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Akey feature of the Autonomous Agents and Multiagent
Systems (AAMAS) conference is its emphasis on ties to
real-world applications. This emphasis of trying to marry

theory and practice at AAMAS goes all the way back to the ori-
gins of its predecessor conferences, such as the first Interna-
tional Conference on Autonomous Agents (Johnson 1997).
However, the effort to tie research into practical applications got
a significant boost with the establishment of the industry track
at AAMAS, which was more recently renamed as the innovative
applications track. 

Over the past few years, within this industry and innovative
applications track at AAMAS and other related tracks at sister
conferences including Innovative Applications of AI (IAAI),
there have been presentations of several successful transitions of
key component technologies of agents and multiagent systems.
On the one hand, individual agents integrate multiple compo-
nents and capabilities, for example, planning, learning, reactiv-
ity, goal orientedness, and they act autonomously while being
situated in their environment — thus facilitating their applica-
tion in real-world settings. On the other hand, multiagent sys-
tems and techniques focused on reasoning about multiple
agents reflect the fact that there exist many autonomous agents
(cooperative or self-interested) in the real world, and capturing
their interaction establishes higher veracity of the model. This
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appropriateness of agent and multiagent systems
to model complex real-world problems has led to
successful transitions of practically applied tech-
nologies ranging from belief desire intention (BDI)
frameworks, to game-theoretic approaches, to auc-
tion frameworks, to biologically inspired
approaches. These previously successful applica-
tions have been reviewed in the literature and text-
books on multiagent systems (Wooldridge 2009,
Shoham and Leyton-Brown 2008).

This article focuses on the more recent efforts to
marry research with practical applications that
have been reported at AAMAS over the past two
years. Specifically, focusing on papers from AAMAS
2010 and AAMAS 2011, we will discuss the three
broad areas that have been the focus of the transi-
tion from research into practice: security, sustain-
ability, and safety. With respect to security,
research at AAMAS has emphasized the use of
game-theoretic techniques to schedule limited
security resources to protect targets of economic
and political importance. For example, ARMOR
(Pita et al. 2008; Jain et al. 2010b) schedules check-
points and canine patrols at the Los Angeles Inter-
national Airport whereas IRIS (Tsai et al. 2009; Jain
et al. 2010b) schedules federal air marshals on
board international flights of U.S. air carriers. More
game-theoretic scheduling assistants are being
designed for other security agencies as well, such as
GUARDS (Pita et al. 2011) for scheduling activities
conducted by the Transportation Security Admin-
istration. GUARDS is being evaluated at an undis-
closed airport for potential nationwide deploy-
ment. Finally, PROTECT (An et al. 2011a) is in use
for scheduling the patrols of the U.S. Coast Guard
in the port of Boston and beyond.

Multiagent systems have also been applied to
research on the sustainable use of energy resources
(Chalkiadakis et al. 2011; Kamboj, Kempton, and
Decker 2011; Kok 2010). Sustainable production,
delivery, and use of energy is an important chal-
lenge of today. One of the ways this can be done is
by developing intelligent systems, like smart grids
(Vytelingum et al. 2010b; Ramchurn et al. 2011),
that can efficiently predict the use of energy and
dynamically optimize its delivery. The distributed
nature of the energy grid and the individual inter-
ests of users make multiagent modeling an appro-
priate approach for this problem. Multiagent
research in this area has primarily focused on
developing techniques based on game-theoretic
approaches (including coalitional game theory)
and auctions that help reduce the usage and
wastage of energy (Vytelingum et al. 2010a; Gerd-
ing et al. 2011; Lamparter, Becher, and Fischer
2010; Vandael et al. 2011).

With respect to the final area of application,
safety, multiagent systems have been applied for
disaster response simulations, air-traffic manage-

ment, evacuation simulations, and related applica-
tions (Ramchurn et al. 2010; Dos Santos and Baz-
zan 2011; Schurr, Picciano, and Marecki 2010). The
key advantage is the rich models of individual
agents that can be brought to bear in such appli-
cations. For instance, from large-scale citywide
evacuations to small-scale evacuations of build-
ings, emergency evacuations are unfortunately a
perpetual fixture in society. While commercial
evacuation simulation tools have begun to explore
agent-based simulations,1 researchers at AAMAS
have brought to bear richer models of agents in
such simulations, allowing us to gauge the impact
of different environmental, emotional, and infor-
mational conditions (Tsai et al. 2011). 

Security Applications 
The last five years have witnessed the successful
application of multiagent systems in reasoning
about complex security problems (Basilico, Gatti,
and Amigoni 2009; Korzhyk, Conitzer, and Parr
2010; Jain et al. 2010b; Pita et al. 2011; An et al.
2011a). The framework of game theory is becom-
ing very popular in the arena of security, in part
due to the increasing need to address the chal-
lenges posed by terrorism, drugs, and crime. Yet,
limited security resources cannot be everywhere all
the time, raising a crucial question of how to best
utilize our limited security resources.

Game theory provides a sound mathematical
approach for deploying limited security resources
to maximize their effectiveness. As mentioned pre-
viously, there have been a wide range of actual
deployed applications of game theory for security,
such as ARMOR and IRIS. This set of applications
and associated algorithms has added to the already
significant interest in developing multiagent sys-
tems applying game theory for security. We now
describe the application of game theory to these
security domains, partitioned into four key subsec-
tions: (1) problem domains; (2) game-theoretic
solution approaches; (3) deployments; and (4)
research challenges. 

Problem Domains 
Security scenarios addressed in previous work
exhibit the following important characteristics:
there is a leader/follower dynamic between the
security forces and terrorist adversaries, since the
police commit to a security policy first while the
adversaries conduct surveillance to exploit any
weaknesses or patterns in the security strategies
(Tambe 2011). A security policy here refers to some
schedule to patrol, check, or monitor the area
under protection. There are limited security
resources available to protect a very large space of
possible targets, so it is not possible to provide
complete coverage at all times. Moreover, the tar-
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gets in the real world clearly have different values
and vulnerabilities in each domain. Additionally,
there is uncertainty over many adversary types. For
example, the security forces may not know
whether they would face a well-funded terrorist or
a local gang member or some other threat. Typi-
cally, the security forces are interested in a ran-
domized schedule, so that surveillance does not
yield predictable patterns; yet they wish to ensure
that more important targets have a higher protec-
tion and that they guard against an intelligent
adversary’s adaptive response to their randomized
schedule. We now describe some security domains
where game-theoretic applications have been suc-
cessfully deployed. 

Los Angeles International Airport (LAX) is the
fifth busiest airport in the United States, the largest
destination airport in the United States, and serves
60 to 70 million passengers per year (Stevens et. al.
2006). The LAX police use diverse measures to pro-
tect the airport, which include vehicular check-
points, police units patrolling the roads to the ter-
minals, patrolling inside the terminals (with
canines), and security screening and bag checks for
passengers. The application of game-theoretic
approach focuses on two of these measures: (1)
placing vehicle checkpoints on inbound roads that
service the LAX terminals, including both location
and timing, and (2) scheduling patrols for bomb-
sniffing canine units at the different LAX termi-
nals. 

The eight different terminals at LAX have very
different characteristics, like physical size, passen-
ger loads, foot traffic, or international versus
domestic flights. These factors contribute to the
differing risk assessments of these eight terminals.
The numbers of available vehicle checkpoints and
canine units are limited by resource constraints, so
the key challenge is to apply game-theoretic algo-
rithms to intelligently allocate these resources —
typically in a randomized fashion — to improve
their effectiveness while avoiding patterns in the
scheduled deployments. 

The United States Federal Air Marshal Service
(FAMS) places undercover law enforcement per-
sonnel aboard flights of U.S. air carriers originating
in and departing the United States to dissuade
potential aggressors and prevent an attack should
one occur.2 The exact methods used to evaluate the
risks posed by individual flights is not made pub-
lic by the service, and many factors might influ-
ence such an evaluation. For example, flights have
different numbers of passengers, and some fly over
densely populated areas while others do not. Inter-
national flights also serve different countries,
which may pose different risks. Special events can
also change the risks for particular flights at certain
times. The scale of the domain is massive. There
are currently tens of thousands of commercial

flights scheduled each day, and public estimates
state that there are thousands of air marshals (Grif-
fin, Johnston, and Schwarzschild 2008). Air mar-
shals must be scheduled on tours of flights that
obey various constraints (for example, the time
required to board, fly, and disembark). Simply find-
ing schedules for the marshals that meet all of
these constraints is a computational challenge.
The task is made more difficult by the need to find
a randomized policy that meets these scheduling
constraints, while also accounting for the different
values of each flight. 

The United States Transportation Security
Agency (TSA) is tasked with protecting the nation’s
transportation systems.3 One set of systems in par-
ticular is the more than 400 airports that service
approximately 28,000 commercial flights and up
to approximately 87,000 total flights4 per day. To
protect this large transportation network, the TSA
employs approximately 48,000 transportation
security officers, who are responsible for imple-
menting security activities at each individual air-
port. While many people are aware of common
security activities, such as individual passenger
screening, this is just one of many security layers
TSA personnel implement to help prevent poten-
tial threats. These layers can involve hundreds of
heterogeneous security activities executed by lim-
ited TSA personnel leading to a complex resource
allocation challenge. While activities like passen-
ger screening are performed for every passenger,
the TSA cannot possibly run every security activity
all the time. Thus, while the resources required for
passenger screening are always allocated by the
TSA, it must also decide how appropriately to allo-
cate its remaining security officers among the lay-
ers of security to protect against a number of
potential threats, while facing challenges such as
surveillance and an adaptive adversary as men-
tioned before. 

The United States Coast Guard patrols harbors
to safeguard the maritime and security interests of
the country. Figure 1 shows an example of the
types of boats used in patrols conducted by the
Coast Guard in Boston. The Coast Guard contin-
ues to face a challenging future with an evolving
asymmetric threat within the maritime environ-
ment both within the Maritime Global Commons
but also within the ports and waterways that make
up the United States Maritime Transportation Sys-
tem (MTS). The Coast Guard can cover any subset
of patrol areas in any patrol schedule. It can also
perform many security activities at each patrol
area. The challenge for the Coast Guard again is to
design a randomized patrolling strategy given that
it needs to protect a diverse set of targets along the
harbor and the attacker conducts surveillance and
is adaptive. 
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Game-Theoretic Solution Approaches 
ARMOR, IRIS, GUARDS, and PROTECT, deployed
for the security domains mentioned above, build
on the game-theoretic foundations to reason about
two types of players — the security force and the
adversary — to provide a randomized security pol-
icy. The algorithms used in these applications
build on several years of research reported in the
AAMAS conference main track and workshops
(Paruchuri et al. 2005; 2006; 2007; Jain, Kiek-
intveld, and Tambe 2011; Jain et al. 2011).
Although the security systems use the newest algo-
rithms from this line of research, we first provide
an introduction to key game-theoretic concepts
and then describe the solution approaches. 

Stackelberg Game
A generic Stackelberg game has two players: a
leader, and a follower. These players need not rep-
resent individuals but could also be groups that
cooperate to execute a joint strategy, such as a
police force or a terrorist organization. Each player
has a set of possible pure strategies, or the actions
that the player can execute. A mixed strategy

allows a player to play a probability distribution
over pure strategies. Payoffs for each player are
defined over all possible pure-strategy outcomes
for both the players. The payoff functions are
extended to mixed strategies by taking the expec-
tation over pure-strategy outcomes. The follower
can observe the leader’s strategy and then act in a
way to optimize its own payoffs. Thus, the attack-
er’s strategy in a Stackelberg game is a best response
to the leader’s strategy. 

The most common solution concept in game
theory is a Nash equilibrium, which is a profile of
strategies for each player in which no player can
gain by unilaterally changing to another strategy
(Osbourne and Rubinstein 1994). Strong Stackel-
berg equilibrium is a refinement of Nash equilibri-
um; it is a form of equilibrium where the leader
commits to a strategy first, and the follower pro-
vides a best response while breaking ties in favor of
the leader.5 This Strong Stackelberg equilibrium is
the solution concept adopted in security applica-
tions (Osbourne and Rubinstein 1994; von Stengel
and Zamir 2004; Conitzer and Sandholm 2006;
Paruchuri et al. 2008). 
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Figure 1. U.S. Coast Guard Conducting a Patrol at the Port of Boston. 



The Bayesian extension to the Stackelberg game
allows for multiple types of players, with each type
associated with its own payoff values (Harsanyi
and Selten 1972; Paruchuri et al. 2007; 2008). For
real-world security domains, we assume that there
is only one leader type (for example, only one
police force), although there are multiple follower
types (for example, multiple groups of adversaries
are trying to infiltrate security). Each follower type
is represented by a different payoff matrix. The
leader does not know the follower’s type. The goal
is to find the optimal mixed strategy for the leader
to commit to, given that each follower type will
know the mixed strategy of the leader when choos-
ing its own strategy. 
Security Domain Representation
In a security domain, a defender must perpetually
defend the site in question, whereas the attacker is
able to observe the defender’s strategy and attack
when success seems most likely. This is appropri-
ately modeled as a Stackelberg game if we map the
attacker to the follower’s role and the defender to
the leader’s role (Avenhaus, von Stengel, and Zamir
2002; Brown et al. 2006; Tambe 2011). The actions
for the security forces represent the action of
scheduling a patrol or checkpoint, for example, a
checkpoint at the LAX airport or a federal air mar-
shal scheduled to a flight. The actions for an adver-
sary represent an attack at a target, for example, a
terminal at LAX or a flight. The strategy for the
leader is a mixed strategy spanning the various
possible actions. 

We now introduce a further specialization of
Stackelberg games prominently used in security
applications so far, called security games (Kiek-
intveld et al. 2009). In a security game, associated
with each target are four payoffs defining the pos-
sible outcomes for an attack on the target, as
shown in table 1. Thus, in this example, if the
attacker attacked this target and it was being ‘‘cov-
ered” by the defender, then the attacker would be
unsuccessful and would receive a payoff of –10. On
the other hand, the defender would receive a pay-
off of 5 units in this particular situation. Thus, the
payoffs in a security game depend only on the tar-
get attacked and whether or not it is covered by the
defender. They do not depend on the remaining

aspects of the schedule, such as which set of unat-
tacked targets are covered or which specific defense
resource provides coverage.  

Algorithms
Over the years, significant research has focused on
continually improving the set of algorithms used
to solve, or find, the optimal mixed strategy in
Bayesian Stackelberg games. These algorithms have
been the basis of the deployed applications. This
section provides a quick tour of the algorithms that
have been used in the deployed applications.
While the initial algorithm (Conitzer and Sand-
holm 2006) provided a linear programming
approach, it did not address multiple adversary
types, which were important in the first applica-
tion ARMOR deployed at the LAX airport. Instead,
ARMOR relied on DOBSS (Paruchuri et al. 2008),
which was designed to scale up for many adversary
types. The ERASER algorithm (Kiekintveld et al.
2009) developed next was used in the first version
of IRIS. It was capable of scaling up to a large num-
ber of defender actions, a requirement for the
FAMS domain given the large number of flights the
federal air marshals could fly. However, ERASER
was not capable of generating schedules over flight
tours with more than two flights, thereby motivat-
ing the development of ASPEN (Jain et al. 2010a).
ASPEN can compute optimal solution over arbi-
trary tour sizes and scheduling constraints and is
the algorithm of choice in the second version of
IRIS. GUARDS uses DOBSS again with a novel
domain representation (Pita et al. 2011), whereas
PROTECT uses further research advances (An et al.
2011a). These new algorithms use mixed-integer
linear programming formulations to compute the
strong Stackelberg equilibrium. We now describe
the ERASER algorithm to give the readers an under-
standing of the underlying mixed-integer program. 

ERASER was the first algorithm that took as
input a security game and solved for the optimal
coverage vector corresponding to a strong Stackel-
berg equilibrium strategy for the defender. A cov-
erage vector here implies a probability distribution,
which defines the defender’s probability of pro-
tecting each target. ERASER computes the coverage
vector C that maximizes the defender’s payoff, sub-
ject to the constraints that (1) the attacker will be
able to learn this coverage vector C and best-
respond to it, and (2) the sum total of coverage
across all targets is limited to the number of avail-
able resources. The mixed-integer linear program
of ERASER is presented in equations 1 through 7.
Equations 2 and 3 force the attacker to choose an
attack vector A = (at) in a way to attack a single tar-
get with probability 1. Equation 4 restricts the cov-
erage vector C = (ct) to probabilities in the range [0,
1], and equation 5 constrains the coverage by the
number of available resources. 

Equations 6 and 7 compute the defender’s pay-
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Table 1. Example Payoffs in a Security Game for an
Attack on One Specific Target.

 Covered Uncovered 

Defender 5 –20 

Attacker –10 30 



off d and the attacker’s payoff k. Here, U � (t, C) rep-
resents the expected utility to the defender when
the attacker attacks target t and the defender exe-
cutes the coverage strategy C. Similarly, U!(t, C)
represents the expected utility to the attacker. Z is
a large positive constant relative to maximum pay-
off value. In this way, Equation 7 forces the attack-
er to compute the optimal strategy to the defend-
er strategy C. Similarly, Equation 6 computes the
defender payoff d given the defender’s and the
attacker’s strategy. Taken together, the objective
and equations 6 and 7 imply that C and A are
mutual best responses in any optimal solution. 

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Deployments and Results 
Having described the foundations of game-theo-
retic algorithms, we now briefly discuss the game-
theoretical models for the applications discussed
above. We then evaluate their performance in the
real world. 

Constructing a Game Model
Instantiating a real-world security domain in a spe-
cific Stackelberg game model involves specifying
details of three aspects: (i) the possible targets that
could be attacked, for example the terminals at
LAX; (ii) the defense resources and constraints on
how they may or may not be scheduled, for exam-
ple the number of available canines; and (iii) the
payoffs that describe the outcomes of attacks on
each target for both the defender and the attacker. 

The payoffs provided to the game model define
the outcome for both the defender and the attack-
er in case the attack on a particular target was suc-
cessful or unsuccessful. These payoffs are provided
by domain experts. The payoffs for a security
domain, and the exact methods used by the
domain experts to arrive at these values are sensi-
tive information. Risk analysts use a detailed set of
questions to arrive at the exact payoff values; some
of the considerations for payoff values are outlined
(Pita et al. 2008; Tsai et al. 2009; Jain et al. 2010b;
Tambe 2011). 
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Evaluation
While ARMOR and IRIS have been successfully
deployed for a number of years, evaluating their
impact in the real world is not easy. There are also
security concerns in making evaluations of securi-
ty policies publicly available and ethical concerns
in not providing the best security possible to a con-
trol group. It is important to understand that there
is no 100 percent security; all that these game-the-
oretic algorithms are trying to do is to increase
adversary cost and uncertainty. We use at least five
types of evaluation in answering the evaluation
question: (1) models and simulations in the labo-
ratory; (2) experiments with human subjects; (3)
evaluations by domain experts; (4) comparison of
game-theoretic strategies with previous deploy-
ment strategies; and (5) impersonation of an adver-
sary using teams of security officers to test a secu-
rity strategy. Finally, researchers continue to look
for additional evidence and data that would pro-
vide additional evaluation and potential pointers
to improvements in the deployment of game-the-
oretic algorithms. 

The key conclusions from comparison against
previous deployment techniques are as follows.
When compared to human schedulers, we find
that the game-theoretic approaches provide more
unpredictability. Human schedulers tend to gener-
ate predictable patterns, and this weakness of
human schedulers was noted in the case of LAX
police schedules as well as for FAMS schedules
(Murr 2007; U.S. Government Accountability
Office 2009). Indeed, human inability to generate
random patterns is well studied (Wagenaar 1972).
It would seem that the task of scheduling a tour for
an air marshal is already quite complex; requiring
further that the tours be unpredictable just creates
a significant cognitive burden for a human. When
compared to a uniform random schedule, game-
theoretic schedules perform better since they can
account for differing weights of different targets
(Jain et al. 2010b). Similarly, game-theoretic sched-
uling outperforms simple weighted random sched-
ules since game theory explicitly accounts for an
adaptive adversary (Jain et al. 2010b). 

While these conclusions are supported by our
different evaluation techniques, we present one
example result from IRIS in terms of our simula-
tions. The results are shown in figure 2. Here, the
x-axis shows the number of schedules or flight
tours that the federal air marshals could fly and the
y-axis shows the expected utility for the defender
where higher expected utility is better for the
defender. In these experiments, each schedule was
a tour composed of one departure flight and one
arrival flight. The number of air marshals available
to do these flight tours was kept fixed to one in all
the experiments. We compare the expected utility
from the IRIS strategy with the expected utilities
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from uniform and simple weighted random strate-
gies. The results show that the IRIS strategy gives a
higher expected utility to the defender in all the
settings. Experiments comparing game-theoretic
schedules with other weighted randomization
techniques, as well as with previously used sched-
uling practices, also showed that game-theoretic
schedules performed better (Jain et al. 2010b).
More details of the evaluation can be found in
Tambe (2011). 

Further evidence of the merit of these software
assistants is the adoption and continued use of
these tools. ARMOR has been deployed by the LAX
police since August 2007 and IRIS began to be used
by FAMS in October 2009 after undergoing a non-
public internal evaluation. PROTECT is deployed
in Boston by the Coast Guard since April 2011 and
it is being considered for further deployments.
Finally, GUARDS is being evaluated by the TSA at
an undisclosed airport. 

Research Challenges 
While the deployed applications have advanced
the state of the art, significant future research
remains to be done. At least two of the primary
challenges relate to scaleup and robustness. In the
following, we highlight key research thrusts in
both.

First, with respect to scaleup, algorithms for

security games must address increases in both the
number of defender strategies as well as the num-
ber of attacker strategies. A key motivating domain
for such a scaleup is when defending cities against
potential attackers. For example, police in the city
of Mumbai have started scheduling a limited num-
ber of checkpoints on roads in response to the
Mumbai attacks of 2008 (Ali 2009).6 Security game
algorithms could potentially be used to schedule
randomized checkpoints in such settings. In such
domains, the strategy space of the defender grows
exponentially with the number of available
resources, and the strategy space of the attacker
grows exponentially with the size of the road net-
work considered. The latest technique to schedule
such checkpoints is based on a ‘‘double oracle
approach,” which does not require the enumera-
tion of the entire strategy space for either of the
players (Jain et al. 2011). However, significant fur-
ther scaleup is required to handle a city of the size
of Mumbai.

Second with respect to robustness, our solution
algorithms must be robust to the significant uncer-
tainty faced in the domain. For example, while the
Stackelberg formulation assumes that the adver-
sary conducts careful surveillance and thus has
perfect knowledge of the defender’s mixed strategy,
in reality, the adversary’s surveillance may be lim-
ited or error prone, requiring security game algo-
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rithms to be robust to such an occurrence (Yin et
al. 2011). Similarly, these algorithms must handle
the significant uncertainty of the defender’s mod-
el of the adversary’s payoffs (Kiekintveld, Marecki,
and Tambe 2011) and uncertainty over the capa-
bility of the attacker as well (An et al. 2011b).
While there are many such uncertainties, we will
briefly highlight work that focuses on the adver-
sary’s bounded rationality, which introduces
uncertainty in the adversary’s decision procedure.
In addition to computational game theory, this
research also focuses on addressing human biases
and cognitive limitations when computing solu-
tions to the game-theoretic models. Thus, this
work has led to a new area of research combining
behavioral or experimental game theory (Camerer,
Ho, and Chong 2004) with security game algo-
rithms. It marries concepts like anchoring bias (Fox
and Rottenstreich 2003), prospect theory (Kahne-
man and Tvesky 1979; Hastie and Dawes 2001),
and quantal response (McKelvey and Palfrey 1995)
with computational game theory, resulting in a
novel approach to model real-world players. 

As an example of this style of research, an Inter-
net-based computer game inspired by the security
situation at LAX was designed to test game-theo-
retic schedules against human opponents (Yang et
al. 2011). Figure 3 shows a screenshot of this game.
In this game, the doors represent the terminals
that need to be protected. The values shown for
the door define the payoffs for the players of the
game. The defender was simulated by a pirate, who
happened to guard a few of the doors using a pre-
specified scheduling strategy. The human subject,
analogous to the attacker, was able to observe the
pirate for a few observations, and then made a
choice as to which door to attack. The outcome of
the game was dependent on whether or not a
pirate guarded the door chosen by the human sub-
ject. The students were give a bankroll at the start
of the game; they added to the bank for every suc-
cess and money was deducted for every failure. The
net results of tests with human subjects showed
that the standard game-theoretic strategies per-
form better compared to uniform and naïve
weighted random strategies against humans as well
(Pita et al. 2010). It also showed that strategies that
exploited human biases performed even better
than these standard game-theoretic strategies. 

Other Applications 
This section summarizes some other recent multi-
agent applications based on papers from AAMAS
2010 and AAMAS 2011, including those in sus-
tainable energy and safety, which include traffic
management, disaster management, air-traffic
management, and health. We begin with applica-
tions in sustainable energy. 

Smart Grid Management/Coordination 
Providing sustainable energy is a critical grand
challenge facing the world today and it affects all
aspects of development. One way to mitigate the
challenge is using renewable energy sources, such
as hydroelectricity, solar energy, wind energy, wave
power, geothermal energy, bioenergy, and tidal
power. The other approach is saving energy during
its distribution and consumption. In order to effi-
ciently deliver and use energy, energy systems
(such as the smart grid) should be able to predict
and intelligently respond to the behavior and
actions of all electric power users connected to it.
In addition, such systems should allow dynamic
optimization of system operations and resources.
The distributed nature and autonomous behavior
of these systems lend themselves to a multiagent
methodology. 

The function of an electrical grid, as shown in
figure 4, is to aggregate multiple networks and
power generation companies. Smart grids increase
the connectivity, automation, and coordination
between suppliers, consumers, and networks that
perform either long-distance transmission or local
distribution tasks. Given the existence of multiple
entities in the smart grid, smart grid manage-
ment/coordination is crucial for the creation of a
robust, intelligent electricity supply network. How-
ever, smart grid management is challenging due to
the dynamic nature of the grid and the self-inter-
ested nature of all the entities participating in the
grid.

There are two lines of work related to regulating
the energy supply and consumption. One is using
different types of storage devices with appropriate
(dis)charging strategies, and the other focuses on
using different market mechanisms to match sup-
ply and consumption. Most smart grid technolo-
gies are trying to balance demand and supply in
order better to integrate distributed intermittent
renewable energy sources. Renewable energy often
depends on environmental conditions (for exam-
ple, wind speeds) that can vary significantly over a
short time. Therefore, it is difficult (even impossi-
ble) for supply to continuously follow the vagaries
of consumer demand. In recent years, efficient
low-cost energy storage devices have been widely
used to support sustainable energy provisioning
and balance demand and supply. While energy
usage can be potentially improved by using such
devices, it is possible that individual homes charge
at the same time according to their own needs.
This will cause a higher peak in demand in the
electricity market, and in the worst case, it could
cause blackouts and infrastructure damage if the
total demand were to exceed network capacity.
Vytelingum et al (2010b) provide a game-theoretic
framework for modeling storage devices in large-
scale systems where each storage device is owned
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by a self-interested agent that aims to maximize its
monetary profit. Under certain assumptions, the
proposed agent-based microstorage management
strategy allows all storage devices in the system to
converge to profitable and efficient behavior. Ram-
churn et al (2011) consider more complex
deferrable loads and managing the comfort in the
home. In addition to microstorage devices at
homes, plug-in electric drive vehicles (EDVs), that
is, vehicles that use electricity to power at least part
of their drive trains, can be integrated into the
smart grid and can provide power storage services
to the smart grid. Although individual EDVs con-
trol too little power to sell in the market at an indi-
vidual level, a large group of EDVs may form an
aggregate or coalition that controls enough power
to meaningfully sell in the various electricity mar-
kets. A prototype system has been deployed in the

real world and it is shown that a vehicle has an
incentive to participate in coalitions (Kamboj,
Kempton, and Decker 2011). 

In addition to using small storage devices, dif-
ferent market mechanisms have been proposed to
regulate the energy consumption and supply in
different scenarios at the smart grid. The most
widely used mechanism is auction (Vytelingum et
al. 2010a; Gerding et al. 2011; Lamparter, Becher,
and Fischer 2010). For example, a continuous dou-
ble auction (CDA) mechanism with agents’ trading
strategies is used to balance different traders in the
market (Vytelingum et al. 2010a). An online allo-
cation mechanism is proposed for electric vehicle
owners to bid for power and the time window for
charging (Gerding et al. 2011). Since the smart grid
market is a complex dynamic market, those mech-
anisms often can guarantee truthfulness and effi-
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ciency only under very strong assumptions. Alter-
natively, some heuristic approaches are used for
supply and demand matching in electricity net-
works. PowerMatcher (Kok, Warmer, and Kam-
phuis 2005; Kok 2010) is a general-purpose coordi-
nation mechanism for balancing demand and
supply in clusters of distributed energy resources.
The heart of the system is an electronic market on
which local control agents negotiate using strate-
gies based on short-term microeconomics. Differ-
ent scheduling strategies have also been proposed
for reducing imbalance costs in a smart grid due to
unpredictable changes in production and con-
sumption (Vandael et al. 2011). 

Minimize Building Energy Consumption 
In addition to saving energy in its distribution
stage through techniques such as smart grid man-
agement, minimizing the energy consumption is
also important to achieve the goal of sustainable
energy. In the United States, about 40 percent of
energy consumption is from buildings, of which
25 percent is associated with heating and cooling
at an annual cost of $40 billion. Furthermore, on
an annual basis, buildings in the United States con-
sume 73 percent of its electricity. Multiagent tech-
nology, together with existing IT solutions/infra-

structure, has been identified as a promising
approach to achieve greater energy efficiency in
buildings (Rogers et al. 2011). Kwak et al (2011)
present a novel multiagent system based on dis-
tributed coordination reasoning under uncertainty
for sustainability called SAVES. SAVES is capable of
generating plans to minimize the energy con-
sumption while satisfying the comfort level of
occupants in the buildings. SAVES is currently
being tested in simulations, but the goal is to
deploy in buildings for a proof of concept demon-
stration. 

In related research, Rogers and colleagues
(Rogers et al. 2011) address the challenge of adap-
tively controlling a home heating system in order
to minimize cost and carbon emissions within a
smart grid. The designed energy management
agent learns the thermal properties of the home
and uses Gaussian processes to predict the envi-
ronmental parameters over the next 24 hours,
allowing it to adjust the timing of heater use in
order to satisfy preferences for comfort while min-
imizing cost and carbon emissions. 

Multiagent Traf!c Management 
The increasing demand for mobility in our society
has led to the more serious problem of traffic con-

Articles

FALL 2012   23

Sensors ‘Activated’
Sensors on ‘Standby’

Smart Appliances

Demand Management

Generators

GRID 2030 Vision: Distributed Intelligence and Two-Way Information Flows

Storage

Disturbance
in the Grid

Processors

Of!ces with
Solar Panels

Isolated
Microgrid

Houses with
Solar Panels

Wind Farm
Industrial Plant

Central Power Plant

Figure 4. Smart Grid Management Would Require Coordination Between These Multiple Entities. 



gestion. Traffic causes air pollution and decrease in
speed, which is directly linked to energy (for exam-
ple, fuel) consumption. A more efficient use of the
available transportation infrastructure is necessary
and this relates closely to multiagent systems as
many problems in traffic management and control
are inherently distributed (Bazzan 2009). AI and
multiagent techniques have been proposed for
traffic management (see Klugl and Bazzan [2012];
Bazzan [2009] for a survey). A reservation-based
intersection control approach with a communica-
tion protocol is proposed in Dresner and Stone
(2008). In the reservation-based approach,
autonomous guided vehicles report information
(for example, the velocity, direction, maxi-
mum/minimum acceleration) to intersection man-
agers, which later decide on rejection or accept-
ance of requests based on their knowledge of other
vehicles. 

Pulter, Schepperle, and Bohm (2011) quantify
the fuel consumption with existing agent-based
approaches for intersection control and propose an
agent-based mechanism for intersection control,
with minimization of fuel consumption as an
explicit design objective. Simulations show that
the proposed mechanism could reduce fuel con-
sumption by up to 26 percent and waiting time by
up to 98 percent, compared to traffic lights. 

Agent technology has also been used to offer
support for commercial aviation transportation.
An air traffic control system based on adjustable
autonomy has been created to support the optimal
allocation of tasks (functions) between the system
and the human operators (Schurr, Picciano, and
Marecki 2010). The system includes (1) a simula-
tion environment, (2) a DFAS algorithm for pro-
viding adjustable autonomy strategies, and (3) the
agents for executing the strategies and measuring
system efficiency. An initial pilot study shows
some promising results. 

Disaster Management 
Efficient and effective disaster management is
becoming increasingly important for the world
given the major disasters in recent years, ranging
from natural disasters such as the Tohoku earth-
quake, Haiti earthquake, Asian tsunami, and hur-
ricane Katrina, to the man-made disasters such as
the 9/11 attack and the London terrorist attacks.
Disaster management is a significantly challenging
research topic. Agents face a highly dynamic and
uncertain environment, which makes it difficult
for agents to make the optimal decisions in the
long term. For disasters, new tasks may continual-
ly appear or disappear, and thus timely response is
crucial. In addition, there are often a large number
of complex rescue tasks, each requiring multiple
agents (or other entities) to act together since
agents often have limited capabilities. 

Efficient task (resource) allocation is a critical
factor in any successful disaster management.
Since agents’ capabilities are often limited, coordi-
nation is often necessary through forming teams
for coalitions. Effective coordination ensures that
tasks are allocated so that efforts are not duplicat-
ed and all resources (including time) are used in an
efficient way. Coordination can be done in either
a centralized way or a distributed way. Distributed
mechanisms have many useful properties (for
example, robustness, flexibility, lower overheads)
and are more appropriate for complex dynamic
environments. A variety of distributed coordina-
tion mechanisms have been proposed, for exam-
ple, DCOP-based approaches (Scerri et al. 2005;
Dos Santos and Bazzan 2011) and max-sum algo-
rithms (Ramchurn et al. 2010; Farinelli et al. 2008). 

Another important line of work is simulating
pedestrian behavior in disaster scenarios. Agent-
based simulation allows for each pedestrian to be
modeled as an autonomous entity. Under this
model, pedestrians are represented as agents capa-
ble of perceiving and interacting with their envi-
ronment as well as other agents. Recent research
on agent modeling includes the ESCAPES system
(Tsai et al. 2011), which is concerned with the
interactions between agents and the resulting
group dynamics. Additionally, ESCAPES focuses on
domains including airports, malls, and museums.
To accurately represent these types of environ-
ments, ESCAPES considered it particularly impor-
tant to model the influence of families, emotional
contagion, social comparison, and spread of
knowledge, which past work had not cohesively
addressed. 

Health Applications
The use of modern information and communica-
tion technologies can aid to decrease both the cost
of prenatal health-care services and also the load
of medical practitioners. One key example at
AAMAS is the SUAP project, which provides a mul-
tiagent system for supporting and monitoring pre-
natal care (Nunes et al. 2010). SUAP uses agent
technology to manage health-care records, to act
as a clinical decision support system, and to han-
dle the logistics of high-risk pregnancy cases. The
first version of the SUAP system was deployed in
July 2009 and it was composed of the core func-
tionalities that provided the prenatal care system-
atization.

Conclusions and Future Work 
Key applications of multiagent systems highlight-
ed at the AAMAS conference illustrate that
researchers are making huge strides in the areas of
security, sustainability, and safety. Many applica-
tions are already in use, with more in the pipeline.
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These applications have also led to some funda-
mental research challenges in many different areas
of multiagent systems. In terms of future direc-
tions, some of the domains where such agent-
based approaches could and should have a signifi-
cant impact can be found in the grand challenges
listed by the National Academy of Engineering.7
For example, one of the challenges is to secure
cyberspace, where current agent-based solution
methods can be extended and applied. Researchers
in cyber security have already started investigating
game-theoretic approaches similar to the ones
mentioned earlier for routing packets and schedul-
ing packet inspections (Alpcan 2010; Kodialam
and Lakshman 2003). Similarly, agent-based tech-
niques can be very useful in addressing another
grand challenge of improving urban infrastructure.
Indeed, as mentioned earlier, disaster response and
energy management in urban settings are active
areas of research focused on improving urban soci-
eties. A third important example research area
where agent technology can have a very significant
impact is advanced personalized learning. This
requires the development of an agent or multia-
gent system that can identify individual prefer-
ences and aptitudes of each student, such that
instruction can be tailored to a student’s individual
needs. Indeed, while significant research chal-
lenges remain to be addressed, the trajectory of
use-inspired research at the AAMAS conference is
extremely promising; and thus as it has already
begun to do, research in agents and multiagent sys-
tems could have significant societal impact in the
near future.
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Notes
1. See www.legion.com/legion-software.
2. See www.tsa.gov/lawenforcement/programs/fams.
shtm.
3. See www.tsa.gov and www.tsa.gov/what_ we_do/lay-
ers/index.shtm.
4. See Air Traf!c Control: By the Numbers; www.zfwnat-
ca.com.
5. The leader can always induce the follower strictly to
break ties in favor of the leader by perturbing the leader’s
strategy by an in!nitesimal amount (von Stengel and
Zamir 2004)
6. A map illustrating the terrorist attacks of 2008 in Mum-
bai can be found at kids.britannica.com/comptons/art-
153427/Armed-terrorists-attacked-several-sites-in-Mum-
bai-India-on-Nov.
7. See www.engineeringchallenges.org.
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The 26th International FLAIRS Conference 
TradeWinds Island Resorts, St. Pete Beach, Florida, USA 

May 22-24, 2013 

The 26th International FLAIRS Conference (FLAIRS-26) will be held May 22-24, 2013 at the 
TradeWinds Island Resorts in St. Pete Beach, Florida, USA. FLAIRS-26 continues a tradition 
of presenting and discussing artificial intelligence research in a convivial atmosphere within a 
beautiful setting. Events will include invited speakers, special tracks, discussion panels, 
presentations of papers and posters, and impromptu presentations. As always, there will be 
a Best Paper award and a Best Poster award. In addition, because FLAIRS has a rich 
tradition of encouraging student authors, there will be a Best Student Paper award for the 
best paper written primarily by a student. Submissions are now invited for full papers (6 
pages), short papers to be presented as a poster (4 pages), and poster abstracts (250 
words). The proceedings will be published by the AAAI. The conference is hosted by the 
Florida Artificial Intelligence Research Society in cooperation with AAAI. 

Topics of interest are in all areas of AI, including but not limited to 
 Foundations: Knowledge Representation, Cognitive Modeling, Perception, Reasoning & 

Programming, Constraints, Satisfiability, Search, Learning 
 Architectures: Agents and Distributed AI, Intelligent User Interfaces, Natural Language 

Systems, Information Retrieval, Robotics 
 Applications: Aviation and Aerospace, Education, Entertainment, Medicine, 

Management and Manufacturing, World Wide Web  
 Implications: Philosophical Foundations, Social Impact and Ethics, Evaluation of AI 

Systems, Teaching AI 
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Intelligence Section (LIKS-AIS); Slovenian Artificial Intelligence Society (SLAIS); Spanish Society for
Artificial Intelligence (AEPIA); Taiwanese Association for Artificial Intelligence (TAAI); Taiwanese Asso-
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