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Patterns of life (POL) are emergent properties of complex
human social systems such as neighborhoods or even
cities (Schatz et al. 2012). In such systems, observable

regularities manifest from the interactions of individuals’
behaviors and social norms. Simultaneously, these patterns
of life impose structure on individual decisions. For example,
a pattern of rush hour traffic arises from drivers’ decisions to
commute at a certain time. Knowledge of rush hour influ-
ences individuals’ departure times. 

Modeling POL is not only an academic pursuit. Before the
promulgation of germ theory, medical experts were able to
explain a deadly cholera outbreak that decimated one Lon-
don neighborhood when they reconstructed local patterns of
life and related affected individuals to a particular public
water pump (Snow 1855). In 2011, sociocultural experts were
able to locate Osama bin Laden by recognizing ways his
household deviated from the typical pattern of life in the sur-
roundings, behaving much more secretively than his subur-
ban neighbors (Preston 2012).

Building on such social and cultural expertise, computa-
tional modeling of POL offers potential to continue extend-
ing POL’s practical application and theoretical study. In
industry, POL models might support decisions about mar-
keting, logistics, network security, or building design. Mili-
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behaviors at the level of each individ-
ual. We describe how computational
POL modeling integrates diverse artifi-
cial intelligence research areas and pro-
vides interesting challenges in multiple
fields. 



Articles

SPRING 2014   11

tary and law-enforcement models could support
observational and small-unit interaction training,
intrusion detection, emergency planning, or com-
munity relations. Computational POL models will
also benefit academic researchers by giving them new
tools to generate and validate theories about complex
sociocultural patterns. 

Finally, POL presents an interesting computation-
al modeling challenge for research in many AI fields
because of its complex, multilevel interaction. POL
modeling differs from standard agent-based model-
ing in that not only individual behaviors, but also
their collective emergent patterns, are targets of
study. At the same time, the behavior of any single
individual is potentially important.

As a specific example, the virtual observation plat-
form (VOP) is an immersive simulation designed to
train military personnel to interpret indicators before
a critical incident, such as a terrorist attack, occurs
(Schatz et al. 2012). Pre-event indicators are often
ambiguous variations in a typical pattern: a car
parked in an odd spot, a sparse crowd in a normally
busy public square. Trainees practice identifying and
reporting regularities of individual behavior, small
group interactions, and population gestalt as they
watch a simulation play out in real time. They should
see subtle variations in interactions between simulat-
ed characters and interpret the meaning underlying
any differences. To support these needs, the system
requires a POL model.

Challenge: Scalable Models 
of Patterns of Life

Creating computational models of POL, however, is
a significant scientific and technical challenge. To
meet it, researchers must achieve simultaneous scal-
ability along three key dimensions: population size,
individual fidelity, and automatic behavior specifica-
tion. In the following text, we outline the POL scala-
bility challenges and argue that AI offers methods
and tools that have been used successfully in solving
problems with features similar to POL modeling.

Population Size
Generating the behavior of many individuals in real
time (or faster) remains a technical hurdle for POL.
Even small villages contain hundreds of residents;
cities have millions. In the VOP example, trainees
might need to see hundreds of simulated characters
populating a public marketplace in order to under-
stand the normal range of behaviors and interactions
in such an environment. At the same time, many
more characters need to populate every surrounding
business and city street that the trainees can observe.
The large population is vital to providing the
required fidelity in background activities and creat-
ing an appropriate context for identifying anomalies.

In the current state of the art, researchers contem-

plate scaling to millions of entities through paral-
lelism (Aaby, Perumalla, and Seal 2010). However,
narrow individual intelligences are required to mod-
el large populations today. For example, fluid dynam-
ics efficiently models entity movement in large
crowds (Hughes 2002) but is limited to modeling
only physical movements and not the meetings,
arguments, and interchanges that take place between
friends and strangers.

Individual Fidelity
Scalable POL requires greater breadth in intelligence
of individuals, including richness of inputs, behavior
choices, and decision complexity in order to produce
realistic behavior for individual entities. For example,
the displayed behaviors that underlie patterns may
need to be highly robust so that they can be carried
out despite the interference of human users in the
simulation. In cases where humans do not directly
influence a simulation, intelligence is still required in
order to respond to the many other agents that pop-
ulate the environment.

Unfortunately, efficient approaches like fluid
dynamics models do not model individual intents
and actions, and therefore do not provide the fine-
grained interactions necessary for many POL appli-
cations. Abstract models that completely subsume
individual decisions in order to display group behav-
iors lack believability under fine observation of indi-
viduals, and if no goal or reason drives an agent, it is
impossible to discern a correct meaning of its behav-
iors. Conversely, executing a fine-grained model of
every individual, at all times, is likely to create unac-
ceptable authoring and run-time computation
requirements.

As a consequence, a heterogeneous environment
of intelligent entities is necessary in POL systems.
This introduces additional run-time challenges: for
example, blending relatively few highly intelligent
agents with less intelligent entities so that distinc-
tions between them are not obvious and dynamical-
ly switching individuals between simple and robust
controllers, letting the entire population present
large-scale patterns and modeling select entities with
increased fidelity only when needed to ensure that
vital interactions appear. We are taking this approach
in investigating efficient POL representations that
support planning and reacting for a small city of enti-
ties (Jones et al., 2014).

Behavior Specification
POL model synthesis includes authoring, generaliza-
tion to diverse settings, and run-time adaptation. The
complex interaction of components in generating a
pattern of life creates tension between human speci-
fication (which is costly in time and labor), automat-
ed model creation from real-world data (which may
be too tied to specific populations and biased by
availability of limited data sources), and synthetic
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models (which may produce unrealistic POL).
Researchers must determine which aspects can be
automatically generated and how to ease human
control over details that cannot be automated. 

Authoring POL content can draw from real-world
data such as video sources, authoritative input from
residents or anthropologists, or cultural artifacts like
media. Current research in these fields will support
improvements to POL, but important issues for com-
putational modeling remain. Content generalization
raises questions of identifying cultural universals,
defining cultural differences, and creating relevant
model overlays that efficiently capture the differ-
ences. Run-time adaptation of the patterns being dis-
played requires model representations that can influ-
ence many individual behaviors with fewer, more
abstract directives. Without this abstraction capabil-
ity, the patterns produced will be unacceptably

dependent on individual decisions, making it diffi-
cult to identify core causal patterns.

Artificial Intelligence Solutions
Current population simulations often have limited
application or research impact due to a lack of scala-
bility along at least one of the scalability dimensions
(figure 1). A city-sized traffic model for the VOP could
be synthesized automatically from observed traffic
patterns but would disallow a spontaneous street cel-
ebration due to the limited knowledge of individual
entities. A high-fidelity model of the interpersonal
interactions that occur with a few village elders dur-
ing a military patrol in the VOP would not generalize
to a town-sized population due to knowledge engi-
neering costs. Modeling patterns of life that scale
along all three dimensions requires new approaches

Figure 1. Current Models of Patterns of Life Do Not Scale in All Three Model Dimensions.
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and algorithms, built on artificial intelligence foun-
dations. We outline three AI research areas on which
future solutions could build.

Pattern Recognition
Instantiating an accurate, specific POL model
depends on close observation of actual patterns of
life. Encoding these observations through knowledge
engineering methods is not practical for scalable
POL. Automated methods are needed to identify and
extract human behavior patterns in order to make
the POL specification scalable, especially in the size
dimension. AI offers many examples of transforming
captured human behavior into useful patterns. Data
mining in conjunction with social network analysis
can reveal criminal networks from text documents
(Al-Zaidy et al. 2012). In computer vision, researchers
can classify social interactions or crowd movements
(Mehran, Oyama, and Shah 2009). 

New challenges in the fields of data mining and
pattern recognition for POL will be to extract and
interpret the more subtle variations of everyday life,
to recognize gestalt patterns in addition to individual
actions or events, and to incorporate commonsense
reasoning and narrative understanding into diverse
settings. 

In order for pattern-recognition approaches to
identify and then simulate POL regularities and
anomalies, researchers need to learn which features
to consider despite all the breadth and subtleties of
human interaction. Identifying these features and
data sources to support them is a nontrivial task. We
suggest it may be fruitful initially to study POL in
constrained human domains that are limited in the
number of possible observable behaviors and latent
goals. Examples of problems with existing data sets
might include movement patterns of ships, trucks,
airplanes, or people within a specific geographic area
or network. Studies targeting such domains could
develop new metrics and processes for recognizing
high-value inputs, outputs, and patterns for POL in
general. This work will support POL if it can give
insights into modeling new domains that encompass
more numerous and varied observations and hidden
processes, such as life in the VOP.

Representational Abstraction
A “missing link” in modeling POL is the lack of gen-
eral, stable representations of population behavior.
However, finding and exploiting computationally
precise, useful representations at different levels of
abstractions is a hallmark of AI, from the study of the
processes of mind and structure of games in AI’s
infancy to recent advances in market abstractions
and agency. 

POL researchers have defined representations,
such as social networks and crowd models, which
reflect AI’s representational heritage. These results,
while important, are comparable to Simon’s (1996)

individual watch parts. Progressing directly from
these scattered elements to a useful and scalable POL
has proven difficult.

We recommend a shift to identifying higher-level
abstractions (subsystem representations and rules to
compose them) that encapsulate individual patterns
and influences, control their interactions, and thus
enable their assembly into the working watch of a scal-
able POL simulation. Hierarchical representations of
crowds, groups, and individuals (for example, Musse
and Thalmann 2001) suggest a path toward this goal,
but significant extension will be required to include
the many factors that influence patterns of life. 

Behavior Generation
Computational models of human behavior (for
example, Anderson and Lebiere [1998], Laird [2012])
and intelligent agents (for example, Wooldridge
[2000]) have also been major thrusts in AI. Genera-
tive behavior models are needed in order to reify and
explore new findings about POL. Researchers who
develop generative POL models will contribute to val-
idation and verification of work in the new field and
provide important utility to applied users.

In this area, crowd-integrated cognitive models
(Pelechano et al. 2005) and agent-based systems that
can plan ahead, reason, and react (Laird 2012) are rel-
evant to generating complex behaviors that can both
support and potentially control emergent patterns.
Prior work in heterogeneous computational model-
ing of individuals (Lebiere et al. 2002, Wray et al.
2005) may offer initial points of exploration for het-
erogeneous behavior generation for POL.

In conclusion, contributions from many fields of
AI will be welcomed to meet key challenges and real-
ize new opportunities by creating scalable models for
patterns of life.
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AIIDE-14 Is Moving to Raleigh,
North Carolina!

The Tenth AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment

North Carolina State University
Raleigh, North Carolina

October 3–7, 2014

AIIDE-14 is the definitive point of interaction between entertainment
software developers interested in AI and academic and industrial AI
researchers. The conference is targeted at both the research and com-
mercial communities, promoting AI research and practice in the
context of interactive digital entertainment systems with an empha-
sis on commercial computer and video games. AIIDE-14 will include
invited speakers, research and practitioner presentations, playable
experiences, project demonstrations, interactive poster sessions, and
a doctoral consortium. The program also includes a workshop pro-
gram, which will be held on the first two days of the conference, Octo-
ber 3–4. 

www.aiide.org


