
In recent years, indoor air quality (IAQ) has drawn consider-
able attention in both the public and scientific domains.
This is mainly due to two reasons. First, people spend a

majority of their time indoors, for example, about 90 percent
for people in the United States. Second, most buildings appear
to fall far short of reasonable air-quality goals (Huizenga et al.
2006). Statistics from the U.S. Environmental Protection Agency
(EPA) indicate that, on average, the indoor levels of pollutants
are two to five times higher than outdoor levels (U.S. Environ-
mental Protection Agency Green Building Workgroup 2009).
Bad indoor air quality influences human health, safety, produc-
tivity, and comfort (Wyon 2004; Daisey, Angell, and Apte 2003).
Personal exposure to air pollutants is highly variable due to the
presence of indoor air-pollution sources. Providing personalized
IAQ information has the potential to increase public awareness
of the relationship between people’s behavior and air quality;
help people to improve their living environments; and also pro-
vide valuable information to building managers, policy makers,
health professionals, and scientific researchers.

IAQ monitoring is challenging because indoor air-pollu-
tant concentrations and human motion patterns each
vary spatially and temporally within and across rooms.
These variations are caused by differences in user activities,
number of occupants, and ventilation settings. For exam-
ple, two office rooms in the same building may have sig-
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� Because people spend a majority of their
time indoors, indoor air quality (IAQ) can
have a significant impact on human health,
safety, productivity, and comfort. Because of
the diversity and dynamics of people’s
indoor activities, it is important to monitor
IAQ for each individual. Most existing air-
quality sensing systems are stationary or
focus on outdoor air quality. In contrast,we
propose MAQS, a user-centered mobile sens-
ing system for IAQ monitoring. MAQS users
carry portable, indoor location tracking and
IAQ sensing devices that provide personal-
ized IAQ information in real time. To
improve accuracy and energy efficiency,
MAQS incorporates three novel techniques:
(1) an accurate temporal n-gram augment-
ed Bayesian room localization method that
requires few Wi-Fi fingerprints; (2) an air-
exchange-rate- based IAQ sensing method,
which measures general IAQ using only CO2
sensors; and (3) a zone-based proximity
detection method for collaborative sensing,
which saves energy and enables data sharing
among users. MAQS has been deployed and
evaluated through a real-world user study.
This evaluation demonstrates that MAQS
supports accurate personalized IAQ moni-
toring and quantitative analysis with high
energy efficiency. We also found that study
participants frequently experienced poor
IAQ



nificantly different IAQ because of variation in
the number of occupants (Huizenga et al.
2006). Existing solutions that require station-
ary sensors or target mobile outdoor sensing
scenarios are inappropriate for personalized
IAQ monitoring. Stationary sensing (Godwin
and Batterman 2007) has several limitations.
First, it can only measure the IAQ experienced
by those who happen to be near the sensors
and there can be substantial variation in IAQ
even within one room. Second, when locations
or rooms outnumber people, achieving full
occupant coverage with stationary sensors is
more expensive than doing so with personal
mobile sensors.

A mobile sensing system designed for per-
sonalized IAQ monitoring must meet the fol-
lowing three requirements. First, the system
requires accurate and reliable indoor localiza-
tion techniques to detect user locations. Out-
door mobile sensing solutions use GPS local-
ization, which fails indoors. Some existing
approaches use proprietary radio frequency
and ultrasound technologies for room local-
ization, which require investment in infra-
structure and special hardware worn by all
users. Others use Wi-Fi-based fingerprinting,
which requires time- consuming precharacteri-
zation and is hampered by device or environ-
ment heterogeneity. Second, the mobile sens-
ing devices must be inexpensive and portable.
This limits the number and types of sensors that
can be integrated within each mobile device.
Existing air-quality sensing solutions require
multiple types of sensors, each of which covers
a subset of pollutants. This can be prohibitive-
ly expensive for personalized mobile IAQ sens-
ing. Achieving high-quality IAQ monitoring
with inexpensive sensors is challenging. Third,
the system needs to achieve a good balance
between energy consumption and coverage.
IAQ sensing depends largely on the motion
patterns of individual users. This leads to
redundant IAQ information when users are
near each other and may lead to gaps in cov-
erage for users who are not presently carrying
sensing devices.

This article describes MAQS,1 a personalized
mobile sensing system for IAQ monitoring. MAQS
estimates anthropogenic air-quality factors (for
example, CO2 and contagious viruses) using CO2
concentration and estimates other air-quality fac-
tors (for example, volatile organic compounds
[VOCs]) using air exchange rates. MAQS integrates
smartphones and portable sensing devices to deliv-
er personalized, energy-efficient, IAQ information.
MAQS is the first mobile air-quality sensing system
that achieves high coverage of people in indoor
environments. Our work makes several main tech-

nical contributions: a temporal n-gram augmented
Bayesian room localization method that is accurate
and requires few Wi-Fi fingerprints; an air-
exchange-rate-based IAQ sensing method, which
measures general IAQ without requiring sensors
for various types of air pollutants; and a zone-
based proximity detection method for collabora-
tive sensing, which saves energy and enables data
sharing among multiple users.

The design of these three components
demonstrates how artificial intelligence can be
applied to enable innovative mobile phone
applications. MAQS is a context-aware, energy
efficient, and accurate IAQ monitoring system.
Our room localization algorithm is able to
determine the rooms occupied by users and
associate them with measured indoor air-qual-
ity data. Our CO2-based IAQ sensing method
uses air exchange rate estimation and zone-
based proximity detection to reduce energy
use and increase IAQ estimation accuracy.

MAQS was evaluated through real-world sys-
tem deployment and a user study. Our results
demonstrate high accuracy (more than 96 per-
cent for room localization and 89 percent for
zone detection) and 2 times to 8 times better
energy efficiency. Our IAQ analysis also reveals
that most users in the limitedstudy are subject
to poor IAQ (that is, high CO2 concentration
and low air exchange rate) in a number of
rooms.

System Overview
This section gives a high-level overview of the
MAQS system architecture and describes its key
components. As illustrated in figure 1, MAQS
consists of four components: (1) M-pods, the
portable IAQ sensing devices; (2) smartphones;
(3) a data server; and (4) a web server. MAQS users
carry smartphones and optionally M-pods.
The data server communicates with clients,
estimating and reporting room air quality,
CO2 concentration, and personalized IAQ data.
The web sever allows users to view, analyze, and
share IAQ data.

A MAQS client runs on each smartphone. It
monitors the phone’s accelerometer readings
to detect room entering and departure events.
For the purpose of IAQ monitoring, rooms are
defined as enclosed building units with walls,
doors, and windows where people spend sub-
stantial time (for example, office, classroom, or
bedroom). We ignore transitional spaces
indoors (for example, hallways). Once a client
determines that its user has entered a room,
the room localization function collects Wi-Fi
signals from nearby access points and uses the
subsequences of Wi-Fi signals (spatial informa-
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tion) and the user’s mobility pattern (temporal
information) to determine the current room.
The collaborative sensing unit then uses zone-
based proximity detection to select a subset of
sensing devices in the same room for (collabo-
rative) IAQ monitoring of the room. This is use-
ful since not all smartphone users carry IAQ
sensing devices, and sensing devices close to each
other (that is, in the same zone) are largely
redundant. As CO2, VOCs, and other air-pollu-
tant2 concentrations are collected and trans-
mitted to the server, they are stored in data-
bases and combined with room information
(for example, room ID and volume) for air
exchange rate estimation and personalized
IAQ analysis. MAQS stops IAQ sensing after
detecting room departure and restarts when
another room is entered.

M-pod: The Portable
IAQ Sensing Device

Our system design requires a mobile IAQ sens-
ing device with multiple accurate, low-cost sen-
sors. It must also connect wirelessly with smart-
phones and have a long battery lifespan.
Existing designs did not meet these require-
ments, so we developed a new sensing device
called the M-pod. The M-pod is a wireless
embedded sensing, computation, and com-
munication device based on the Arduino plat-
form.3 It can sense multiple air pollutants and
either store the data locally or transmit them to
nearby smartphones using Bluetooth.

M-pod Hardware Design
The M-pod’s major components are an 8-bit, 32-
pin microcontroller, a Bluetooth module, and up
to 10 on-board sensors, all mounted on a custom-
fabricated four-layer printed circuit board. Table 1
lists the processor, wireless interface, and sensors.

The humidity sensor, two temperature sensors, and
CO2 sensor are connected to the microcontroller
through the I2C interface. The other sensors are
attached to the microcontroller’s analog-to-digital
converter interface. The metal oxide gas sensors are
power gated using PMOSFETs when idle to maxi-
mize battery lifespan. A 5 V DC fan is mounted to
the case. The sensors are positioned to enable uni-
form airflow. When sensing, the fan moves air at a
rate of 2 liters per minute, thereby minimizing
sensing latency when IAQ changes.

Energy Consumption
The M-pod is powered by a 2200 mAh Lithium-ion
battery, which can be recharged using a standard
wall-mounted AC–DC converter. The Lithium-ion
battery is protected by an interlock that halts the
system when the battery voltage drops below 2.9 V.
The M-pod requires 240 milliwatts in low-power
mode, in which only the processor and CO2,
humidity, and temperature sensors are enabled. It
requires 1080 milliwatts when, in addition, four
metal oxide gas sensors are activated. The fan
requires up to 105 milliwatts, but this can be
reduced through pulse-width modulation. The
Bluetooth interface needs to transmit so infre-
quently in this application that its power con-
sumption has little impact on battery lifespan. The
battery lifespan is approximately 5.5 hours if an M-
pod is continuously active and greater than 24
hours when in low-power mode.
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Figure 1. MAQS: User-Centered Indoor Air-Quality (IAQ) Monitoring on Mobile Devices.

Hardware  MCU  Bluetooth Battery  Size (inch) 

specifications ATMEGA 168 WT11  CS HDE160XL  4.8 x 2.6 

On-board Temperature  CO2  Humidity   Light sensors 

sensors TMP101  S100 HYT271 GL5528 

Table 1. M-Pod Processor, Wireless Interface, 
and Sensorsing on Mobile Devices.



Command Processing
The M-pod processes low-power mode, full-sensing
mode, power state inquiry, and transmit data com-
mands, which are generally received from smart-
phones. IAQ sensor readings are collected every six
seconds and stored in the microcontroller’s SRAM.
In low-power mode, the metal oxide sensors are
power gated because they contain resistive heating
elements with high power consumptions. The
power state inquiry command transmits the cur-
rent mode to the requester. The data transmit com-
mand uploads the data stored on the M-pod to the
requester.

Latest Development
The latest version of the M-pod has been revised to
triple the battery lifespan, halve the size, and
improve reliability by using communication error
recovery algorithms, among other improvements.
The average power consumption, when power
cycling is disabled, is reduced to about 160 milli-
watts. Specifically, when communication is dis-
abled and the sensing interval varies from 1 to 15
seconds, the power consumption of the M-pod
ranges from 154 milliwatts to 159 milliwatts. Also,
when the sensor sampling rate is fixed at 1 Hertz
and the transmission interval varies from 1 to 15
seconds, the M-pod’s power consumption ranges
from 157 milliwatts to 168 milliwatts. On average,
the new M-pod can work continuously for more
than 15 hours.

CO2 Sensor Calibration
Many low-cost air-quality sensors are challenging
to work with. Their baseline readings can drift over
time, response time can be slower than desired,
and sensitivity to the target pollutants can change
over time, or the sensors may be exposed to com-
pounds that degrade them. Many also suffer from
high cross-sensitivities, causing them to respond

not only to the target gas but to other pollutants of
less interest (including water vapor). 

Nondispersive infrared (NDIR) CO2 sensors suf-
fer from few of these problems. Instead of relying
on chemical reactions, NDIR sensors measure CO2
concentrations by observing the absorption of
infrared light by CO2. They have good linearity,
high repeatability, and low response time.
Although H2O is also absorbent in the infrared
spectrum, our tests show that the NDIR sensors we
used are mostly insensitive to humidity. They were
thus the first sensors we used when developing and
evaluating the MAQS system. The sensors were cal-
ibrated in a custom chamber multiple times
throughout the experiment. To calibrate, the M-
pods were placed within the teflon-coated cham-
ber and precise gas mixtures were fed in through
nonreactive tubing. Gas flows were administered
using mass flow controllers (MFCs), which were
controlled using a PC interface and data acquisi-
tion system, as shown in figure 2.

Figure 3 shows a typical calibration run, in
which the sensors were exposed to three different
pollutant concentrations. For CO2, these concen-
trations are generally near 0 parts per million, 400
parts per million, and 1600 parts per million, with
the balance gas being nitrogen. The calibration
process is designed to be performed quickly
(approximately 15 minutes at each concentration
setting). The calibration fit in figure 4 shows the
linear fit between sensor output signal and con-
centration. Uncertainty in the sensor signal is cal-
culated from the calibration fit by estimating the
standard deviation of regression, which is then
propagated through the calibration function, pro-
viding uncertainty estimates for the ambient data.
The signal uncertainty at each concentration in a
typical calibration is shown in figure 4. The aver-
age measurement of uncertainty for these data was
found to be 39.8 parts per million, with a standard
deviation of 8.6 parts per million.
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Figure 2. PC Interface and Data Acquisition System.

Left: The calibration chamber with the mass flow control. Right: The data acquisition system.



Room Localization
M-pods are carried by users, that is, their locations
change as users move. The collected IAQ data is
valuable for data analysis, visualization, and shar-
ing only when it can be associated with the appro-
priate source room. Room characteristics correlate
closely with IAQ and rooms are the basic control
units in building management. Hence accurate
room localization is required for personalized
mobile IAQ monitoring.

Researchers have proposed two-stage room
localization techniques based on Wi-Fi access
point received signal strength (RSS) (Park et al.
2010; Haeberlen et al. 2004). In the first (training)
stage, a database that associates ambient Wi-Fi
RSS fingerprints with physical rooms is construct-
ed. In the second (operating) stage, the system
identifies the stored Wi-Fi fingerprint most simi-
lar to current measurements, and returns the asso-
ciated room.
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Figure 4. Example of a CO2 Calibration Curve Fit. 

The black dots represent the calibration points, while confidence intervals are shown by the accompanying bars.

Figure 3. CO2 Calibration Time Series Example Data,



The first stage of our room localization tech-
nique is similar to that of Park et al. (Park et al.
2010). All users contribute their Wi-Fi RSS and
room information to create a shared database of
room fingerprints. This is beneficial because it (1)
eliminates the deployment cost for fingerprint pre-
sampling and (2) reduces user effort to build the
database.

In the second stage, Bayesian room localization
models are commonly used (Haeberlen et al. 2004;
Park et al. 2010). Under these models, the learned
database includes all fingerprinted rooms R, and
the fingerprint of each room r (r ∈ R) is represented
as a probability table for each access point (AP) with
different RSS values that was observed in the room.
Given a Wi-Fi measurement o, a Bayesian model is
used to compute P(o|r)P(r) for each room r in the
database and the room with the highest probabili-
ty is selected as the room that the user is most like-

ly to be in. Let wi be the RSS value of the ith AP in
the Wi-Fi measurement o. Then the probability of
observing o in room r, P(o|r), can be computed as

Note that we can obtain P(wi|r) from the probabil-
ity table in the database.

This model is based on the assumption that the
AP signal strengths observed by the mobile device
are conditionally independent. However, the mod-
el fails to address the following two challenges: (1)
device heterogeneity — different devices may be
used for gathering RSS fingerprints and devices
might be held differently (for example, in hand,
pocket, or bag) and (2) temporal variation — the
wireless environment of a room may change over
time, due to motion of people and other room con-
tents, influencing the RSS fingerprints gathered by
mobile devices. As demonstrated in figure 5, noise
induced by device heterogeneity and temporal
variation significantly increase the RSS overlap
between adjacent rooms, reducing room localiza-
tion accuracy. To address these problems, we first
characterize Wi-Fi signal variations due to the
above two factors and explain how they affect the
room localization. These observations motivate
the design of a novel temporal n-gram augmented
Bayesian room localization method that is robust
to both temporal and device noise.

Characterization of 
Wi-Fi Fingerprint Variation
Each Wi-Fi sample obtained by a mobile device
consists of a list of APs and the received signal
strength value from each AP. Depending on how
Wi-Fi fingerprints are constructed, two different
types of information may be used: occurrence
(OCC) and received signal strength (RSS).

Occurrence (OCC) refers to whether a specific AP
or a set of AP occurs in a Wi-Fi sample or not. Each
mobile device scans all available APs a total of N
times. If we assume k-combination APs (k ≥ 1)
occurred m times among the N samples, then the
occurrence rate of k-combination APs is m/N. We
also consider the occurrence rate of ordered k-com-
bination APs. That is, given a Wi-Fi sample, we first
order the set of APs by their corresponding RSS val-
ues, then generate k adjacent APs.

Received signal  strength (RSS) is a commonly used
feature in room localization. The RSS of each AP
can be measured directly. Its value is relatively sta-
ble within a room, yet changes significantly when
crossing walls. We characterize Wi-Fi signals for the
RSS values of single APs and for differences
between pairs of AP RSS values. Similar to OCC, we
consider both k-combination of APs (that is, any
two APs) and ordered k-combination of APs (that
is, adjacent APs in the sorted sequence based on
descending RSS values).

P
i
� (wi | r)P(r)
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Figure 5. Wireless RSS Distributions in Two Adjacent Rooms.

(a) Without noise. (b) With environment and device noise.



We conducted a set of controlled experiments to
characterize variations of Wi-Fi fingerprints. Seven
different phones (see table 2) were used to capture
device heterogeneity. We collected Wi-Fi finger-
prints for a set of adjacent rooms in different build-
ings, which are shown in table 3.

Device Heterogeneity
To characterize Wi-Fi fingerprints in the presence
of device heterogeneity, we used seven different
smartphones to collect Wi-Fi signals in two adja-
cent rooms and then compared both OccRate-Diff
and RSS-Diff RSS distributions for each pair of dif-
ferent phones, such as HTC Sensation versus Sam-
sung Galaxy S2. In each experiment, the seven
phones were placed together at one position. We
then moved the phones to a different position (in
the same room or in the adjacent room) that was 2
meters away from the original position. Each
experiment lasted 10 minutes. To minimize tem-
poral variation, there were minimal delays
between experiments. The experiments were done
during the night, when the wireless environment
was most likely to be stable.

Figures 6a–e shows the cumulative distribution
function (CDF) curves of occurrence rate difference
(OccRate-Diff) for different device combinations,
using different k-combinations of APs (k = 1, 2, 3)
and ordered k-combinations of APs (k = 2, 3). The
same-room and cross-room Wi-Fi curves can be
separated, especially when k = 1 and 2 (see figure
6a–b). However, the distributions within the same
room (the dark or light curves) are not well con-
centrated. This shows the variation among devices.
As k increases (see figure 6c), the same-room distri-
butions become more similar but there is also
increased overlap between same-room distribu-
tions and cross-room distribution, that is, reduced
separation power. In figure 6d–e, we can see that
the distribution curves within a room are concen-
trated, which makes room recognition easier. How-
ever, most of the curves overlap cross-room curves.
As a result, it is difficult to use the ordered k-com-
bination of APs for room localization.

To understand how device heterogeneity affects
RSS-based fingerprints for room localization, we
draw the CDF of RSS difference (RSS-Diff) for each
pair of devices, when using different k-combina-
tions (k = 1, 2) and ordered 2-combinations. As
shown in figure 6f–h, in all three plots, there are
large differences among the same-room curves. In
other words, when different devices are used, the
RSS-based Wi-Fi fingerprints can vary significantly
within the same room. Such poor concentration
makes it difficult to identify a specific room using
RSS-based fingerprints. However, there is good sep-
aration between the same-room and cross-room
curves, especially with 2-combination APs and
ordered 2-combination APs (see figure 6g–h). Also,
ordered 2-combination APs slightly outperform

unordered 2-combination APs because there is bet-
ter concentration of same-room curves when for
ordered 2-combinations, thus increasing the abili-
ty to identify specific rooms and distinguish differ-
ent rooms.

Temporal Variation
To characterize Wi-Fi fingerprints under temporal
variations, we used one phone to collect Wi-Fi sig-
nals in one room at different times during the
morning, noon, afternoon, evening, and night and
then collected Wi-Fi signals with the same phone
on another two days in the same room and adja-
cent room at a position that is 2 meters from the
first experiment position. We used the 2-meter dis-
tance for both same-room and cross-room experi-
ments. In each experiment, we collected Wi-Fi sig-
nals over a time window of 10 minutes, obtaining
one sample every 5 seconds. Then, to calculate
OccRate-Diff and RSS-Diff for different (ordered) k-
combinations, we consider Wi-Fi samples collected
in pairs of time periods, such as morning versus
afternoon or noon versus evening.

Figure 7a–e shows the CDF curves of OccRate-
Diff for different time periods, using different k-
combination of APs (k = 1, 2, 3) and ordered k-com-
bination of APs (k = 2, 3) as the fingerprint. The red
(blue) curves represent same-room (cross-room)
scenarios during different time periods. First, we
can observe that in all five plots, the same-room
and cross-room curves overlap heavily and are
therefore difficult to separate. Therefore, none of
the occurrence-based Wi-Fi fingerprints are good at
distinguishing rooms. Our results also confirmed
the observation (Haeberlen et al. 2004) that real-
time signal distributions often differ from those in
the training phase. However, despite different tem-
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Phone Manufacturer Release Date 
HTC Sapphire HTC 2009-02 
HTC Hero HTC 2009-07 
DROID Motorola 2009-10 
N900 Nokia 2009-11 
Nexus One Google 2010-01 
Galaxy S2 Samsung 2011-02 
HTC Sensation HTC 2011-04 

Table 2. Phone Types Used for Data Collection

Building Type Number of Rooms Number of 
Experiments per Room 

Educational 18 adjacent rooms on three floors 10 times in 1 month 
Commercial 12 adjacent rooms on three floors 10 times in 1 month 
Residential 8 adjacent rooms on three floors 10 times in 1 month 

Table 3. Controlled Experiments
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Figure 6. Device Variation.

CDF of OccRate-Diff(a, b, c, d, e) / RSS-Diff(f, g, h) using different occurrence-based Wi-Fi fingerprints.

Figure 7. Temporal Variation.

CDF of OccRate-Diff(a, b, c, d, e) / RSS-Diff(f, g, h) using different occurrence-based Wi-Fi fingerprints.

Figure 8. Bayesian Network for Room Localization.



poral variations, we do see good concentration of
same-room curves, especially when ordered k-com-
bination is used.

Figure 7f–h shows the CDF curves of RSS-Diff for
different time periods, using 1-AP, 2-APs, and
ordered 2-APs as fingerprints. Again, the light
(dark) curves represent same-room (cross-room)
scenarios during different time periods. From fig-
ure 7f, we see that same-room and cross-room
curves heavily overlap, that is, there is low distin-
guishing power. There is also a large spread among
same-room curves, indicating poor concentration.
The good news is that both 2-APs and ordered 2-
APs perform well despite temporal variation. As
shown in figure 7g–h, the same-room and cross-
room curves are well separated, indicating high dif-
ferentiating power for room localization. More-
over, both types of fingerprints also have good
concentration for same-room scenarios.

N-gram Augmented 
Bayesian Room Localization
Our key observation is that, although the exact RSS
values of each AP may change substantially for dif-
ferent devices and environments, the ordered
sequence of APs based on their RSS values tends to be
similar for the same room and inconsistent among
adjacent rooms. For example, the ordering may be
[ap1, ap2, ap3, ap4, ap5, ap6] at one time, and [ap2,
ap1, ap3, ap4, ap5, ap6] at another time, for the same
room. The ordered AP sequences of adjacent rooms
are less similar, especially when different APs are
observed in these rooms. Intuitively, the ordered
AP sequence is useful for room localization because
(1) it captures the inherent correlations among
APs, which are stable for the same room yet differ-
ent for adjacent rooms and (2) it uses the order of
RSS instead of their exact values, allowing many
sources of device variation and wireless environ-
ment variation to be tolerated.

Based on the observations above, we propose an
n-gram augmented Bayesian room localization
model, which works as follows. For a given ordered
AP sequence of Wi-Fi scan s, we consider for each
room r the probabilities of seeing subsequences of
n continuous APs in s, that is, n-grams. According
to our experimental results, we set n = 2 in order to
achieve the best accuracy for room localization.
Our new model computes P(RSS(2-gram(s))|r)P(r)
using the Bayesian model for each room r in order
to determine the room that the user is most likely
to be in. The RSS of a 2-gram is defined as the
absolute value of the difference between the RSS
values of the two adjacent APs in the ordered
sequence.

Temporal User Mobility 
for Room Localization
As shown in the experimental results, our n-gram

augmented Bayesian room localization model
achieves high accuracy when the room has enough
fingerprints (more than 50 or 100). However, when
the number of fingerprints is low, the model accu-
racy is poorer and users tend to be misclassified
into nearby rooms. To remove such spatial errors,
we propose to incorporate temporal user mobility
information. This is motivated by the following
observations:

A user’s current room is closely related to time and
day of the week; for example, the user has weekly
meetings in the conference room on Tuesday morn-
ings.

Users can only move among adjacent rooms, and
their paths tend to contain patterns. For example, a
user usually goes to the conference room from her
office instead of from a classroom.

Therefore, a user’s current room can be predicted
based on the current time and her previous room
location. As shown in figure 8, the Bayesian net-
work has three layers: current time and user’s pre-
vious room (first layer) indicate the user’s current
room (second layer), and the user’s current room
determines the observed Wi-Fi RSS fingerprint. We
also define a set of values to represent some seman-
tic concepts of time, including “day of week,”
“morning,” “afternoon,” and “evening.” Given a
Wi-Fi scan observation s, the user’s previous room
r�, and current time t, the probability of the user
staying at room r is P(s, r, t, r�). Based on the joint
probability function, the probability value is equal
to P(s|r)P(r|t, r�)P(t)P(r�). P(s|r) can be computed
using our n-gram augmented Bayesian room local-
ization model. P(r�) and P(r|t, r�) are calculated from
the user’s mobility history. P(t) can be ignored
since it is the same for any room r.

Air-Exchange-Rate-Based
IAQ Sensing

Indoor air quality is influenced by multiple air pol-
lutants and sources, including (1) air pollutants
generated indoors, such as volatile organic com-
pounds (VOCs), from combustion and off-gassing
of paint and building materials; (2) air pollutants
introduced from outside through ventilation, for
example, ozone; and (3) air pollutants generated
by people, for example, CO2. It is impractical to
install sensors on our portable IAQ sensing devices
to monitor all pollutants of interest, as the sensing
device would become unreasonably large and
require too much power. Additionally, not all pol-
lutant sensors are portable, and portable sensors
are typically less accurate than stationary sensors.
As shown in previous studies (Seppänen, Fisk, and
Mendell 1999; Persily 1997; Daisey, Angell, and
Apte 2003; Fisk, Mirer, and Mendell 2009), CO2
concentration and ventilation rates are strongly
correlated with general IAQ. Therefore, the M-pod
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monitors CO2 concentration, which is then used
to estimate the air exchange rate, that is, how
quickly air is cycled through a room. This rate is
used to estimate general IAQ in a room. Specifical-
ly, personalized air exchange rates are modeled
using changes in CO2 concentration and CO2 gen-
eration rate. The rate of change in CO2 concentra-
tion depends on the concentration in in-flowing
air, the concentration in out-flowing air, and the
internal generation rate of CO2 in a room. The air
exchange rate equation is given by Persily (1997).
That is calculated based on internal concentration
of CO2, external concentration of CO2, generation
rate of CO2 in the room, and room volume.

In our system, internal concentration of CO2 is
collected from the M-pod. External concentration
of CO2 is set to 390 parts per million, the globally
averaged CO2 concentration at the surface,5 unless
local outdoor CO2 concentration is available. To
calculate the CO2 generation rate, we assume each
person’s generation rate is equal to 0.0052 L/s
(Persily 1997), which corresponds to an average-
sized adult engaged in office work. At this time, we
do not incorporate other possible sources of CO2
such as cooking or smoking. Room volume V can
be provided by the user through our system, or it
can be calculated from CO2 data based on the
steady-state concentration balance equation, that
change of CO2 is equal to zero. The air exchange
rate required for good IAQ depends on the size and
occupancy of each room. In our system, three met-
rics are considered for IAQ, as follows:

Indoor CO2 concentration is a surrogate for
indoor pollutants emitted by humans and corre-
lates with human metabolic activity. The ASHRAE
Standard is at most 700 parts per million above
outdoor CO2 concentration.4

Air changes per hour is a measure of how many
times the air within a defined space (normally a
room or house) is replaced per hour. Its value
equals the air exchange rate of room divided by
room volume. The ASHRAE standard is at least 0.35
1/h (Sherman 2004).

Air flow per person is the room air exchange rate
divided by the number of people in the room. The
ASHRAE standard is at least 7.5 l/s/person (Sher-
man 2004).

Zone-Based
Collaborative Sensing

In real-world usage scenarios, multiple users are
likely to stay in the same room, for example, in
meeting rooms or the library. Such user groups
tend to be concentrated in small areas, leading to
similar CO2 concentration and IAQ within each
group. Through collaborative sensing, we aim to
reduce the number of sensing devices that must
run concurrently (thus saving energy), and also

enable IAQ data sharing with people who do not
carry sensing devices (thus increasing system cov-
erage and utility).

Many low-cost sensors used in mobile sensing
devices are susceptible to drift error. Calibrating
with an accurate stationary sensor can reduce this
error. However, in real-world applications, the sta-
tionary sensors are usually scarce. Therefore,
opportunities for accurate calibration are rare. The
collaborative calibration technique (Xiang et al.
2012) supports calibration among inaccurate
mobile sensing devices. It can significantly
increase the calibration opportunities and thus
improve the sensor accuracy. To implement this
technique, sensors must be able to detect when
they are within calibration range of each other.

We propose using a zone-based proximity detec-
tion and information sharing mechanism. Con-
centration gradients are driven by transport
through molecular diffusion and convection. Both
transport processes have random and nonrandom
components. Whatever the process, the spatial gra-
dients dictate that two nearby points will have
more similar concentrations than two distant
points. In MAQS, we define an area with high den-
sity of people as a zone. All people within the same
zone can share one M-pod for IAQ monitoring.
When a new user without an M-pod joins this
zone, the user’s smartphone initiates a scan to
determine if there is already an M-pod in the zone.
If so, a communication link between the phone
and the M-pod is established and the IAQ values
reported by the M-pod are used to estimate the IAQ
of this user. If a new user joins the zone with her M-
pod, after the collaborative calibration, only one M-
pod in the zone will perform the sensing and the
rest of the M-pods can be turned off to save energy.

Zone-based sharing would incur some error,
which is defined as the difference between the CO2
concentration reported by the shared M-pod near-
by and the true CO2 concentration at the user’s
location. According to the diffusion equation, this
error is correlated with the separation distance.
Therefore, this error determines the effective range
of each zone.

We conducted more than 50 experiments to
determine the relationship between distance and
CO2 error in public rooms, including classrooms
and a library. In each experiment, two M-pods are
placed 1–10 meters apart for more than 20 min-
utes. The CO2 readings from both M-pods are
monitored and the corresponding air exchange
rates are calculated. Figure 9 shows the sensing
error rate for CO2 concentration at different sepa-
ration distances. Ranges less than 2 meters enable
better and more consistent results. Two meters is
therefore used as the range threshold of zones in
the MAQS system.

Given the zone range threshold (2 meters), each
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smartphone still needs to determine how far away
a specific M-pod is. In MAQS, we use the received
signal strength indication (RSSI) from the Blue-
tooth radio to estimate distance. The signal power
of Bluetooth communication can be modeled as
d−2 (Kraus 1988), where d is the distance between
transmitter (M-pod) and receiver (smartphone).
Figure 10 shows the average and standard devia-
tion of RSSI measurements obtained at different
distances in real-world experiments. The illustrat-
ed noise can result in large errors even for 2-meter
zones. Since this noise can be reasonably well mod-

eled as additive white Gaussian noise, in MAQS,
multiple readings are used to detect outliers and
average values are used to improve distance esti-
mates. Figure 11 shows that the accuracy of prox-
imity detection can be significantly improved
when 10 readings are averaged.

Figure 12 illustrates the concept of zone-based
information sharing. Numbers along the lines
indicate the RSSI between phone and M-pod. In
this scenario, phones A and B belong to the zone
occupied by M-pod S1, because they are within the
required range of S1. Since the RSSI between phone

Articles

SUMMER 2013   21

0

20

40

60

0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
O

2 
se

ns
in

g 
er

ro
r 

(%
)

distance (meter)

Figure 9. Sensing Error of CO2 Concentration at Different Distances.

0.5 1 1.5 2 2.5 3 3.5 4 4.5

distance (meter)

-80

-75

-70

-65

-60

-55

-50

-45

-40

RS
SI

 (
db

m
)

Figure 10. RSSI Measurements (Average and Standard Deviation) at Different Distances.



C and M-pod S1 is lower than the threshold, they
belong to different zones. Note that if two M-Pods
are in the same zone but do not have similar pol-
lutant concentration readings, then we will not
shut one down as we will need the paired meas-
urements to assess sensor performance and remedy
the discrepancy. Further data quality assessment
and improvement will be conducted on our server
based on those redundant data. If one M-pod con-

sistently reports values that are significantly differ-
ent from the majority of the other M-pods in the
zone, it will be tagged as an outlier, reported to the
owner, and will stop sharing its data. If data shar-
ing from an M-pod is occluded in some way, all
phones connected to that M-pod will disconnect
and the running service will automatically notify
the corresponding users and start looking for a new
zone to join.
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Evaluations
In this section, we describe the system deployment
and user study used to evaluate the effectiveness
and efficiency of the proposed system. We also
make observations based on the data gathered dur-
ing the user study.

System Deployment and User Study
The deployed MAQS system includes M-pods,
smartphones, as well as the data and web servers.
We have conducted a two-phase user study with 17
participants, including faculty and graduate stu-
dents, who share some workplaces and classrooms.
The first phase was designed to evaluate our room
localization method. In this phase, users were
asked to carry their phones for 12 weeks. Our
MAQS phone application continuously collected
Wi-Fi signals and requested manual labeling when
users entered rooms. Weekly meetings with the
users were held to verify the accuracy of the
motion traces. In the second phase, users carried
both smartphones and the M-pod for 3 weeks. The
MAQS system collects both room information and
IAQ data for all users. This phase of user study
allows us to evaluate the entire system. We collect-
ed localization data for 171 rooms, and IAQ data
for 56 rooms.

Evaluation of Room 
Localization Technique
We compare our n-gram augmented Bayesian
room localization model with four state-of-the-art
algorithms: (1) Bayesian room localization (Hae-
berlen et al. 2004; Park et al. 2010), (2) Delta signal
Bayesian room localization, which is similar to
Bayesian room localization but uses the difference
in signal strength (instead of RSS values directly)
between each pair of APs to calculate probability,
(3) vector-based room localization (Bahl and Pad-
manabhan 2000), which uses AP RSS vector as the
room signature and Euclidean distance to locate
the nearest room, and (4) Delta signal vector-based
room localization, which is similar to vector-based
room localization but uses the difference in signal
strength between each pair of APs to build the vec-
tors. As shown in figure 13a, our n-gram augment-
ed Bayesian model achieves the best accuracy,
especially when the number of fingerprints per
room is above 50.

By incorporating the temporal user mobility
information, our temporal n-gram augmented
Bayesian model can achieve better accuracy even
when the number of fingerprints per room is lim-
ited. As shown in figure 13b, our temporal n-gram
model further improves the room localization
accuracy over our n-gram model, especially when
the number of fingerprints per room is less than
50. The Delta Bayesian room localization model,
which performed second best in figure 13a, can

also benefit from the use of temporal user mobili-
ty information, but it is still not comparable to our
temporal n-gram model.

Evaluation of Air-Exchange-
Rate-Based IAQ Sensing
To estimate IAQ without using sensors for each
specific air pollutant, we propose to calculate the
air exchange rate from a time series of CO2 con-
centration readings and use this air exchange rate
to estimate IAQ. Here, we evaluate the accuracy of
the air exchange rate model. We used the Alnor
EBT721 Air Balancing Balometer Flow Capture
Hood6 to measure the air-flow rate directly from
vents as the ground truth. During each experi-
ment, we change the forced ventilation rate and
the number of people in the room to evaluate the
accuracy and responsiveness of our CO2-based air
exchange rate model.

Figure 14 shows the results of one experiment.
We started at 11:15 A.M. with a relatively high
forced ventilation rate and lowered the ventilation
rate at 11:30 A.M. We observed that the air
exchange rate calculated by our model followed
the actual rate drop quickly and stayed within the
same range. Starting at 12:15 P.M., we kept the ven-
tilation rate low and changed the number of peo-
ple in the room every 5 minutes. Again, we can see
that the air exchange rate calculated by the model
well approximates the measured value. It is slight-
ly higher than the measured value, since the door
was opened and closed when we changed the
number of people in the room, leading to addi-
tional air exchange that is not captured by the vent
hood. We conducted multiple experiments in
rooms with different sizes and vents, and obtained
similar results. Figure 15 shows the accuracy of the
air exchange rate sensed by our system, where the
x-axis shows the time points when Alnor EBT721
was used to collect the ground truth for air
exchange rate. The figure demonstrates that our
system can measure the air exchange rate with an
average accuracy of 90 percent even under a
dynamic environment, for example, changes in
ventilation and the number of occupants.

Evaluation of Zone-Based 
Collaborative Sensing
Zone-based collaborative sensing helps to reduce
the number of M-pods needed, saves energy, and
allow users to share IAQ data. Since the energy
consumption of scanning Bluetooth RSSI for a
short period of time (less than 30 seconds) is neg-
ligible compared with that of continuous IAQ sens-
ing, a zone with k devices can generally achieve k
times better energy efficiency since only one
device needs to be running. Here, we evaluate the
accuracy of our zone-based proximity detection
technique, that is, whether we can identify the cor-
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rect zone based on the Bluetooth RSSI readings.
Given three M-pods and a mobile phone, we
selected 10 seat maps that represent real-world
user-sitting scenarios. For each seat map, we con-
ducted 10 experiments at different times to capture
potential temporal variations. For each experi-
ment, the mobile phone used 10 RSSI readings
from each M-pod to determine which zone (that
is, M-pod) it belonged to. The average zone detec-
tion accuracy for each seat map is shown in table
4. We can see that our RSSI-based zone detection
method achieved high accuracy for most seat maps
with an average of 89 percent.

IAQ Data Analysis
We analyzed the IAQ distributions for the data
gathered during our user study. Specifically, we
would like to answer quantitatively what IAQ dis-
tributions the study participants experienced. Fig-
ure 16 shows the IAQ distributions for all users.
The dashed lines indicate the standard limits, dark
solid lines represent good IAQ, and light solid lines
represent bad IAQ. According to the figure, (1) 67
percent of the time, indoor CO2 concentration is
higher than the reasonable limit of 1000 parts per
million; (2) 30 percent of the time, air changes per
hour do not meet the minimum requirement of
0.35 1/h; and (3) 58 percent of the time, flow rate
per person does not meet the minimum standard
of 7 l/s/person. We conclude that our study partic-
ipants frequently spent time in environments with
poor air quality.

Figure 17 shows the distributions of CO2 con-
centration, air changes per hour, and air flow per
person for different users. The users are ordered by
their average CO2 concentrations. We can observe

that users are subject to different IAQ at different
times, and almost all users are subject to poor IAQ
a high percentage of the time (high CO2, low air
changes per hour, or low air flow per person).

Figure 18 shows the distributions of CO2 con-
centration, air changes per hour, and air flow per
person in different rooms. The rooms are ordered
by their average CO2 concentrations. We can see
that rooms have dynamic and diverse IAQ profiles.
The IAQ diversity in same room is caused by vari-
ation in the number and activities of occupants as
well as the ventilation settings. Although the exact
fraction is different, many rooms have poor IAQ
some of the time.

Related Work
We survey research most relevant to our work on
user-centered IAQ monitoring on mobile devices.

IAQ Monitoring
Previous studies (Godwin and Batterman 2007)
have focused on monitoring or identifying air pol-
lutants in different types of rooms, such as class-
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Seat Map 1 2 3 4 5 

Accuracy (percent) 97 100 100 78 100 

Seat Map 6 7 8 9 10 

Accuracy (percent) 100 88 100 42 85 

Table 4. Zone Detection Accuracy



rooms, offices, and residential rooms. Other stud-
ies have focused on estimating indoor air pollu-
tants in certain areas (for example, city or coun-
tryside) using statistical methods. Kim and Paulos
(2010)proposed a mobile system for sharing IAQ
measurements and visualizations within one’s
social network. However, the shared information
is room based and not user specific.

Indoor Localization
This has been a topic of active research projects,
some focusing on indoor intraroom positioning
and others (such as ours) focusing on interroom
positioning. A number of proprietary systems have

been developed, using radio frequency, ultrasound,
ZigBee, and so on (Want et al. 1992; Krumm, Cer-
mak, and Horvitz 2003; Sugano 2006). They have
good accuracy but require substantial investment
in infrastructure and special hardware worn by all
users. Other techniques leverage existing wireless
infrastructure (Bahl and Padmanabhan 2000), and
constructing Wi-Fi fingerprints from Wi-Fi signals
to match new/unknown Wi-Fi fingerprints and ref-
erence fingerprints at known positions based on
proximity or similarity. Constructing the finger-
print database can be labor intensive (Chai and
Yang 2007). Therefore, user collaboration based
techniques have been proposed (Park et al. 2010).

Articles

26 AI MAGAZINE

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000

cd
f

 (a) CO2 concentration (ppm)

standard (<1000 ppm)

A

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

cd
f

(b) air changes per hour (1/h)

standard (>0.35 1/h)

B

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

cd
f

(c) air flow per person (l/s/person)

standard (>7 l/s/p)

C

Figure 16.  IAQ Data Distribution for All Users.

(a) CO2 concentration; (b) air changes per hour; and (c) flow rate per person.



However, none of these methods address the chal-
lenges associated with environment heterogeneity,
device-induced noise, and the requirement for
numerous user inputs. Zheng et al. (2008a; 2008b)
proposed transferring localization models over
time and across multiple devices in order to elimi-
nate environment and device noise in continuous
location tracking.

Proximity Detection
Previous peer-based indoor positioning systems
attempt to infer either the proximity of a pair of
devices, or the actual distances between multiple
pairs of devices in order to place them on a virtual
map. Most of the techniques use anchors with
available position information as references. Oth-
er nodes refer to the anchors to determine their

Articles

SUMMER 2013   27

0 2 4 6 8 10 12 14 16

0 2 4 6 8 10 12 14 16

0 2 4 6 8 10 12 14 16 18

0

0.2

0.4

0.6

0.8

1
fr

ac
tio

n

0

500

1000

1500

2000

2500

3000

3500

 C
O

2 
co

nc
. (

p
p

m
)

0

0.2

0.4

0.6

0.8

1

1

fr
ac

tio
n

0

5

10

15

20

25

ai
r 

ch
an

ge
s 

/ 
ho

ur

0

0.2

0.4

0.6

0.8

fr
ac

tio
n

0

10

20

30

40

50

60
ai

r 
flo

w
 /

 p
er

so
n

A

B

C

room order by co2

room order by co2

room order by co2

Figure 17. User-Specific Distributions of CO2 Concentration, Air Changes per Hour, and Air Flow per Person.



own positions. Examples include PeopleTones (Li
et al. 2008), NearMe (Krumm and Hinckley 2004),
and Virtual Compass (Banerjee et al. 2010). In our
system, precise absolute position is not required;
relative proximity information is sufficient. It is
conceptually similar to the reality mining system
proposed by Nathan Eagle and Alex (Sandy) Pent-
land (2006). However, mobile devices within a

room are distributed more densely and the amount
of noise is greater.

Conclusions
This article has described MAQS, a mobile system
for personalized IAQ monitoring. To achieve high
accuracy and energy efficiency under diverse sens-
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ing scenarios, we developed a number of novel
techniques: (1) a temporal n-gram augmented
Bayesian room localization method that achieves
high accuracy with a small number of Wi-Fi fin-
gerprints; (2) an air-exchange-rate-based IAQ sens-
ing method that measures general IAQ using only
CO2 sensors; and (3) a zone-based proximity detec-
tion method for collaborative sensing, which saves
energy and enables data sharing among multiple
users. MAQS has been deployed and evaluated
through user study. Detailed evaluation results
demonstrate the feasibility, effectiveness, and effi-
ciency of MAQS for personalized IAQ monitoring.
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Notes
1. MAQS stands for Mobile Air Quality Sensing.

2. Note that the M-pod integrates multiple air-pollutant
sensors and is capable of measuring CO2, CO, VOCs,
ozone, and NO2. However, it is a flexible monitoring plat-
form and allows users to enable only a subset of the sen-
sors.

3. Arduino BT is available at www.arduino.cc/en/Main/
ArduinoBoardBluetooth.

4. www.cdc.gov/niosh/topics/indoorenv/BuildingVenti-
lation.html.

5. See Trends in Atmospheric Carbon Dioxide
(www.esrl.noaa.gov/gmd/ccgg/trends/global.html

6. www.aikencolon.com/Alnor-EBT721-EBT-721-Air-Bal-
ancing-Balometer-Flow-Capture-Hood_p_2549.html.
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