
Avariety of well-established supervised learning meth-
ods produce a model from a set of examples. Despite
the maturity of these algorithms, decisions that result

from models are unlikely to be correct if data have been used
indiscriminately. This is part of the so-called data-dredging
problem (Smith and Shah 2002). Figure 1 shows a bemusing
example: U.S. spending per annum on science, space, and
technology is highly correlated with suicides by hanging,
strangulation, and suffocation. Logically, we know that this
correlation does not imply causation (that is, higher spend-
ing on technology cannot cause more suicides by hanging or
vice versa). Unfortunately, without the capacity to distin-
guish real and spurious correlations, learning methods are
prone to picking up such correlations in producing models
(Tukey 1977). The onus to be judicious ultimately falls on the
person building the model. Otherwise, data dredging may
lead to specious models, which may overfit, generalize poor-
ly, and suggest conclusions that are fallacious.
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� The infrastructure and tools necessary for large-
scale data analytics, formerly the exclusive purview
of experts, are increasingly available. Whereas a
knowledgeable data miner or domain expert can
rightly be expected to exercise caution when required
(for example, around misleading conclusions sup-
posedly supported by the data), the nonexpert may
benefit from some judicious assistance. This article
describes an end-to-end learning framework that
allows a novice to create models from data easily by
helping structure the model-building process and
capturing extended aspects of domain knowledge.
By treating the whole modeling process interactive-
ly and exploiting high-level knowledge in the form
of an ontology, the framework is able to aid the user
in a number of ways, including in helping to avoid
pitfalls such as data dredging. Prudence must be
exercised to avoid these hazards as certain conclu-
sions may only be supported if, for example, there is
extra knowledge that gives reason to trust a nar-
rower set of hypotheses. This article adopts the solu-
tion of using higher-level knowledge to allow this
sort of domain knowledge to be used automatically,
selecting relevant input attributes, and thence con-
straining the hypothesis space. We describe how the
framework automatically exploits structured knowl-
edge in an ontology to identify relevant concepts,
and how a data extraction component can make use
of online data sources to find measurements of
those concepts so that their relevance can be evalu-
ated. To validate our approach, models of four dif-
ferent problem domains were built using our imple-
mentation of the framework. Prediction error on
unseen examples of these models show that our
framework, making use of the ontology, helps to
improve model generalization.



The increased availability of data and the existence
of easy-to-use procedures for regression and classifi-
cation in commodity software allows inexperienced
users to search for correlations among a large set of
variables with scant regard for their meaning. Indeed,
data dredging has been democratized and anyone
may use seemingly sophisticated tools to arrive at
unsound conclusions. This motivates the present
work in developing a software framework to treat the
whole modeling process rather than merely the mod-
el fitting stage. This framework should allow a non-
expert user to (1) easily or even automatically create
a model from existing data, (2) avoid the pitfalls of
data dredging, and (3) build an accurate model,
which can correctly predict unseen data.

Our work is inspired by the modeling process
employed by Nelson and Sprecher (2008) to build a
model of nuclear power use in a given country to
help understand civil nuclear proliferation. Figure 2
shows the key ideas distilled from their modeling
process. As experts, they used their knowledge of the
nuclear domain to identify factors that are relevant
to nuclear power. Critically, the choices made regard-
ing the data inputs for the model were directed by
domain knowledge at a conceptual level rather than
correlations in the data themselves. Moreover, most
of the data that was used to build their model came
from existing online data sources, such as govern-
ment and public organization websites. While this
modeling process has broad promise, it involves two
challenges for a nonexpert. First, it relies heavily on
domain knowledge from the person building the
model. Second, the data collection itself was per-
formed manually. Better data collection methods

must be developed to help anyone collect data from
different sources across a variety of formats.

We have set out to develop a semiautomated mod-
el-building framework that adopts key ideas from,
but also addresses the challenges of, the modeling
process previously described.1 The framework oper-
ates as follows: (1) An existing ontology is used as a
source of background knowledge rather than relying
on knowledge from the person building a model. (2)
Since ontologies are precise machine-manipulable
representations of a priori structured relationships
among concepts in a problem domain, they also
enable a machine to explore the knowledge in an
ordered way to determine the relevance of domain
concepts. Such concepts are then used to construct
an hypothesis space, and data are used to find the
best model in this space using a learning method. (3)
An ontological concept can be operationalized to
measurements by finding a data source correspon-
ding to that concept, then looking for measurements
from information published on that source. (4) A
data-extraction component is introduced into the
framework to help a nonexpert extract desired data
from a source easily.

This article is an attempt to bridge the gap between
information extraction (IE) and learning from data,
helping a user easily accomplish the learning task but
also ensuring an accurate model is built. The IE
research aims to automatically extract structured
information from unstructured or semistructured
data sources so that a machine can interpret and
automatically make use of those data (Etzioni et al.
2008). Linking these two disciplines through seman-
tic relationships underlying the data enables a
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Figure 1. A Plot Showing Correlation Between Data of Two Attributes: U.S. Spending on Science, and Suicides by Hanging.

Data of these attributes are highly correlated with correlation = 0.992 (source: www.tylervigen.com).
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machine automatically to build a model of the
domain. Using relationships of this form to interpret
and evaluate attribute relevance helps to impose
structure on the model to reduce overfitting. Thus,
the framework is a way to help inexperienced users to
cope with the data deluge by making use of existing
data.

Learning Framework
Our end-to-end framework is illustrated in figure 3. It
employs knowledge at two levels, high-level concepts
and their relationships in an ontology, and low-level
data from existing data sources. Model building pro-
ceeds from left to right and consists of three main
components: finding relevant concepts, operational-
izing concepts, and learning. Each component is
associated with an ontology, online data sources, and
a learning library to perform its task, respectively. For
example, using this framework to build a model for
predicting nuclear power use of countries, a nonex-
pert user starts by giving the first component a query
string “Nuclear power” that will be the output of the

model, representing the quantity he or she aims to
predict. This component uses structured relation-
ships in an ontology (which we assume is given) to
automatically retrieve a set of concepts, denoted Θ,
that are relevant to the input query.

So far, relationships are only captured at a high lev-
el between concepts. To evaluate its predictive value,
concepts in Θ must be operationalized to correspon-
ding data. To perform this step the user describes the
set of elements over which the model is applied (the
model’s domain), and what the model aims to pre-
dict (the model’s output). Tabular input containing
two columns is used for this purpose. In the exam-
ple, the first column contains a list of countries and
the second column contains nuclear power usage
data. We assume that the user already has this tabu-
lar input (for example, it could be collected from a
web page publishing these data in tabular format).
The input query and tabular input are used to pose a
question, in this case essentially asking “Which
attributes of countries are relevant to nuclear pow-
er?” This tabular input is also stored in the framework
as an initial data set.

Figure 2. Modeling Process Extracted from Nelson and Sprecher (2008).

The expert carries out the process by progressing from left to right to build a model for predicting nuclear power use. The expert starts by
specifying a list of countries and then collecting nuclear power data of those countries from an existing data source. Background knowl-
edge is used to come up with several hypotheses about the factors that may influence nuclear power usage. For example, a country with
large coal reserves might be expected to use coal to produce electricity rather than using nuclear power. Thus, coal may affect nuclear pow-
er usage. Next, the expert moves to find measurements that correspond with the factors. For instance, coal reserves and coal imports are
possible measurements relating to the coal in a country. The expert selects one of these measurements for each factor and uses a data source
to provide data for the selected measurement. The collected data from these sources are used to construct a data set for learning. Finally,
the expert uses the resultant data set with a designated learning method to build a model.
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For each concept in Θ, a data source (for example,
a web page, Excel file, and others) that provides
measurements or values is specified. The user selects
a suitable scraping module (for example, table scrap-
ing, list scraping) to extract contents. If one of the
concepts is “Coal,” representing the energy resource,
then the user may provide the Wikipedia article,2

which contains several tables with data related to this
concept. He or she selects the table-scraping tool
from the framework. The second component access-
es the article and uses the selected scraper and data
from the tabular input to extract all tables containing
data about countries. These tables are represented as
possible measurements related to the coal concept.
The user chooses a table (the one providing coal
reserves) that has columns (for example, subbitumi-
nous, lignite, total-coal, and others) containing data
related to different aspects of coal reserves. He or she
selects one of these column. Data from the selected
column are extracted and then added into the data
set. This step is repeated until all concepts in Θ are
operationalized to data and added to the data set. At
this point, the data set is ready for use in the learn-
ing process (that is, the third component). The user
selects a learning method (for example, linear regres-
sion, decision tree). The framework calls the selected

method from an existing library (for example, scikit-
learn, R) to build a model from the data set. The mod-
el is returned to the user so it can be used for predic-
tions, and to determine (for example, from
coefficients) the relative importance of the various
concepts. The user might conclude, for instance, that
large coal reserves reduce the likelihood of a country
building a nuclear power station.

The framework exploits relationships between
three components: concepts in an ontology, existing
data sources, and measurements of the concept and
the given examples. Next we emphasize how the
components involved help minimize the human
effort required.

Finding Relevant Concepts 
from an Ontology

We propose an algorithm for retrieving and ranking
concepts that are relevant to a given query string ℓ
from a given ontology O. This algorithm makes use of
O’s taxonomic hierarchy, which is a broadly applica-
ble knowledge representation, useful across many
ontologies. A taxonomic hierarchy is typically com-
posed of two main elements: categories and con-
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Figure 3. Proposed Learning Framework.

This framework incorporates both an existing ontology and data sources to build a model from data. Knowledge in the ontology is used to
construct an initial model that is composed of relevant ontological concepts and data, the latter being associated with the concepts and is
retrieved from existing data sources. The model is built and validated on the data using a selected learning method.
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cepts.These elements are used to construct the hier-
archy. Closely related concepts are organized in the
same category. Closely related specific categories are
also organized into the same broader category form-
ing super- and subcategory relationships. We use
SPARQL (the query language for RDF data) queries to
acquire taxonomic knowledge from O without any
preprocessing effort.

We adopt the ideas of the hyperlink induced topic
search (HITS) algorithm (Kleinberg 1999), originally
for searching and ranking relevant web documents
on a given topic by considering two different notions
of relevance: hubs and authorities. Representing
ontological categories as hubs and concepts as
authorities, HITS can be employed on the ontology
to find and rank relevant concepts for a given input
query. The intuition underlying our algorithm is that
if a category is relevant to the input query, then all
concepts in that category should also be relevant to
the query. Likewise, if a concept is relevant to the
query then all categories containing the concept
should be considered as relevant as well. Since an
ontological element is explicitly defined either as a
category or concept, it has only one score associated
with it (that is, the hub score for a category and the
authority score for a concept), which also means that
the scoring computation from HITS can avoid itera-
tive updates.

Scoring Schemes
Two separate scoring schemes are used to quantify
the relevance and utility of finding other related
information for categories and concepts. Both
schemes are the product of two components: voting
and frequency. Voting captures the relationships
between categories and concepts, while frequency
tracks how often categories or concepts reappear dur-
ing execution of the algorithm.

Category Scoring
A category scores well if it links to many rare con-
cepts that are relevant to an input query. Thus, cate-
gory c’s score comes from voting from concepts in c
and how many relevant concepts appear in c so that

(1)

where IR denotes a set of relevant concepts, IF(i, c) is
a function with value 1 if a concept i ∈ c or otherwise
0. IVote(i, c) gives the vote based on rarity of a con-
cept i, such that

The IVote function states that if i appears in many
categories, it is not a rare concept and its vote is
shared among the many categories, so a category
containing many common concepts is penalized.

Concept Scoring

Score(c) I
i IR

F(i,c) I
i IR

Vote(i,c),

IVote(i,c)
1/ | categories containing i | if i c,

0 otherwise.

A concept scores well if it is linked by many relevant
categories. Thus, concept i’s score comes from the
votes of categories containing i, and how many rele-
vant categories i appears in, such that

(2)

where CR denotes a set of relevant categories, CF(i, c)
is 1 if i ∈ category c or otherwise 0, and CVote(i, c)
returns the score of c as:

Algorithm Details
The algorithm performs three steps to find and rank
concepts that are relevant to the input query ℓ in O.
Details appear in figure 4. The algorithm starts by
finding a concept -, whose label matches (textually)
ℓ, to represent the query. If more than one concept is
found, the first is selected. Next, all concepts that
link to (inlinks of) or receive a link from (outlinks of)
ε are retrieved from O to construct a set of initial rel-
evant concepts, IR.

Finding a set of relevant categories is performed in
the second step (lines 5–24). For each concept in IR,
its categories are discovered and scores calculated
using equation 1. The categories are sorted by score
and the top n selected. Heuristics are used to further
select categories from these top categories, finding
those that (1) contain few concepts (that is, discard-
ing categories that list names of films, animals, or sci-
entists), and (2) contain neither very few nor many
subcategories (that is, categories that are too specific
or too general). The resulting set is denoted by CR.
Input parameters m, min, and max are used to adjust
this behavior. Suitable values depend on the ontol-
ogy and problem domain.

The final step (lines 25–34) retrieves all concepts
from each category in CR, scoring each with equation
2. All concepts are sorted by score before being
returned as the output.

Implementation: 
DBpedia and Wikipedia

Our implementation leverages an existing ontology
and online data sources; some implementation
details are worth discussing. We used DBpedia (Bizer
et al. 2009), the ontology counterpart of Wikipedia,
as a source of background knowledge and used
Wikipedia articles as data sources for corresponding
DBpedia concepts. The vast amount of general
knowledge in this ontology made testing on multiple
case studies feasible. Moreover, each DBpedia con-
cept has a corresponding Wikipedia article often con-
taining detailed information associated with that
concept in different formats, such as text, list, or

Score(i) C
c CR

F(i,c) C
c CR

Vote(i,c),

CVote(i,c)
Score(c) if i c,

0 otherwise.
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table. Our implementation exploits this connection
automatically to get an article of a concept and use it
as a primary data source for finding possible meas-
urements of the concept. Thus, the user needn’t spec-
ify a data source for a concept, and the system can
build a model with minimal human effort (as high-
lighted in the sequence in figure 5). Our system
focuses on data that are published in tabular format
since each table often encapsulates a complete,

nonredundant set of facts, and tables structure data
for easy automatic interpretation and extraction
(Bhagavatula, Noraset, and Downey 2013).

As shown in figure 5, suppose the user would like
to build a model for predicting the GDP of countries.
He or she can use this system by providing a query
string “Gross Domestic Product.” The system
retrieves relevant concepts from DBpedia. In the sec-
ond step the user selects the tabular input, with the
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Figure 4. Finding and Ranking Relevant Ontological Concepts.



first column containing a list of countries and the
second column containing GDP data for each coun-
try. Then the system requests HTML data of
Wikipedia articles corresponding to concepts output
from the first step. The system processes HTML data
of these articles to construct a data set. In the third
step, the user selects a learning method. The system
calls that method from the Scikit-learn library to
build a model from the data set. We can see that the
user gives the system only three inputs and then lets
the system carry out the remainder to build a model.
This resonates with our earlier motivation of produc-
ing a system to help the nonexpert user to build a
model from existing data easily. Implementation
details of the first two steps are described in the fol-
lowing sections.

Finding Relevant Concepts from DBpedia
There are three important points when implement-
ing Algorithm 1 with DBpedia. Firstly, internal links
among Wikipedia articles are used to find inlinks and
outlinks of concept ε. DBpedia already contains these
internal links as RDF triples through the wikiPageWik-
iLink predicate. Secondly, suitable values parameters
n and m for DBpedia were found to be in the ranges

200–250 and 120–200, respectively, depending on a
problem domain, while the values of min and max
were set to 6 and 30, respectively. Lastly, we added a
DBpedia-specific condition at the end of the algo-
rithm to further select only concepts whose name
(after removing all prefixes) starts with the term List
of. We found that corresponding articles for these
concepts usually have tables providing data about a
specific aspect of the concept. Focusing on these
types of concepts allows our implementation auto-
matically to find and collect data as needed. For
instance, the Wikipedia article “list of countries by
GDP” has a table that contains data for GDP by coun-
try (useful for the preceding example). Figure 6 shows
how this implementation works to find relevant con-
cepts from DBpedia for an input query. The sample
results obtained through this implementation using
input queries; Poverty and Gross Domestic Product
are shown in table 1.

Collecting Data from Wikipedia Tables
Algorithm 2 (see figure 7) automatically extracts data
from a table on a Wikipedia page. For each concept in
Θ, this algorithm starts by eliminating the concept
that is redundant with ε by checking whether the
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Figure 5. Sequence of Interactions with the Implementation.

A diagram showing an interaction use case with our DBpedia and Wikipedia implementation highlighting how a model can be built with
little human effort. Light (green) rectangles indicate operations that are done automatically and dark (blue/purple) ones show where user
intervention is required.
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string ℓ appears in the concept’s label. It then
acquires the URL of a Wikipedia article associated
with the concept from DBpedia, requests the article
in HTML, and extracts all tables from the result.

Heuristics are used to select a table that (1) has one
column, which we call an example column, that par-
tially matches to elements in the first column of the
tabular input (countries in the nuclear example), and
(2) has this example column appear first or second. If
no table is selected, the concept is discarded. The algo-
rithm then seeks columns in the selected table that
contain numerical data. The numerical column clos-
est to the example column is selected; if no numeri-
cal column is found, the example column is used to
construct a new column that contains binary data
(that is, value 1 is assigned to indicate that an element
from the first column of the tabular input appears in
the example column, otherwise value 0 is assigned).

At the end of this step, the system produces a tab-
ular data set containing data from attributes of the
model’s domain (countries, in the nuclear example)
and these attributes are also relevant to the input
query.

Although algorithm 2 can automate table detec-
tion and data scraping of a Wikipedia article to oper-
ationalize a concept, this heuristic approach may
select the wrong table or column to retrieve data
yielding a poor final outcome. In a manual approach,
by contrast, the system only retrieves tables from an
article and shows them to a user. The user then
selects a table and a column to add to a data set.
Doing so, however, relies on the user having enough
knowledge to select the correct table and column. A
hybrid approach could be a better option, where the
system initially chooses a table and a column for
users and then lets them decide whether to accept
that choice or change to another more appropriate
table or column. The system can also provide a score
for each table or column based on its contents (for
example, number of matched countries in a table) to
help the user make a wise choice.

Implementing the Framework with Other
Ontologies and Data Sources
It is worth discussing implementations with ontolo-
gies and data sources other than DBpedia and
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Figure 6. Steps of Running Algorithm 1 with DBpedia.

Running each step of algorithm 1 with taxonomic knowledge in DBpedia grows the graph as illustrated: (1) Finding a seed node, ε repre-
senting the input query, ℓ. (2) Outlinks and inlinks of ε (red-filled circles) are added to the graph. (3) Categories of each added concept are
discovered. Relevant categories (filled rectangles) are selected to add to the graph. (4) Extra concepts from the added categories are retrieved
and then added. (5) Concepts whose label starts with the term List of are selected and then returned as output.
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Wikipedia. First, in algorithm 1 we assume that there
is a concept, ε, whose label matches an input query
textually. An ontology used by the user could con-
tain terminology that is more variable (for example,
different acronyms and synonyms that do not
directly match an input query). An additional step
that can either automatically enrich the input query
with synonyms or acronyms or find concepts that
are semantically related to the query (Freitas et al.
2011, Pirro 2012) should precede the algorithm to
resolve this issue. The user selects one of the con-
cepts returning from this step and uses it as ε. Sec-
ond, other common predicates, such as owl:sameAs
or rdfs:seeAlso could be used to find inlinks and out-
links of ε rather than using the wikiPageWikiLink
predicate, which is specific to DBpedia. Third, for
algorithm 2, choosing a corresponding data source
for a concept can be done directly by a user (for
example, an Excel file containing data correspon-
ding to the concept). A suitable user interface should
be supplied to allow a user to specify the location of
that data source. A search engine service, such as
Google search service, could be employed in the sys-

tem to help a user easily find a suitable data source.
By preprocessing the label for concept and then
inputting it as a query to the search service, the user
can get locations of online data sources correspon-
ding to the concept and then select one of them to
retrieve the data. Finally, scrapers for different data
formats, such as lists, texts, files, should be added to
the data-scraping toolbox, along with an interface
that allows a user to select a suitable scraper. Incon-
sistent or poorly structured or formated data pose
difficulties for scraping. One way to handle this
problem is to have the data-scraping module resort
to an interactive mode where a user can see scraped
results immediately and adjust the module to resolve
any scrapping errors on the fly.

In this work, we describe only the back end of the
system. To deploy this system, a suitable interface
needs to be developed so that even inexperienced
users without programming background can use the
system. The system should also be able to record each
decision made at each step by the user, so that the
information can be used to improve the system.
Moreover, the system should provide a mechanism
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Table 1. Top 10 “List of” Concepts of Input Queries: “Poverty” and “Gross Domestic Product.”

= Poverty 

countries_by_percentage_of_population_living_in_poverty 

countries_by_unemployment_rate 

countries_by_employment_rate 

countries_by_Sen_social_welfare_function 

permaculture_project 

sovereign_states_and_dependent_territories_by_fertility_rate 

global–manpower_t_for_military_service 

wars_and_anthropogenic_disasters_by_death_toll 

countries_by_sex_ratio 

countries_by_infant_mortality_rate 

= Gross Domestic Product 

Australian_states_and_territories_by_gross_state_product 

sovereign_states_by_external_assets 

countries_by_economic_freedom 

freedom_indices 

countries_by_Sen_social_welfare_function 

countries_by_percentage_of_population_living_in_poverty 

countries_by_percentage_of_population_suffering_from_undernourishment

countries_by_energy_intensity 

countries_by_future_gross_government_debt 

countries_by_public_debt 

ℓ

ℓ



to save and load a model, making the model reusable
and supporting later refinement of the model.

Evaluation
Given the motivation underlying this work, two sep-
arate evaluations were conducted. The first was con-
ducted to show that the generalization of a model
built from a data set constructed by our system is
improved over one based purely on data. Results
from this evaluation provide support for the claim
that the framework can help a nonexpert build an
accurate model. The second evaluation was conduct-
ed to assess quality of input attributes selected
through use of the ontology’s background knowl-
edge. Results from these evaluations show that the
framework can help a nonexpert user avoid problems
associated with data dredging.

We conducted these evaluations by building mod-
els of four different problem domains: Nuclear pow-
er, gross domestic product (GDP), poverty, and
homelessness.3 The model is applied to countries for
the first three domains; U.S. states for the last one.
For each problem domain, we formed two data sets

in order to build two different models for compari-
son. The first data set is constructed using our imple-
mentation as described in the preceding section. We
denote this data set by tont. The second baseline data
set, denoted tbase, was constructed by processing a
URL of a Wikipedia category page containing links to
many articles about the model’s domain.4 We visit
every article in the category that has the term List of
(countries/U.S. states) appearing in its URL and has
not yet been visited when constructing tont. Algo-
rithm 2 is executed on these articles to create a tem-
porary data set denoted by ttemp. The data set tbase is
then constructed by concatenating all columns from
tont and ttemp.

Before using tont and tbase for learning, the issue of
missing data in these data sets had to be addressed.
For each problem domain, we examined tbase to
remove any columns (except columns from tont) and
rows where 70 percent or more of their data are miss-
ing. We also removed the same set of rows from tont.
Then, we manually filled in the remaining missing
data for each column in both data sets by using an
average value of data in that column. Finally, we
invoked a learning method from the Scikit-learn
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Figure 7. Operationalizing Ontological Concepts to Corresponding Data.



library to build models from tont and tbase for each
problem domain. The mean square error (MSE) is
used to assess the quality of these models.

Improving Generalization of a Model
Using knowledge in the ontology to select input
attributes for learning could help improve general-
ization beyond given examples if the ranking incor-
porates (either implicitly or explicitly) causal and/or
independence assumptions. To test this claim, the
data sets tont and tbase for each problem domain were
divided into training (80 percent of examples) and
test sets. Training sets from tont and tbase contained
the same set of examples (that is, both test sets also
contain identical instances in the rows, but tont has

strictly fewer columns). Two decision trees for regres-
sion were learned from these training sets and then
each tree was tested with the corresponding training
and test sets to calculate MSE values. Finally, 10-fold
cross validation was used to find the average MSE.
We performed this evaluation repeatedly while
increasing the depth of both trees, so as to examine
overfitting and related phenomena.

From the results summarized in figure 8, we
observe that in all problem domains trees learned
using tbase are prone to overfitting (that is, when the
complexity of the tree increases, prediction error of
the tree on the training set decreases rapidly, but
increases on the test set), whereas the learned trees
from tont produce lower prediction errors on test sets
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Figure 8. Comparing Generalization of Models.

For each problem domain, decision trees with different depths were built using data from tont and tbase. Average MSE values
from 10-fold cross validation when testing these trees on training and test sets are shown for each depth. The models built
from tbase show the occurrence of overfitting, while generalization of learned models from tont is improved.
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when examining comparable depth. The results
show that the framework helps improve generaliza-
tion of a learned model so it predicts more accurate-
ly on unseen examples.

Quality of the Top Ranked Attributes
We conducted a further experiment to show that the
attributes automatically selected using the ontology’s
background knowledge are superior to attributes
selected by correlations in a data set. For each prob-
lem domain, we constructed two new data sets to car-
ry out this experiment. The first data set copies the
first-n columns from tont, where n = 5 for all domains

except GDP where n = 8 is used. Since each column
in tont is ordered based on ranking of its correspon-
ding concepts, this data set captures the top-n con-
cepts from our algorithm. The second data set is con-
structed by using a univariate feature-selection
technique that selects columns based on correlations
in the data set to select the top-n columns from tbase.
Then, we performed the same evaluations as before
to assess performance of trees built from these new
data sets. The results in figure 9 show that trees
learned by using top-n columns from tont produced
prediction errors on test sets lower than trees learned
by using top-n columns from tbase in all problem
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Figure 9. Assessing the Quality of the Input Attributes Selected by Using the Ontology’s Background Knowledge.

This figure compares test set prediction errors of models learned from top-n attributes from tont and tbase on the four prob-
lem domains. The models were constructed by using decision tree and linear regression methods. The results from both
methods show that selecting attributes for learning by using prior domain knowledge helps improve generalization of the
learned model.
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domains. These results suggest that selecting input
attributes by using prior knowledge helps improve
generalization of the learned model.

We also examined linear regression models to
show that our results are independent of the learning
method used to build a model. One expects that the
generalization of a model built from tont should still
be better than using tbase even if the learning method
is changed. For each problem domain, we construct-
ed two data sets. The first contained the first-n
columns of tont. The second data set is constructed by
building a linear model from all attributes in tbase,
ranking attributes based on absolute value of their
coefficient (from high to low), and then selecting the
top-n attributes. Linear models with different com-
plexities were built by limiting the number of attrib-
utes used. We started with all attributes in the data set
and iteratively removed the lowest ranked attribute.
The results in figure 9, especially in the nuclear pow-
er and poverty domains, support the same conclu-
sion as the decision tree results.

We note that GDP and homelessness domains are
challenging domains, and the learned models all
have high prediction errors (MSE ⤫ 1012 and 108,
respectively). These errors indicate that current
attributes fail to capture the complexity of these
problem domains. Improving our framework to
enhance the quality of these models is part of our
future work.

Related Work
Several learning algorithms, such as knowledge-based
artificial neural network (Shavlik and Towell 1989)
and Bayesian belief networks (Pearl 1988; Russell and
Norvig 2010), employ background knowledge to
form an initial model and then use data to validate
that model. Even though these algorithms have been
demonstrated to outperform purely inductive learn-
ing (Mitchell 1997), their main limitation is that they
can accommodate only a specific knowledge repre-
sentation and learning method. In this work we pres-
ent a framework that makes use of existing knowl-
edge bases and data sources to build models of
different problem domains. Also, this framework is
designed to be independent of the learning method
itself.

Semantic web technology provides data models for
publishing background knowledge in a structured
format so that a machine can automatically interpret
and make use of the knowledge. Searching for ele-
ments that are relevant to a given query from struc-
tured knowledge is one of the main topics in the field
of information retrieval (Franz et al. 2009; Cheng et
al. 2008; Blanco, Mika, and Vigna 2011). Most of
these works, however, require some preprocessing
effort. None of them are specifically concerned with
finding relevant ontological concepts to select attrib-
utes for learning.

Google Fusion Tables (Sarma et al. 2012) and Wik-
iTables (Bhagavatula, Noraset, and Downey 2013)
include an operation termed “Relevant Join” which
uses data published in tabular format and aims to
find suitable columns from different tables for join-
ing to a given table. Our work can be viewed as a sys-
tem that automatically performs a Relevant Join to
construct a data set for learning. The main difference
in our approach is that relevance of a column is jus-
tified by using prior domain knowledge rather than
context in a table. Our system, moreover, need not
be limited to data appearing in tabular formats. Data
in another format, such as list, text, or query results,
can also be used in the framework.

Conclusion and Future Work
This article describes a learning framework that semi-
automatically constructs a model using relevant
ontological concepts and data attributes correspon-
ding to those concepts. The attributes used in learn-
ing are selected by exploiting high-level knowledge
separate from correlations within the data itself. As a
consequence, the learned model is expected to gen-
eralize better than standard feature-selection
approaches. We implemented this framework with
DBpedia and Wikipedia and then used the imple-
mentation to build four models from four different
problem domains. Prediction errors on unseen
examples from these models are shown to support
our claim. Moreover, the implementation helped
build the models with very little human involve-
ment.

What we present in this work is an attempt to
address the changing needs of science: making it eas-
ier to produce models opens up vistas for inexperi-
enced users, and helping automate the process of
making sense of — and providing new interpreta-
tions for — existing data is one way to tame the del-
uge of data.

We believe that we are just starting to find uses of
knowledge in an ontology to improve model gener-
alization. Even though the results from the evalua-
tions point out the possibility of using ontologies as
background knowledge to help an inexperienced
user build an accurate model from data, some impor-
tant questions remain. Most obvious is that no for-
mal explanation of how and why the system works
was provided. Addressing these aspects is ongoing.

Notes
1. Although we have emphasized its use by Nelson and
Sprecher, the approach represents a standard approach in
several sciences.

2. en.wikipedia.org/wiki/Coal.

3. These four were chosen because the authors encountered
articles talking about the desire to build models of these
problem domains.
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4. For example, en.wikipedia.org/wiki/Category:Lists_of_
countries for countries.
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