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Mobile applications that automatically adapt to their
surrounding circumstances will lead to an enhanced
user experience. Emerging mobile applications

exploit a user’s location to deliver personalized services. In
current practice, the user’s location is captured at the level of
position, that is, geospatial (latitude-longitude) coordinates.
However, what often matters for experience is the user’s place
— a location in conceptual terms, such as home, work, gym,
or grocery shopping, that combines positions with the user’s
activities, properties of the user’s environment, and the activ-
ities of people surrounding or interacting with the user.

The Platys project seeks to realize the above notion of place
and enable the construction of a rich variety of applications
that take advantage of place to render relevant content and
functionality and, thus, improve user experience. Examples
include proactively (1) changing phone settings (for exam-
ple, turn ringer off during a meeting and turn it back on at
the end of the meeting); (2) downloading relevant informa-
tion (for example, the map of an amusement park, museum,
or any place the user visits); (3) annotating images or other
media; (4) filtering content such as alerts, notifications, and
customized ads; (5) changing the ambiance (for example,
playing music); (6) showing (place-dependent) reminders
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� The Platys project focuses on devel-
oping a high-level, semantic notion of
location called place. A place, unlike a
geospatial position, derives its meaning
from a user’s actions and interactions in
addition to the physical location where
it occurs. Our aim is to enable the con-
struction of a large variety of applica-
tions that take advantage of place to
render relevant content and functional-
ity and, thus, improve user experience.
We consider elements of context that
are particularly related to mobile com-
puting. The main problems we have
addressed to realize our place-oriented
mobile computing vision are represent-
ing places, recognizing places, and engi-
neering place-aware applications. We
describe the approaches we have devel-
oped for addressing these problems and
related subproblems. A key element of
our work is the use of collaborative
information sharing where users’
devices share and integrate knowledge
about places. Our place ontology facili-
tates such collaboration. Declarative
privacy policies allow users to specify
contextual features under which they
prefer to share or not share their infor-
mation.
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from to-do lists; and (7) pushing recommendations
to the user when the situation seems appropriate.

In this article, we report on our efforts pertaining
to the Platys project. A semantic model of user-cen-
tered places, the Platys ontology enables the map-
ping of positions to places. In the model, places and
activities can be represented at different levels of
granularity using subsumption hierarchies. We want
to determine a user’s place at any given time. Place
recognition has been addressed with standard
machine-learning classifiers as well as a semisuper-
vised expectation-maximization algorithm. The
recognition is based on data captured from a user’s
smartphone: location, sensor readings, Wi-Fi, Blue-
tooth scannings, and phone settings. Location is an
essential part of place and therefore place recognition
relies on location sensing. Since frequent location
sensing by a mobile device depletes power, we have
also investigated energy-efficient techniques for
maintaining a sufficiently accurate location model.

We study not only private places specific to each
user, but also public places that are shared by a com-
munity or an affinity group. A key element of our
work is the use of collaborative information sharing
where users’ devices share and integrate knowledge
about places. By providing a common semantic mod-
el, the Platys ontology facilitates such collaboration.
Declarative privacy policies using the ontology allow
users to specify contextual features under which they
prefer to share or not share their information. Co-
occurrences of users at particular places are used to
learn the social circles of users.

Place-aware proactive mobile applications will be
capable of proactively performing actions or making
recommendations according to the user’s current
place. Available frameworks (for example, Locale for
Android1 and Nokia Situations2) allow development
of the former. A situation and the action to be taken
in it must be specified with fixed rule patterns such
as: WHEN [in meeting] SET [ringtone=off]. Situations
must be clearly defined through specific values of
phone status attributes such as date, time, location,
and battery level. A place such as “work” or “in meet-
ing” could be specified as a situation by using a com-
bination of date, time, and location.

This approach is clearly limited and rigid. Our
approach recognizes place at different levels of gran-
ularity and capturing nuances in how a user per-
ceives them. The user need not specify fixed attribute
values that define the in meeting place. Consequent-
ly, if there are changes in those values (for example,
a change of the normal meeting room), our approach
may still be able to recognize the place.

While decades of research in context-awareness
has addressed similar issues and made progress solv-
ing particular problems (see sidebar), nontrivial con-
text-aware applications are still unavailable to every-
day users as are frameworks that facilitate their
creation. This is especially true for frameworks sup-

porting a general, complex, and all encompassing
notion of context.

The remainder of this article is organized as fol-
lows. In the next section we provide a formal defini-
tion of a user-centered place and consider elements of
context particularly relevant to mobile computing.
We then discuss the different approaches we have
used to address the problems identified in realizing
our place-oriented vision. Our techniques are user-
centered and attempt to recognize places in a priva-
cy-preserving manner. In other papers (Murukanna-
iah and Singh 2015; Zavala et al. 2011) we discuss
architectures on which place-aware applications can
be engineered. Currently, prototypes and experi-
ments have been run in several university campus
scenarios.

Context-Aware Computing
Research in context-aware computing (Schilit, Adams,
and Want 1994) aims to enable computing systems that
acquire and maintain context data and use it to adapt
their behavior. It originated with Weiser’s vision of
ubiquitous computing (Weiser 1999) where human
activities are enhanced with devices that are all around
but unnoticeable to the user and that provide services
that adapt to the circumstances in which they are used.
Papers by Want and colleagues and Schilit and col-
leagues (Want et al. 1992; Schilit, Adams, and Want
1994; Schilit et al. 1993) are early works in context-
aware computing and dealt with tracking a user’s loca-
tion and using it to provide better services or sharing it
with others. Research in the field has addressed a range
of problems, including the formal definition and cate-
gorizations for context, context representation, context
recognition (user location, user activity, user mood, and
so on), and context sharing. Several software frame-
works have been proposed to facilitate the development
of context-aware applications (Korpipaa et al. 2003; Gu,
Pung, and Zhang 2004; Fahy and Clarke 2004; Salber,
Dey, and Abowd 1999; Román et al. 2002; Dey, Abowd,
and Salber 2001; Chen, Finin, and Joshi 2005). At a
minimum, they all comprise context-recognition serv-
ices (usually distributed) and a context manager (usual-
ly centralized) that allows client applications to query
and register for context information. Some also include
formal context modeling to share contextual informa-
tion among heterogeneous entities, security and priva-
cy, inference mechanisms, and agent capabilities. Chen
and Kotz (2000) and  Baldauf, Dustdar, and Rosenberg
(2007) provide surveys of developments and applica-
tions in the field.



Semantic Place Model
We define a (user-centered) place as a conceptually
well-delineated set of positions associated with a user
and alternatively combined with contextual infor-
mation such as user activities, environmental prop-
erties, and nearby people and their ongoing activi-
ties. Using this user-centered, contextual notion of
place it is possible to (1) capture nuances in how a
user perceives places; (2) have a place that includes
disjoint spatial regions (the set of positions that
delineate a place need not be contiguous). For exam-
ple, each workplace of a user has its own spatial
region, but a user (for a specific purpose) may con-
ceptualize all workplaces as a single place; (3) map a
spatial region to more than one place, each associat-
ed with a different user. For example, a coffee place
can be café for some users, but workplace for others;
and (4) map a spatial region to more than one place
for the same user, varying contextual information.
For example, a shopping mall can be mall as well as

workplace for a user who works at the mall. The con-
textual information would be used to know when
the user is at one or the other.

Place Ontology
We developed a light-weight, upper-level ontology
to model the concept of place in terms of activities
that occur at that place. We adopt description logics
(Baader et al. 2003), specifically the web ontology
language OWL (Bechhofer et al. 2007), and associat-
ed inference mechanisms to represent the model.
OWL supports the specification and use of ontolo-
gies that consist of terms representing individuals,
classes of individuals, properties, and axioms that
assert constraints over them.

Figure 1 shows the ontology’s core classes and
their relationships. A User is associated with a Device
whose Position maps to a geographic place (Geo-
Place) such as “UMBC” and to a conceptual place
(Place) such as “at work.” Some Geoplaces are part of
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Figure 1. The Place Ontology Models the Concept of Place in Terms of Activities That Occur There.
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others through spatial containment defined by the
transitive (part_of) relationship. The mapping from
Positions to GeoPlaces is many to one and the map-
ping from Positions to Places is many to many, that
is, the same Position may map to multiple Places,
even for the same User; and, many Positions map to
the same Place. Mapping from Positions to Places is
done through GeoPlaces (maps_to is a transitive
property). An Activity involves Users under certain
Roles, and occurs at a given Place and Time. Activities
have a compositional nature, that is, fine-grained
activities make up more general ones. Ambiance
encapsulates concepts describing the environment of
the User (for example, noise level, ambiance light,
and temperature).

The representation of activities is crucial to map-
ping positions to places. This approach reflects our
pragmatic philosophy that the significance or mean-
ing of a place for a given user depends largely on the
activities that occur there, specially the patterns of
lower-level activities. The idea applies at both the
individual and collaborative level. For a user individ-
ually, the patterns of actions can help identify a place
from that user’s perspective. The patterns of actions
common to users can help identify a place in a col-
laborative manner. For example, a park or a library
would see similar patterns from multiple users.

The Knowledge Base
The knowledge base (KB) on each device aligns with
the Place ontology. Using this ontology, devices can
share information about their context. Given the
position of the device (that is, geospatial coordi-
nates) and the user’s activity (if available), we assert
the corresponding facts in the KB. In this section we
focus on how we populate the KB with geoplace
information. Activity and place inference are cov-
ered in the next section.

We use the Android location API to obtain the
position of the device. Position on Android phones
is determined through location providers such as the
device’s GPS and the network (which is based on
availability of cell tower and Wi-Fi access points).
Given the Position of the user’s device, we assert the
corresponding triples into the KB (figure 2). Then, we
use additional online resources, specifically GeoN-
ames’ spatial KB (RDF version) and its associated
services, to infer the user’s GeoPlace in five steps: (1)
using reverse geocoding services to find the closest
GeoNames entity to the current position; (2) query-
ing GeoNames through SPARQL to get further infor-
mation about that entity; (3) applying transforma-
tion rules to the data obtained from GeoNames
(figure 2); (4) using OWL inference to obtain the
triples corresponding to the spatial containment of
entities (transitivity of the part_of relationship); and
(5) using ad hoc property chains (figure 3) to infer
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Figure 2. KB Assertions in Turtle and a Jena Rule Used to Integrate Knowledge from GeoNames. 

KB assertions (left); Jena Rule (right).

kb:droid1 place:observed_at kb:anon01f 
kb:anon01f rdf:type place:Position 
kb:anon01f geo:lat 39.253525 
kb:anon01f geo:long -76.710706 

[partof: 
(?a gn:parentFeature ?b) 
->  
(?a platys:place_part_of ?b)
(?b platys:spatially_contains ?a) 
] 



knowledge about a user’s geoplace based on the
places his or her associated device is observed.

Recognizing User-Centered Places
We wish to determine a user’s place at any given time
using data captured from her smartphone: location,
sensor readings, wifi, bluetooth scannings, and
phone settings. We have addressed the problem
using a semisupervised expectation maximization
algorithm as well as standard machine-learning clas-
sifiers. In the former, we determine place based on
unaligned historical sensor data and user labels. The
focus is on place as a set of positions and we are able
to recognize disjoint spatial regions as a single place.
In the latter, contextual information is also taken
into account. We recognize place and activity at dif-
ferent levels of granularity. Further, we are able to rec-
ognize the same spatial region as more than one
place.

Semisupervised Expectation 
Maximization (EM)
We developed (Hang, Murukannaiah, and Singh
2013) a semisupervised expectation-maximization
(EM) algorithm to recognize user-centered places.
Our approach recognizes subjective places; does not
require manual tuning of place radius and duration;
and employs infrequent sensor readings from multi-
ple sources. Each user is required to label places of his
or her interest (at least once for each place). Given a
user’s place labels and historical sensor data from
multiple sources, our algorithm operates as follows:

Build a data set consisting of a data instance for each
sensor reading and user label. Further, consider a train-
ing set as a subset of the above data set, consisting of
instances corresponding to place labels only.

Assign features to training instances. For each sensor
type, add three features — a sensor reading at the time
of labeling one immediately before and one immedi-
ately after.

Assign a place label to each unlabeled instance. For
each unlabeled instance, find the similarity of the
instance to each labeled instance and assign the label
corresponding to the most similar instance.

Remove incorrect labels by establishing a similarity
boundary for each place and iteratively shrinking it
(using EM) until instances assigned to each place are
sufficiently similar to each other.

We evaluated our approach in a study of six users.
Each carried an Android phone installed with a data-
collection program for at least three weeks. The pro-
gram recorded the sensor data (including GPS, Wi-Fi,
and Bluetooth) and prompted users to label places at
random intervals. We compared our approach with
two stay-point approaches (Hariharan and Toyama
2004; Zheng et al. 2012). Platys cannot be directly
compared with a stay-point approach since the latter
only recognizes whether a user is in some stay point
or not (not the specific stay point as there are no
labels). To enable a fair comparison, we implemented
two versions of Platys: (1) Place-or-not, which only
recognizes whether a user is in one of the labeled
places or not, and (2) Which-place, which recognizes
the specific place. Figure 4 shows the comparison.
Our main findings are as follows. First, Platys (Place-
or-not) performs better than both stay-point
approaches used for comparison. Importantly, the F-
measures for Platys, unlike those of stay-point
approaches, are straight lines since they do not
depend on place radius and duration. Second, stay-
point approach with optimal place parameter values
may perform better than Platys for some users. How-
ever, as shown, optimal place parameter values vary
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Figure 3. Property Chain Axioms Asserting Facts About a User’s Location.

(a) Device is observed at the place whose position it maps to. (b) User’s location is the place where his or her associated device is observed.
(c) Generalization of user location based on spatial containment (part of ).
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from user to user. Third, Place-or-not is an upper
bound on Which-place. However, in most cases, the
performance of Which-place is close to that of Place-
or-not. Thus, once Platys identifies a user to be in one
of the labeled places, in most cases it correctly iden-
tifies which place the user is in.

Supervised Classification
We used supervised machine-learning algorithms to
recognize activity (for example, “sleeping,” “walk-
ing,” “sitting,” “cooking”) and place (for example,
“at work,” “at home”) at different levels of granular-
ity (Zavala et al. 2011). The current experiments are
confined to a university domain and the users are
students and faculty. Furthermore, the experiments
are focused on learning to recognize an individual’s
context (activity and place). For high-level general
activities, we obtained a high accuracy but with more
fine-grained ones the accuracy drops. We expect this
to improve as we incorporate more complex models
that allow for collaborative context inference.

We evaluated our approach in a study of five users.
Each user carried an Android smartphone installed
with a data-collection program. The information col-
lected includes location, ambiance light and noise,
Wi-Fi scanning, Bluetooth scanning, current calendar
event (if any), sensor readings (accelerometer, mag-
netic field, orientation, and proximity), call statistics
(missed calls, answered calls, and duration), and
phone state (idle, in use, and others). At the begin-
ning of each collection, the user is asked to enter the
current place and activity. This information is used
as ground truth for the learning task. Multiple labels
can be selected to capture different levels of granu-

larity (for example, at work, in office, in meeting).
Hierarchy is not specified in the collection program
since we preprocess the data for each particular
learning task we try and we know the hierarchy.

We compared the performance of different
machine-learning algorithms in classifying the place
and activity of the user given the particular readings
from the phone after some preprocessing. We have
conducted several experiments varying the classifi-
cation task to different combinations of place and
activity at different levels of granularity. We present
here results for three algorithms: decision trees,
naive Bayes, and support vector machines (SVMs).
Table 1 shows the accuracy of the algorithms for a
midlevel detailed activity recognition task for a par-
ticular user and nine everyday activities using 10
crossfold validation and 66 percent split validation
testing options. Accuracy levels are comparable to
those reported  by Bao and Intille (2004), although
their focus was mainly recognition of a limited sub-
set of everyday activities consisting largely of ambu-
latory motions. Overall, recognition accuracy is
highest for decision tree classifiers, which is also con-
sistent with the paper by Bao and Intille (2004). This
might be due to the fact that rule-based activity
recognition appears to capture conjunctions in fea-
ture values. The naive Bayes approach assumptions
of conditional independence between features and
normal distribution of feature values may contribute
to the weaker performance of the approach. Further-
more, to achieve good accuracy even when the
assumptions are not met, the approach usually
requires large volumes of training data.

Higher accuracy is observed for higher-level gen-
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Figure 4. Comparing Platys with Two Stay-Point Approaches That Distinguish Place from Nonplace, but Do Not Identify a Place.
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eral activities (table 2). Our 99 percent accuracy for
“at home versus at work versus elsewhere” is higher
than the one reported by Eagle and Pentland (2006)
where they used a simple hidden Markov model con-
ditioned on both the hour of day as well as weekday
or weekend for the same classification task.

From Place to Social Circles
Often a place is associated with a social context. For
example, a user interacts with his or her family at
home, colleagues at a workplace, and friends at a party.
Platys Social (Murukannaiah and Singh 2012) exploits
this intuition to recognize social circles from places.

A social circle of a user (egocentric) is a set of con-
tacts the user perceives as a logical group. Recogniz-
ing social circles could enable social network sites to
deliver a high-quality user experience by reducing
information overload (for example, by prioritizing
updates from contacts), and enhancing privacy con-
trols (for example, by providing a fine-grained con-
trol on who to share information with).

Currently, social network sites require users to
manually create and maintain social circles (for
example, circles on Google+ and groups on Face-
book), which is tedious and time consuming
(Lampinen et al. 2011). Alternatively, community
detection algorithms are used to recognize social cir-
cles automatically. However, communities detected
from a network of acquaintanceships (for example,
“friendship” on Facebook and Google+) are coarser
than social circles. Further, community detection

presupposes that the global structure of the network
is known.

Platys Social learns social circles by exploiting
place information. It is implemented within the
Platys middleware (Murukannaiah and Singh 2015)
and employs information locally available on a user’s
mobile device. Platys Social operates as follows: (1)
Construct a contact co-occurrence graph, whose
nodes are the contacts of a user, and add an edge
between two nodes if the user meets the two contacts
at the same place. (2) Assign a weight to each edge
proportional to the frequency with which the user
meets corresponding contacts at the same place. (3)
Find overlapping communities in the contact co-
occurrence graph using Clique Percolation Method
(Palla et al. 2005). Treat each community that corre-
sponds to a social circle. Further, within each social
circle, edge weights can be used to distinguish strong
and weak contacts.

Evaluation
We evaluated Platys Social in a user study of six users.
The users in the study carried a smartphone installed
with Platys for the duration of the study. Each user
recorded the places he or she visited and social circles
(including strong and weak contacts) encountered on
a daily basis. We measured the accuracy of Platys
Social as the similarity between the social circles
reported by users and those learned by Platys Social:

We compared three variants of Platys Social depend-
ing on how edges are added to the contact co-occur-
rence graph. Stay points: add an edge between two
contacts if two contacts are found (through Blue-
tooth devices) at the same stay point (determined
from the Wi-Fi access point log). Interactions: add an
edge between two contacts if a user’s interaction
includes both contacts (determined from email, call,
and text logs). Place: add an edge in either of the
above cases, according to the intuition that a place
has both spatial and social attributes. As shown in fig-
ure 5, Platys Social performs best when places are
defined using both spatial and social attributes.

Privacy Reasoning and Enforcement
A key element of our work is the use of collaborative
information sharing where devices share and inte-
grate knowledge about their place. Consequently,
users must protect their privacy by controlling the
release of information and how it is shared.
Murukannaiah and Singh (2014, 2015) and Zavala et
al. (2011) discuss architectures on which place-aware
applications can be engineered. Devices might inter-
act directly or through services on the Internet. Users
specify privacy policies that regulate the disclosure of
(1) sensor information to the server (for example,

accuracy =
learned circlesI reported circles
learned circlesU reported circles
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Table 1. Accuracy of Different Algorithms for Activity 
Recognition of a Particular User and Ten Everyday Activities.

Classifier 10 Fold 66% Split 

SVM (LibSVM) 76.9231% 79.5699% 

Decision Tree (J48 Trees) 91.97% 93.3133% 

Naive Bayes 47.9638% 50.5376% 

Table 2. Recognition Accuracy for High-Level, 
General Activities Using Decision Trees.

Activities: Working/Studying, Sleeping, Walking, In Class, Outdoors, In
Meeting Talk-Listening, Other/Idle, Shopping.

Activity Accuracy 

At Home, At Work/ School, Elsewhere 99.0% 

In Meeting, In Class, Elsewhere 94.94% 



GPS information), (2) inferred context information
to the server (for example, activity information), and
(3) inferred context information to other users. Pri-
vacy policies are expressed as horn clause rules over
the knowledge base. 

Whenever a request is received, either at the serv-
er or at a device, the privacy-control module fetches
the static knowledge about the user (for example,
personal information and defined groups), the
dynamic context knowledge, and the user-specified
privacy preferences. Access rights are obtained by
performing backward reasoning. Additionally, when
access is allowed and according to the user-defined
sharing preferences, certain pieces of the information
might be obfuscated in order to protect user privacy.
Privacy rules are defined as Jena rules (Carroll et al.
2004), and the Jena reasoning engine is used to per-
form the reasoning. For the devices, we use the
AndroJena port of Jena for Android.3

Policies for Information Sharing
Privacy policies are represented as rules that describe
which information a user is willing to share, with
whom, and under what conditions. Conditions can
be defined based on attributes such as a user’s current
location, current activity, or any other dynamic

attribute. We rely heavily on the notion of group to
define the subjects who are allowed to access certain
information. A user can manage different networks
of friends, and assign a variety of group-level priva-
cy preferences accordingly. Example policies are
“share detailed contextual information with family
members all the time,” “share my activity with
friends all the time except when I am attending a lec-
ture,” and “do not share my sleeping activity with
teachers on weekdays from 9 AM to 5 PM.”

Policies for Obfuscating 
Shared Information
Users need to be in control of the release of their per-
sonal information at different levels of granularity,
from raw sensed data to high-level inferred place
information. Besides being able to specify which
information a user is willing to share, we can specify
how that information should be shared. A user can
disclose information with different accuracy levels;
for instance, he or she may be willing to reveal to
close friends the exact room and building on which
he or she is located, but only the vicinity or town to
others. Furthermore, a user may decide not to dis-
close his or her location to advertisers.
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Figure 5. Comparing Accuracies of Social Circles Recognized 
Employing Stay Point, Interactions, and Place Information.
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We have built generalization models for location
and activity that are based on hierarchies over loca-
tion and activity entities. The models take advantage
of the hierarchical nature of location and activity
information, which is evident by the part-of or con-
tained relations between location entities and the
compositional nature of activities entities. The poli-
cies allow us to specify at which level the informa-
tion is to be revealed. When a query for location or
activity information is received, the reasoner will not
only conclude whether the information can be
shared or not, but also at what level in the hierarchy
the information should be shared and only the cor-
responding triples are shared. For example, if loca-
tion information should be shared at the City level,
then triples containing location information with
instances of entities below City in the hierarchy are
not shared.

Energy-Efficient Location Sensing
Location-based services (LBSs) rely on global local-
ization techniques such as GPS and Skyhook to
obtain referenceable coordinates of the device. Pin-
pointing the location of a device on Earth with
respect to an absolute reference point can be
extremely challenging. GPS currently operates 31
satellites. Skyhook, which combines Wi-Fi and cellu-
lar signal fingerprints with GPS coordinates for
indoor positioning, performs extensive war-driving
in the cities where its services are provided.

Solving a much simpler problem can provide sim-
ilar benefits to a particular class of LBS applications.
We focus on what we call the location matching
problem: “In an arbitrary location, can a smartphone
efficiently detect whether or not it had previously
visited this location?” This problem is much simpler
than global positioning because it does not need to
know the relative distance between two different
locations on a geographical plane.

We approach the problem by pairing locations
with an event (that is, a set of actions performed by
the user at that location). For instance, when users
are in a conference room, they mute the ring tone, or
when they are in a gym, they play their favorite play
list from a music app. By recording such events and
corresponding cellular signal statistics at that loca-
tion, we can easily identify the event for that loca-
tion and reproduce that event (if needed) by match-
ing the currently received cellular signals with those
stored in the database. None of these applications
require global positioning; they can function just as
well with location matching.

Cellular Signal Signatures
We developed an Android application to collect cel-
lular signal signatures per event. A signature is
defined as the set of probability density functions
(PDFs) of signal strengths from all observable base

stations (BSs) when the smartphone is associated
with that event. We collected data from around 40
volunteers from a university campus area for a peri-
od of more than three weeks.

The smartphones carried by the users receive sig-
nals from one or more cell towers (max seven) con-
stantly. By analyzing the data set, we found that uti-
lizing the detailed statistical information of cellular
signals alone is sufficient to identify the event accu-
rately. Cellular signals are received at no extra cost in
mobile devices and have ubiquitous connectivity.
Hence, we achieve continuous context sensing with
minimal extra energy overhead.

An Autotuned Event-Sensing Algorithm
To better utilize the detailed statistical information
recorded in our signatures, we design an event-sens-
ing algorithm (ATiS) with autotuning capabilities.
The idea is that the closer the input signal strengths
match with the signature database, the more accurate
the event estimate is. If the probability of seeing a
particular signal strength within the PDF of a BS is
high and the probability of the BS observed when
performing an event is high, the total argument is
maximized and hence we get a close match with the
corresponding signature.

Finally, a signature threshold range CL and CU rep-
resenting the lower bound and upper bound deter-
mines the event. The algorithm learns adaptively
from its mistakes by evaluating itself against ground
truth. Note that the values of [CL, CU] are initialized
with [1, 0] initially. During automatic tuning, CL
decreases and CU increases, respectively, based on the
ground truth to provide a tight bound for signature
thresholds.

Accuracy and Energy Measurements
We evaluate for both accuracy and energy efficiency.
For our analysis, we use active hour trace (AHT) of the
user logs, which we assume to be from 07:00 hours to
23:00 hours because this is the time period during
which most users will be active and mobile in gener-
al. We use the first 70 percent of the logs for training
and the remaining 30 percent for evaluation.

We evaluate the output of the algorithms at each
time instant (here 20 seconds), and compare it with
the ground truth from the logs. False positive ratio
(FP(%)) is defined as the percentage of cases when the
algorithm detects an event when it is not available in
the ground truth divided by the total number of cas-
es. Similarly, false negative ratio (FN(%)) is defined as
the percentage of cases when the algorithm does not
detect an event when it is available in the ground
truth divided by the total number of cases. As shown
in figure 6a, we find that to achieve very low FP(%)
values, base station set (BSSET; see Rahmati and
Zhong [2007]) and mean squared error (MSE; see Pra-
sithsangaree, Krishnamurthy, and Chrysanthis 2002;
Varshavsky et al. 2007)–based algorithms need very
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Figure 6. FP Versus FN Values.

(a) FP versus FN values for a random user. ATiS achieves very low FP and FN values simultaneously. (b) Varia-
tion in FP and FN values for 5 consecutive days for a random user in the data set.

0 25 50 75 100
0

1

2

3

FN (%)

FP
 (

%
)

BSSET
MSE
ATiS

1 2 3 4 5
0

0.5

1

1.5

2

Days

Pe
rc

en
ta

ge
 (

%
)

FP

FN

A

B



high threshold values, which results in high FN(%)
values. But ATiS achieves low FP(%) and FN(%) values
simultaneously. However, the values differ for every
individual user and on a daily basis as shown in fig-
ure 6 (b). Overall, we achieved average FP(%) and
FN(%) values of 1.10 percent and 0.19 percent, which
is very close to the ideal case of zero FP(%) and FN(%)
values.

We use a digital power monitoring device from
Monsoon Solutions4 to measure the energy con-
sumptions for event sensing on Android smart-
phones (Google Nexus One). Extensive trials are
done to avoid sensitive fluctuations in power con-
sumption. Table 3 shows the general energy con-
sumptions per second for location sensing by our sys-
tem and other available techniques. However, the
total amount of energy consumption varies differ-
ently depending on the application scenarios.

Discussion
The Platys project builds on a semantic concept of
place to facilitate developing context-aware mobile
applications that can enhance their users’ experi-
ence. A place in Platys goes beyond location to
include associated time spans, activities, people,
roles, and objects. Our resulting context model is
supported by an ontology in OWL.

Place recognition is performed using a semisuper-
vised EM algorithm as well as standard machine-
learning classifiers. Our approach allows to capture
nuances in how a user perceives places and is able to
recognize (1) user’s place and activity at different lev-
els of granularity; (2) disjoint spatial regions as a sin-
gle place; and (3) the same spatial region as more
than one place (for the same user and for different
users). Performance for recognizing place at a gener-
al level (at home versus at work versus elsewhere)
using machine-learning classifiers is higher than that
reported in existing works. Performance for recog-
nizing place using a semisupervised EM algorithm
was generally better than two stay-point approaches
used for comparison. Location plays an important
role in place recognition. We have addressed the
problem of energy-efficient location sensing.

A place is naturally associated with a social con-
text. We have proposed an approach to recognize
social circles by exploiting place information. Our
approach performs best when places are defined
using both spatial and social attributes.

To provide users with privacy to protect the per-
sonal information their mobile devices are collecting,
we define privacy and information sharing policies.
The policies are expressed in the SemanticWeb lan-
guages OWL and RDF. Our policies ensure context-
dependent release and obfuscation of information in
accordance to the user preferences.
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