. In order to determine
what model parameters to use as input to the clas-
sifier, we first did a statistical analysis to determine
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which parameters show statistically significant dif-
ferences between normal and hypoxic fetuses. For
these tests, parameters were considered in isola-
tion. We found that the following parameters
showed significant differences: the offset of the
baseline heart rate; the gain G and the delay d,
from the UP-FHR models; two measures related to
the power spectrum for the heart-rate variability.
We used these features as attributes for classifica-
tion with support vector machines (SVMs). We
used a standard SVM with a Gaussian kernel,
because of its guarantees against overfitting. While
the space constraints do not permit further discus-
sion of the machine-learning methods, we refer
the reader to Bishop (2006) for a detailed explana-
tion of all methods used (SVM, PCA, and so on). 

Empirical Results 
We performed 10-fold cross validation, ensuring
that all the data for a particular labor would be in
either the training set or the test set. Note that each
labor generates between 3 and 18 periods of data,
so there are in effect multiple instances correspon-
ding to each data case. It is therefore imperative to
make sure that instances from the same case are
not used both in the training and in the test set, so
as not to bias results. All performance measures are
reported on the test set. 

Figure 5 shows all the instances (including the
support vectors outlined in black) from one fold of
training data, the learned decision function H,
and the decision boundary (H = 0) based on the
system identification feature set. The two solid
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thin lines represent the class boundaries, and the
dashed lines next to them show the margin around
the decision boundary. We note that there are two
regions in which instances are classified as patho-
logical; the most heavily populated (lower right) is
characterized by long delay and large negative
gain; a smaller population in the upper left region
are instances characterized by short delay and large
positive gain. This roughly corresponds with the
clinical observation that long, deep decelerations,
as well as accelerations in response to contractions
are both indicators of pathology. Our modeling
and classification approach quantifies this intu-
ition based on the available data. Between these
pathological regions there is a region in which
instances are classified as normal. At the bound-
aries of these regions are the support vectors,
where classification is less certain. The large pro-
portion of support vectors (684 of 1499 training
samples) indicates that the classification problem
is difficult. The trajectory of one pathological case,
not included in the training set, is shown by the
arrows. It began in one of the support vector
regions, in which intuitively classification is some-
what uncertain, then moved into the normal
region, passed through the other support vector
region, and finally ended in the pathological
region. This suggests that this case deteriorated
from a normal to a pathological state over time.
We observed other pathological cases with similar
behaviour. We also observed normal cases that
started normal and ended close to or within the
pathological region near delivery. 

The nonstationarity of the fetal state poses sev-
eral challenges to the detection of pathology. Addi-
tionally, the model parameters are also nonsta-
tionary, reflecting the increasing intensity of labor
(which puts stress on all babies, even healthy
ones). This creates problems for per epoch classifi-
cation, meaning that several instances (epochs)
may be mislabeled. However, this is the best that
can be done given the data we have, since the true
state is not observed during labor and delivery. 

We addressed this problem by introducing a
detector of pathology defined by a threshold of
accumulated pathological classifications. The
detector avoids the confusion of decision oscilla-
tions by allowing for at most one transition, from
a normal to a pathological decision. Moreover, the
detector can intuitively remove some of the noise
in the classifications of individual epochs. The
detectors used the history of per epoch classifica-
tions for each fetus to detect pathology. Figure 6
shows the performance of the six detectors in
terms of pathological detection (sensitivity) and
normal detection (specificity) over time. Higher
detection is better for both measures. Error bars are
omitted because there was little plotting overlap
and a clear ranking can be observed. Six detectors

were examined using different per epoch classifiers
and thresholds. Only thresholds 1 and 2 are shown
because detectors with higher thresholds per-
formed worse. It is apparent that pathological
detection is more conservative (that is, delayed, as
indicated by a shift to the right) for the higher
threshold. We focus on C1 and C2, which use clas-
sifiers based on both features provided by the
input-output model, and the baseline/heart rate
variability measures. These combined detectors
identified pathological cases earlier and consis-
tently better than equivalent individual detectors.
Selecting the best performing detector must con-
sider both performance measures. We consider C2
to be the best detector because it had close to the
best detection of pathological cases and close to
the best false positive rates, especially in the first
half of the 3-hour record, when a clinical response
is most important. C2 detected half of the patho-
logical cases with a false positive rate of 7.5 percent
at epoch –10 (that is, roughly 1 hour and 40 min-
utes before the original time of delivery). In com-
parison, while C1 had that best detection of patho-
logical cases, it had the worst false positive rates. 

Discussion 
The approach we proposed in this article detected
correctly half of the pathological cases, with
acceptable false positive rates (7.5 percent), early
enough to permit clinical intervention. This detec-
tor was superior to alternatives using either feature
set by itself. By definition, the pathological cases
in our database had been missed by clinicians;
therefore, this level of performance is quite signifi-
cant. It is interesting that this corresponds well to
the clinical fact that approximately 50 percent of
birth-related brain injuries are deemed preventa-
ble. Timing of detection is very important given
that the fetal state evolves; detecting fetal distress
near the time of delivery has less potential to
improve clinical outcomes, while an advance
warning of 1 hour and 40 minutes is very signifi-
cant clinically and can make the difference
between severe injury and a positive outcome for
the baby. This is a relatively long time for treat-
ment to occur and improve outcome; typically, the
interval between a decision to intervene and
Cesarean birth is less than 30 minutes. Further-
more, the cost of believing these decisions (that is,
a rate of unnecessary Cesarean sections of 7.5 per-
cent) is acceptable clinically. 

In order to assess the advantage of our approach
compared to existing clinical practice, we recently
conducted an extensive empirical comparison
with a rule-based detection system designed by
Parer and his colleagues (Parer and Ikeda 2007).
This system was very carefully crafted and calibrat-
ed; it is considered to capture all state-of-art med-
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Figure 6. Pathological and Normal Detection over Time.

(a) Pathological and (b) normal detection over time for selected system identification (S1 and S2, circles), baseline-HRV
(B1 and B2, triangles) and combined (C1 and C2, squares) detectors. The cumulative count is indicated by open (thresh-
old = 1) and filled (threshold = 2) markers. The vertical dotted lines indicate the time of 90 minutes before delivery.
The horizontal dotted lines indicate the 50 percent pathological and 90 percent normal detection levels. Reproduced
from Warrick et al. (2010).



ical knowledge in CTG interpretation. Its detector
provides a fixed sensitivity that is very close to our
system, but a significantly higher false positive rate
of 15 percent at 1 hour and 40 minutes before birth
(Warrick et al., manuscript in preparation). This
means that if the rule-based system is calibrated to
provide a similar amount of advance warning for
the same fraction of pathological cases as our sys-
tem, it will also recommend twice the number of
Cesarean sections for healthy babies. In a clinical
setting with limited resources, more surgeries can
divert precious resources from the patients who
really need them, as well as increasing recovery
times. These results obtained on our database sug-
gest that our approach is significantly more suc-
cessful. Note that the expert system against which
we compare is considered at the level of human
experts. Both systems therefore embody expertise
not typically present in hospitals and are able to
detect pathologies earlier than the physicians who
happened to deliver those babies. 

This is why both automated systems are able to
detect the pathological cases much earlier than the
birth time (and consequently, earlier than the doc-
tors who happened to deliver those babies). 

We have recently started to study a set of “inter-
mediate” examples contained in the database, in
which the oxygen level at birth was in a problem-
atic range, but no severe pathology was detected.
These cases appear to be “close calls,” in which
birth occurred just in time to avoid a bad outcome.
A preliminary statistical analysis of the model
parameters of these cases shows that they are clos-
er to pathological cases than to normal ones. This
is an encouraging result in assessing whether our
system can be used to flag babies that could
become problematic within a 2- to 3-hour time
range. By studying these examples, we hope to
understand better the timing of pathology and
adjust our detection mechanism accordingly. 

Making the Leap 
to the Clinical Setting 

The approach presented in this article is currently
being incorporated in PeriGen’s obstetrics decision
support system.1 A unique feature of our approach,
which has made it very attractive to the medical
community, is the ability to use data recorded from
standard clinical monitors, which would be gath-
ered anyway during labor at any hospital. As a
result, deployment does not require any new hard-
ware; only the software system needs to be modi-
fied. Since we use signals that are already recorded,
and our system is stand-alone, incorporating it
into existing software has been very smooth. 

Another important feature is the ability to clas-
sify data as it arrives in real time. This approach
can process data directly as it arrives from the sen-

sors. Moreover, since we do not use just a static
classifier, but a detector, we can flag problems with
fetal oxygenation as they arise, in a timely manner.
Classifiers typically work on an entire time series,
while detectors classify the data at each time step. 

A crucial aspect that requires a lot of thought is
the design of a successful interface between the
system and the medical staff. While in this article
we reported information that shows a large range
of the sensitivity-specificity trade-off spectrum, in
a deployed application one has to choose a partic-
ular value of sensitivity and stick with it. This
choice is crucial in practice: if the system raises too
many alarms, it will be turned off or ignored by
medical personnel. On the other hand, the system
needs to be able to detect problematic cases in a
timely fashion. PeriGen has been working with a
team of doctors and other medical personnel to
determine how to best choose such trade-offs not
only for this detector, but for their entire decision
support system. 

Finally, bringing these ideas to bedside requires
more than just a software implementation. The
technology needs to go through a lengthy
approval process, which typically takes 3–4 years.
The process for our system has been started, but it
has yet to be completed. 
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AAAI to Colocate with Cognitive 
Science in 2014!

AAAI is pleased to announce that it will colocate with the
2014 Cognitive Science Society Conference in picturesque
Québec City, Québec, July 27-31, 2014. The conference will
be held at the beautiful Centre des congrès de Québec, and
attendees can stay at the adjacent Hilton Québec. More
details will be available at the AAAI website soon!
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