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There is a growing interest in electrical cars. Since 2012
there has been an increase of 170 percent in electrical
cars worldwide (as of July 2014) (Trigg and Telleen

2013).1 Yet one of the most reported reasons for refraining
from changing to electrical cars is the relatively limited trav-
el range they have in comparison to gasoline-powered cars.
Extending the travel range is of course desirable; electrical
cars are economically beneficial and environmentally friend-
ly — totally gas-free and tailpipe-emissions-free.

Auto experts from Edmunds.com and the Society of Auto-
motive Engineers (SAE) have reported that the air condition-
er reduces a car’s fuel efficiency by up to 10 percent.2, 3 Thus,
we propose an automated agent that advises the driver on
how to set the car’s climate-control system in a way that
reduces energy consumption while keeping the driver com-
fortable. We conducted this research in the summer time
using a Chevrolet GM Volt car. During that time tempera-
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n Reducing energy consumption of cli-
mate-control systems is important in
order to reduce the human environmen-
tal footprint. The need to save energy
becomes even greater when considering
an electric car, since heavy use of the cli-
mate-control system may exhaust the
battery. In this article we consider a
method for an automated agent to pro-
vide drivers with advice that will moti-
vate them to reduce the energy con-
sumption of their climate-control unit.
Our approach takes into account both
the energy consumption of the climate-
control system and the expected comfort
level of the driver. We therefore have
built two models, one for assessing the
energy consumption of the climate-con-
trol system as a function of the system’s
settings, and the other for modeling the
human comfort level as a function of
the climate-control system’s settings.
Using these models, the agent provides
advice to the driver considering how to
set the climate-control system. The
agent advises settings that try to pre-
serve a high level of comfort while con-
suming as little energy as possible. We
empirically show that drivers equipped
with our agent, which provides them
with advice, significantly save energy as
compared to drivers not equipped with
our agent.
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Figure 1. Chevrolet GM Volt Car Interior.

tures varied between 30 and 36 degrees celcius.
Unfortunately, the agent and human user do not

share exactly the same goal. While the agent may
care mostly about the car’s energy consumption, the
driver is usually more interested in his/her own com-
fort level while less interested in the car’s energy con-
sumption. Thus, the agent faces the challenge of pro-
viding advice that will reduce energy consumption
while taking into consideration the driver’s comfort
level, that is, advice that will persuade the driver to
set the system settings such that the driver reduces
the energy consumption of the system.

The agent has to overcome two sources of uncer-
tainty. First, it should try to model the preferences of
the driver, estimating the comfort level in a given cli-
mate-control setting. Second, it should estimate the
energy consumption of a given setting. Both the driv-
ers’ preferences and the car’s energy consumption are
very noisy and difficult to estimate. Both models
were built using data collected by running experi-
ments in the Chevrolet Volt. Based on the construct-
ed models we formalized the optimization problem
of the agent, which wishes to minimize the energy

consumption while maintaining a reasonable level of
estimated comfort. We also designed a graphical user
interface (GUI) that allows the agent to provide the
advice in a convenient and attractive way for the
driver. We have conducted an extensive study of
three different advice-provision methods, with 49
human users who were required to set the climate-
control parameters of the Chevrolet Volt when it was
very hot outside.

The proposed agent can be deployed in gasoline
and electrical cars, and as the results will show, has
great long-term and short-term benefits in the
Chevrolet GM Volt car.

Related Work
Agents for the improvement of energy efficiency are
a challenge for researchers and practitioners alike.
Many works on the subject have been put forward;
an example is the paper by Koehler, Ziebart, Mankoff,
and Dey (2013), where the authors present automat-
ed approaches that can better match heating control



Articles

FALL 2015   63

to users’ routines and preferences. Al Mahmud et al.
(2007) investigate the design and evaluation of the
iParrot, an intelligent agent that helps to persuade
family members to conserve energy in their home.
Froehlich et al. (2009) suggest a mobile application
that senses and reveals information about trans-
portation behavior, in an attempt to persuade people
to increase their use of green transportation.

Attempts to persuade people to change their
behavior “for the better” are not restricted to energy
saving. An example of such work is Consolvo et al.
(2008), in which by modeling people’s activities
throughout everyday life, they try to encourage phys-
ical activity. In his book Persuasive Technology: Using
Computers to Change What We Think and Do, B. Fogg
(2002) surveys many technologies that try to per-
suade humans and analyzes the main properties
required for such persuasion technologies to be suc-
cessful. One example (p. 50) is an exercise bicycle
connected to a TV (Telecycle). In this system, as one
pedals at a higher rate, the image on the TV becomes
clearer, thus encouraging humans to exercise at high-
er rates. However, in most of the works, not only is
the goal clear (exercise more or consume less energy),
but so is the suggested way to achieve it. Therefore,
the system is not required to provide advice as to
how to achieve the goal, but merely persuade the
user to do so.

Works that consider advice-providing systems (rec-
ommendation systems) have been focused on pre-
dicting user preferences and their expected rating of
unseen items in order to best provide them with rec-
ommendations. (See Ricci et al. [2011] for a review.)
Most works in this realm have only considered the
utility of the users and minimize prediction error
with respect to users’ choices. Other works do explic-
itly consider the utility of the system (Chen et al.
2008, Azaria et al. 2013). These works build a user
model, which allows the prediction of the probabili-
ty that a user will accept a recommendation (or a set
of recommendations). Using this prediction, they
solve the optimization problem for the system in
order to maximize its expected outcome. In all of
these works, the user may either accept or reject the
advice.

Similarly, Azaria et al. (2012) model the long-term
effect of advice given by a self-interested system to
users in route-selection problems. Sarne et al. (2011)
have shown that users’ performance can be substan-
tially improved through manipulating the input (for
example, the information concerning the different
choices) that they receive.

Elmalech et al. (2015) suggest an approach accord-
ing to which the decision regarding the advice to be
provided should not be made merely based on the
encapsulated utility, but rather also based on the like-
lihood of its acceptance by the user. Das, Mathieu,
and Ricketts (2009) theoretically analyze a recom-
mender system that tries to maximize its own expect-

ed utility. They assume the existence of some thresh-
old in which, if the recommendations’ quality is
within the assumed threshold, the acceptance rate
for the users remains the same. They analyze the
benefit that the system may gain from providing rec-
ommendations that are suboptimal to the user but
are close enough in quality and within the assumed
threshold. Inspired by their work, we also set a
threshold and assume that if the advice is above this
threshold, the users are not likely to ignore it, but
will be influenced by the advice received.

In our work, however, the challenge is doubled;
the agent has to figure out its own utility from every
action as well as the human drivers’ utility. We need
to combine both these utility functions in an advice-
provision model in which the human driver could
be persuaded to save energy. To the best of our
knowledge, no persuasive work thus far has focused
on automobile climate-control systems.

The Volt Climate-Control System
The study in this article was based on the Volt’s cli-
mate-control system. In this system the drivers can
control the settings S as described in this tuple (T, F,
D, M) where temperature (T) is associated with a tem-
perature in Celsius and can receive values between
16 and 35 degrees; fan strength (F) is associated with
the fan blower and can receive values between 1 and
6; air delivery (D) may be set to either face (in which
D is set to 0) or face and feet (in which D is set to 1);
and mode (M) may be set either to eco (when M is set
to 0) or to comfort (when M is set to 1). According to
the Volt’s user manual, the eco mode tries to reduce
energy consumption, while the comfort mode aims
at maximizing the user’s comfort level.

Given a setting s we use sT to refer to the tempera-
ture in that setting, sF to refer to the fan strength, sD
for the air delivery, and sM for the mode of the setting.

Figure 2 presents the original climate-control sys-
tem panel (from the user manual). Figure 3 provides
a short description for each of the variables (from the
user manual).

CARE
In this section we present our climate-control advis-
er for reducing energy consumption (CARE). CARE
requires the composition of two models, one for
modeling the climate-control’s energy consumption
as a function of its settings and the other for model-
ing human comfort level as a function of the climate
control’s settings. CARE uses these models in order to
provide a driver with advice regarding the settings of
the climate-control system, taking into account both
the expected energy consumption and the expected
comfort level. The comfort level is captured by a
number from 1 to 10 where (1): “I’m very uncom-
fortable; I would not be willing to drive under these
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conditions”; (3): “I’m uncomfortable, but I might be
willing to compromise”; (5): “Reasonable, I would be
willing to drive under these conditions”; (7): “I’m
comfortable; I would like to drive under these condi-
tions”; and (10): “I’m most comfortable, I would be
happy to drive under these conditions.”

CARE Training Data
Constructing CARE requires two sets of training data:
ψe and ψc. ψe is used to train the parameters for the
energy consumption model. It is composed of a tuple

with the following format for every instance i: ψi
e =

(e, T, F, D, M, E, I) where e is the energy consumption
level, given the other parameters; T, F, D, and M are
the variables set on the climate-control system; E is
the external temperature as displayed in the dash-
board; and I is the internal temperature as measured
with a manual thermometer located between the two
front seats. Both the external and internal tempera-
tures could be viewed by the drivers.
ψc is used to train the parameters for the comfort

model. It is composed of a tuple with the following
format for every instance i: ψi

c = (c, T, F, D, C, E, I)
where c is the comfort level reported by the subject,
given the other parameters; C is the initial comfort
level, that is, the comfort level reported when the
driver enters the car; and all other parameters are as
described in ψe.

4

Energy Consumption Model
We model the energy consumption of the climate-
control system based on the following equation:

where w1, w2, ..., w6 are parameters learned by the
model. This form of function assumes that all vari-
ables except the climate mode have a linear impact
on the final energy consumption. The climate mode

e(T ,F,D,M ,E, I ) = (w1 ! ("T )+w2 ! F +w3 !D +

w4 ! E+w5 ! I ) ! ((1+w6 ) !M )

Figure 2. Original Volt Climate-Control Panel, Taken from the User Manual.

Figure 3. Description of the Volt’s Climate-Control Variables.
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is assumed to have a multiplicative impact on the
total energy consumption, since in the comfort cli-
mate mode, all of the climate-control components
seem to work harder and thus consume more energy.
This form of function was compared to other forms
and yielded the best fit to the data collected.5 All
parameters are assumed to be positive, except w3,
which models the impact of air delivery on energy
consumption. w3 was allowed to obtain negative val-
ues, and in fact it did end up with a negative value.
We use the training data, ψe, and search for the param-
eters w1, w2, …, w6, which maximize the likelihood of
the training data (maximum likelihood estimation).
We use interior point methods (Nesterov,
Nemirovskii, and Ye 1994) to search these parameters.

Human Comfort Level Model
CARE’s model for the human comfort level is based
on the following equation:

where v0, v1, …, v7 are parameters learned by the
model. F2 tries to capture the effect of the noise cre-
ated by the fan, which is superlinear in the fan’s lev-
el. The human comfort level model assumes that the
human comfort level is a linear combination of all of
the parameters that the human faces (assuming that
F2 models the noise effect). This assumption is com-
mon in the literature (Nguyen et al. 2013, Azaria et al.
2011). According to the car’s user manual, the eco
mode is supposed to save energy; therefore, CARE
never recommended setting the mode to comfort,
and we only gathered data on subjects’ comfort level
when using the eco mode. For that reason, the
human model does not take the mode into account,
and only tries to predict the comfort level for when
the mode is set to eco. We use the training data, ψc,
and search for the parameters v0, v1, …, v7, which
maximize the likelihood of the training data (maxi-
mum likelihood estimation). We use again the inte-
rior point method to search these parameters, similar
to the search performed for the energy consumption
model. Note that the initial comfort level (C) may
change from person to person. This will cause the
expected comfort level to vary among people, and
thus also the advice provided by CARE may vary
among different people. This causes the advice to be
personalized, that is, different drivers may receive dif-
ferent advice. However, it is possible that people
reporting the same comfort level in a given setting
will have slightly different preferences that can be
used for further energy saving. Furthermore, it will be
preferred if the driver’s preferences will be learned
without his/her need to explicitly report the comfort
level. These two improvements (among others) can
be done only when the system interacts repeatedly
with the user. See the Current Work section for our
work on the subject.

c(T ,F,D,C,E, I ) = v0 ! v1 "T + v2 " F ! v3 " F
2 !

v4 "D + v5 "C ! v6 " E ! v7 " I

CARE Method for Advice Provision
Given both the energy consumption model and the
human comfort level model, CARE provides the driv-
er with advice regarding the settings of the climate-
control system. Given the external temperature (E),
the internal temperature (I) and the initial comfort
level (C), CARE provides the driver with advice, a(E,
I, C) ∈ S, that yields an expected comfort level of at
least 7 while minimizing the expected energy con-
sumption of the climate-control system. CARE only
considers advice in which the mode is set to eco (that
is, M is set to 0). Comfort level 7 was chosen as the
minimal target comfort level since a comfort level of
7 means that the driver is comfortable. More formal-
ly, CARE provides advice such that 

where e(·) is obtained from equation 1, and c(·) is
obtained from equation 2. Since the search space is
small (|S| is much smaller than 1000), we perform an
exhaustive search to find the optimal advice. How-
ever, in a climate-control system with additional
variables, CARE may consider a more efficient
method of search.

Algorithm 1 presents an overview for the entire
procedure of the construction and usage of CARE.

Data Collection
To train the energy consumption and human com-
fort level models we used a Chevrolet GM Volt car
parked (idle) in a closed parking lot at General

a(E, I ,C) = arg min
s!S

e(sT ,sF ,sD ,M ,E, I ) s.t.

sM = 0; c(sT ,sF ,sD ,C,E, I ) "7

Articles

FALL 2015   65

Algorithm 1. Construction and use of CARE.

Find w1, w2, … w6 for equation 1, which maximize the 
likelihood of the training set e 

Find v1, v2, … v7 for equation 2, which maximize the 
likelihood of the training set c.  
Obtain initial comfort level (C) from driver.  
Obtain external (E) and internal (I) temperatures.  
min  ∞  
for each s  S where sM  = 0 do 
   if e(sT, SF, SD, SM, E, I) < min and  
   c(sT, SF, SD, C, E, I) ≥ 7 then  
      advice  s  
      min  e(sT, SF, SL, M, E, I)  
   end if  
end for  
return advice  



Motors Advanced Technical Center in Herzliya, Israel
(GM ATCI). The parking lot was chosen due to its sta-
ble temperature, and the fact that it is shaded at all
times. These conditions were repeated in the actual
experiment described in the Experimental Evaluation
section.

Data Collection for Modeling 
Energy Consumption
The energy consumption of setting s is the sum of
two factors: Energy consumed by the blower (the fan)
and the energy consumed by the compressor. The
data was collected directly from the car’s feedback
using 120 measurements; each measurement was a
10-minute episode in which the climate-control sys-
tem was on (resulting in a total of 20 hours). We were
interested in the total energy consumption in each
of these 10-minute episodes (and not momentary
energy consumption, which varied a lot). To main-
tain the integrity of the measurements, we let the car
warm up (and the compressor cool down) for 10 min-
utes between consecutive measurements. The meas-
urements were for various temperatures, starting at T
= 16 and up to T = 26, and various fan speeds, start-
ing at F = 1 up to F = 5. The measurements were used
to train ψe.
It was encouraging to observe that there are settings

where a large percentage of energy can be saved. For
example, when the temperature in the car and out-
side the car is 26 degrees Celcius, then the energy
consumption when setting the climate-control sys-
tem temperature to 16 degrees Celcius, the fan to 5,
and the mode to comfort is 75 percent higher than
when setting the temperature to 22 degrees Celcius,
the fan to 1, and the mode to eco. Of course, this is
an extreme case.

According to our measurements, when all other
settings are identical, eco mode indeed consumes less
energy than comfort mode. The final function
obtained was

e(T, F, D, M, E, I) = (–0.0095T + 0.016F – 0.003D +
0.005E + 0.005I) · (1.17M).

Data Collection for Modeling Human Users
Collecting data to train the human model (ψc) is far
more difficult than the data collection for the energy
consumption model. We had to find subjects who
were willing to enter the parked car (several times) on
a hot day, and set the climate control system (CCS) to
levels that were not necessarily those that were the
most convenient for them. As we will describe, the
subjects were also required to wait outside the car
between measurements, so the car could warm up.

We want to get as many instances as possible, due
to the high cost of recruiting subjects. These
instances should preferably be in the range of plausi-
ble settings. We recruited 15 subjects for training the
human model, out of which 4 subjects were females
and 11 were males. The subjects’ ages ranged from 21

to 73, with a mean of 30 and a median of 27. All sub-
jects live in Israel. The subjects were first asked to fill
out a questionnaire collecting demographic informa-
tion. Then the comfort level scale was explained to
them. (See the CARE Training Data section.)

The subjects were asked to enter the car and sit in
the driver’s seat with their hands on the steering
wheel. While the climate-control system was still off,
the subjects were asked to set the vents to point in
their direction. At this point, the subjects were asked
to rate their comfort level. Then the subjects were
told how to operate the climate control and were
asked to set it so that they would feel most comfort-
able. The selected settings were left on for 4 minutes.
The subjects were then asked for their comfort level
and were required to explain why they had chosen
that level. The subjects were then asked to exit the
car and the car was left to warm up for an additional
4 minutes.

To test as many settings as possible, the subjects
then returned to the car and the experiment operator
set additional 8 settings for them, each was left on for
4 minutes followed by the subjects rating their com-
fort level. Between one setting to the next the subject
was asked to stay outside the car for 4 minutes while
the car warms up. and waited 4 minutes. This process
resulted in 120 instances — 15 subjects, each provid-
ed 8 instances.

The subjects’ comfort levels seem to have been
mostly influenced by the temperature that was set on
the climate-control system, T. The fan, F, also had an
impact on the comfort level, though not as strong as
the temperature. Recall that the opposite phenome-
na occurred when modeling the energy consumption
level. This result motivated CARE to advise settings
with the fan set to low values. Most subjects reported
a reduced comfort level when the fan was too strong;
some reported that the noise was what bothered
them. The other parameters seemed to have a milder
impact on the subject’s comfort level. The final for-
mula for the human comfort level model is 

c(T, F, D, C, E, I) = 16.608 – 1.2995T +
0.9841F – 0.0642F2–

1.2188D + 0.3238C – 0.1727E – 0.4817I

Experimental Evaluation
To see if CARE can reduce energy consumption we
implemented a panel based on the original climate-
control panel in the VOLT car (Figure 2), with addi-
tional add-ons and functionality. We tested CARE
against two agents: a silent agent, which does not
offer any advice yet records the subjects choices and
energy consumption, and CAREless, which only pro-
vides information on the energy consumption the
current setting produces.

Silent
As shown in figure 4, the GUI of this agent is based to
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the original climate-control panel in the VOLT car.
The silent agent merely presents the current climate-
control settings and records the driver’s actions
(changes in AC settings) and energy consumption (as
seen from the car’s data). The driver neither receives
any information nor any advice.

Careless
As shown in figure 5, on top of the silent agent func-
tionality, CAREless has an additional information cir-
cle, presented in the bottom left, which supplies the
driver with an estimation of the current energy con-
sumption level. This information appears as the per-
cent of the current energy consumption from the
maximum energy consumption obtained in the
training data (the lower the better). Note that CARE-
less does not provide any active advice. In figure 5 we
can see an example where the current consumption
is 40 percent of the maximum.

CARE
On top of CAREless functionality, CARE provides
advice. As soon as a driver gets into the car she or he
is presented with advice (see figure 7). The driver can
set the climate control in any settings he or she
desires, which is not necessarily the advice provided
by CARE. Nevertheless, she or he is presented with an
estimate of the current energy consumption (exactly
as provided by CAREless) as well as the advice with its
projected energy consumption indicated in figure 6.
These add-ons are not present in CAREless, as there is
no advice. Figure 8 shows a screen-shot of a case in
which the driver set the climate-control system to
match the advice.

Methodology
People have different preferences when it comes to
climate control; they vary in their preferred temper-
ature, fan strength, and so on. Some of these differ-
ences are physiological; larger people tend to gain
and lose heat more slowly than smaller ones, by
virtue of their smaller surface-area-to-volume ratios.
Also, Wunderlich’s studies in the early 19th century
showed that women tend to have lower core temper-
atures than men (Wunderlich 1870), regardless of dif-
ferences of height and weight. These mentioned dif-
ferences, as well as others that were studied, such as
occupation, place of birth, and others, impose a big
concern when testing agents between subjects. Not
only that, external factors in our experimental envi-
ronment tend to change, that is, the external tem-
perature (E). Although the study was conducted in
the summer time, temperatures were not constant,
varying from 30 to 36 degrees Celcius. Therefore, in
order to control this variance, we chose an experi-
mental design that examined the effect of advice as a
within-subject variable rather than a between-subject
variable, thus overcoming the mentioned challenges.

First, we recruited 49 Israeli subjects, 33 males and

16 females, aging from 21 to 73 (mean 35, median
31).6  Each subject was asked to fill out forms and
demographic data. Then, the subject was led to a
Chevrolet GM Volt car parked in GM ATCI. We had
each subject run the experiment twice, once with the
silent agent (as a baseline) and once with either CARE
or CAREless. We counterbalanced the order among
the type of experiments, that is, approximately half
of the subjects first ran the experiment with no
advice; 24 subjects were assigned to receive advice
from CARE, while 25 subjects were assigned to
receive the information provided by CAREless (ran-
domly).

At each phase, the experiment operator asked the
subject’s initial comfort level (denoted C in our mod-
el). Then the subject was given 10 minutes to be in
the Volt car (parked in ATCI) and he or she was free
to tell the experimenter what settings to set in the cli-
mate-control system. The GUI of the designated
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Figure 4. The GUI When No Advice Is Provided.

Figure 5. The GUI with Additional Energy 
Consumption Information Provided by CAREless.

The circle in the bottom left corner.



agent was displayed on a laptop, while the built-in
car display was covered to avoid distractions. The
experimenter updated the climate control of the car
as many times as requested by the driver. While in
the car, the subject was given a smartphone with a
driving simulator, Bus Simulator 3D,7 to be played
while the experiment goes on. The motivation was
to set the conditions similar to regular driving and
give the subjects something to do. After 10 minutes,
the subject had to go outside the car and wait until

the inside of the car gets warm again to simulate the
initial conditions. To that aim, we left the doors and
the trunk open for 10 minutes while the car was
turned off. Then the second stage was examined for
another 10 minutes, in the same fashion.

The process took about 40 minutes per subject
(including the paperwork and instructions), for
which we paid each subject 100 NIS (approximately
27 US dollars). In real terms, 100 Israeli Shekels (NIS)
is the price of a fancy lunch in Israel.

Results
The results were analyzed using repeated measures of
ANOVA with total energy consumption as a depend-
ent variable, silent (true/false) as a within-subject
variable, type of agent (CARE/CAREless), gender of
the subject, and order of presentation (baseline, first
or second) as between-subject variables. Thus, the sta-
tistical model had one within-subject factor and
three between-subject factors. The statistical analysis
revealed no significant findings except a trend sug-
gesting that the effect of the agent depended on the
type (either CARE or CAREless). We therefore ran sep-
arate analyses for each of the two advice types.

When subjects were given advice by the CARE
algorithm, their total energy consumption signifi-
cantly decreased from 0.24 KWH to 0.20 KWH, an
improvement of 17 percent (F(1, 21) = 7.6, p < 0.05).
We also corrected for multiple comparisons, and after
the Bonferroni correction, the type-I error remains <
0.05. This improvement amounted to a mean energy
savings described in the 95 percent confidence inter-
val: [–24 percent, –5 percent]. The effect of presenta-
tion order and its interaction with the effect of advice
were both not significant. A similar analysis for the
CAREless advice did not show any improvement in
total energy consumption (F (1, 23) = 0.12). Figure 9
presents the mean energy consumption level of the
climate-control system, which was obtained by the
subjects who were assigned to CARE or CAREless,
compared to the mean energy consumption level of
the same subjects when they did not receive any
advice at all.

Figure 10 shows the energy consumption level of
the climate-control system of each subject when
receiving advice from CARE compared to the baseline
of that same subject when not receiving any advice.
As illustrated by the figure, 19 out of the 24 subjects
have shown an improvement over their baseline
when receiving advice from CARE (their associated
points appear under the 45 degree diagonal). The fig-
ure also shows that for three subjects, CARE reduced
energy consumption by approximately 50 percent
(from approximately 0.25 KWH to approximately
0.12 KWH).

When comparing men to women in no advice
condition, it turns out that females tend to consume
less energy than males, 0.201 KWH versus 0.242
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Figure 6. The GUI When the Driver Set the Climate-Control System
Differently from CARE’s Advice.

In this example the driver decided to set the temperature to 18 degrees Cel-
cius (rather than 21 degrees Celcius as advised by CARE), the fan to 4 (rather
than 1), the air delivery to both face and feet (rather than only to the face)
and the mode to comfort (rather than eco). This resulted in an energy con-
sumption level of 63 percent of the maximal energy consumption level,
rather than only 25 percent had the driver followed CARE’s advice.

Figure 7. The GUI with Advice from CARE. 

Note that the advice is shown in purple. The left purple circle represents the
expected energy consumption from following the advice. The right circle,
which represents the current energy consumption, is empty, since the driv-
er did not yet turn on the climate-control system.



KWH, which fits the common myth that women like
the air conditioner weaker than men.

To ensure that the advice provided to the user is
easy to understand, we asked the subjects the follow-
ing question: “Was the information on the screen
clear?” and asked them to specify a number between
1 and 10. The average answer was 9.15, indicating
that the GUI is very understandable.

Discussion
As shown by the results, CARE significantly decreas-
es the energy consumption of its users while CARE-
less did not perform as well (in comparison to base-
line users who received no advice). The conclusive
statistical finding at 95 percent confidence that CARE
was better than the baseline is based on a within-sub-
ject experiment and model. Astute readers might
notice that the baseline values for the CARE and
CAREless conditions were not the same and might
ask themselves if this difference might have affected
the results. The beauty of within-subject analyses is
that even when baseline values are different, the
comparisons of conditions are done per individual
and therefore are robust to variations among sub-
jects. In our case, we found a statistical difference
between CARE and the baseline and did not find
such differences for the other condition. This statis-
tical analysis also captures any other effects that
might have been in play, such as the psychological
effect that the displayed internal and external tem-
peratures may have had on the subjects.
We notice that the advice by CARE is not given in a

“take it or leave it” fashion but rather is provided
more as a reference point, an anchor if you will, for
the users to select their settings by. For example, one
of the subjects, when receiving no advice, set the cli-
mate-control system to a temperature of 23 degrees
Celcius and the fan to 4. However, when that same
subject received the advice from CARE to set the tem-
perature to 24 degrees Celcius and the fan to 1, she
set the temperature to 24 degrees Celcius as suggest-
ed, but set the fan to 2. Later, when she became a lit-
tle too warm, she set the fan to 3, and left the tem-
perature setting at 24 degrees Celcius. The effect seen
here can in part be attributed to the anchoring effect.
This effect proposes that when people do not know
the exact value of a product (or answer to a question),
if they are first shown a possible value (or answer)
that was randomly generated, then later, when they
need to evaluate the product (or give their own
answer to the question), their evaluation (or answer)
is relatively close to the original evaluation (or
answer) (Ariely, Loewenstein, and Prelec 2006; John-
son and Schkade 1989). Obviously, though, a system
may not rely solely on the anchoring effect, since a
system will lose all its credibility by offering an
unreasonable value (such as setting the temperature
to 30 degrees Celcius).

Notice, that our study has focused on summer con-
ditions, and can be easily expanded to winter condi-
tions as well. Providing advice that depends on the
actual weather seems essential for people to treat the
advice seriously. Also, the CARE methodology can be
implemented on both electrical and gasoline-pow-
ered cars alike, yet measurements in each car are
needed to estimate the models correctly.

Clearly, CARE has reduced energy consumption,
which in fact translates naturally to longer travel dis-
tance and lower electricity cost. This also suggests a
lower fuel consumption level for a petrol car imple-
mentation.

The methodology presented in this article can be
extended to include other automotive systems such
as the navigation or adaptive cruise control (ACC)
systems. These systems share a common characteris-
tic with the climate-control system studied in this
work — the system and human user do not share the
exact same goal. For example, while the ACC system
may care mostly about the car’s energy consumption
and driver’s safety, the driver, on the other hand, is
usually more interested in reducing travel time. Thus,
the agent faces the challenge of providing advice that
will be beneficial for the system while accounting for
what the driver considers acceptable. Rosenfeld et al.
(2012) have showed that learning drivers’ behavior
can improve the use of the ACC system. Thus, com-
bining their model with a model quantifying the sys-
tem’s goals can bring about an even better use of the
ACC system.

Current Work
We have recently finished testing agents that inter-
act repeatedly with their users to save energy in a
platform similar to the one used for the one-time
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Figure 8. The GUI When the Driver Set the 
Climate-Control System to Match CARE’s Advice. 

The right green circle represents the current user energy consumption and
the left purple circle represents the advice’s expected energy consumption.



advice provision. Among the challenges we faced
when extending the work to the repeated interac-
tions case is the notion of building trust between the
agent and the driver, personalizing the advice even
when the comfort level is not provided, taking into
account the long-term effect of an advice and a new
graphical user interface. Experiments run so far show
that these agents were able to compute personalized
advice even when the users were not asked for their
initial comfort level and were adaptive to their driv-
ers’ actions. For example, when a driver rejected an
advice, the agent would adapt its computations so
that whenever it provided a new advice, it would be
better suited for that driver. And furthermore, when
a driver accepted an advice, the agent tries to
improve the energy saving of the car by providing a
new advice in the next interaction given the past
behavior of the driver. The results from testing our
repeated-interaction agent suggest that although test-
ed in a hotter environment than CARE (external tem-
peratures were 35–37 degrees Celcius), the average
energy consumption at each 10 minute episode is 33
percent lower than the “no advice” case tested. More-
over, the new agent outperformed CARE on average
0.17 KWH versus 0.2 KWH. See Rosenfeld et al.
(2015) for a report about these new models and
results.
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when receiving advice from CARE compared to the baseline of that same
subject when not receiving any advice. 



Conclusions
In this article, we presented a method to persuade a
driver to reduce the energy consumption of the cli-
mate-control system of his/her electrical car. By
means of experiments, we showed that the proposed
methodology leads to a significant reduction of ener-
gy consumption. The methodology requires the col-
lection of data on the energy consumption of the cli-
mate-control system and on the drivers’ behavior,
but is effective even with a small number of exam-
ples (15 drivers in our experiment). We designed a
graphical user interface for presenting the advice that
facilitates understanding of the advice. The reported
work is the first step in the process of the deployment
of a persuasive agent in electrical and petrol-fueled
cars alike. As discussed previously, the results and
insights obtained in this study were used once again
to accomplish an additional step toward real deploy-
ment. We hope that this work will inspire researchers
and practitioners to translate the proposed method-
ology into persuasive and advice-providing agents in
other fields.

Acknowlegments
We would like to thank Amihai Gottlieb, Jonathan
Azaria, and Shira Abuhatzera for their help in this
research. 

Notes
1. See also the 2014 web article by Jose Ponetes, “World Top
10 May 2014” (ev-sales.blogspot.com.br/2014/06/world-
top-10-may-2014.html).

2. See the slides prepared by William WIll, Dave Lebut, Greg
Major, and Franz Schenkel, “Affect of Windows Down on
Vehicle Fuel Economy as Compared to AC Load”
(www.sae.org/events/aars/presentations/2004-hill.pdf). 

3. See also “We Test the Tips Part II: Save Gas with Smart
Driving and Slick Aerodynamics” by Philip Reed and Brent
Romans (www.edmunds.com/fuel-economy/we-test-the-
tips-part-ii.html).

4. Notice that the mode, M, does not appear in the comfort
level model; this attribute will be explained later. 

5. Some of the other functions that were tested included
one or more of the following modifications to the above
function: the use of M as an additive variable; F as having a
multiplicative impact; or T as having an impact depending
on its offset from I or E. 

6. All experiments with human subjects were approved by
the corresponding IRB.

7. Available free in Google Play store.
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