
The fundamental paradox of artificial intelligence is that
many intelligent tasks are extremely easy for people but
extremely difficult to get computers to do successfully.

This is universally known as regards basic human activities
such as vision, natural language, and social interaction, but
it is true of more specialized activities, such as scientific rea-
soning, as well. As everyone knows, computers can carry out
scientific computations of staggering complexity and can
hunt through immense haystacks of data looking for minus-
cule needles of insights or subtle, complex correlations. How-
ever, as far as I know, no existing computer program can
answer the question, “Can you fold a watermelon?”

Perhaps that doesn’t matter. Why should we need com-
puter programs to do things that people can already do easi-
ly? For the last 60 years, we have relied on a reasonable divi-
sion of labor: computers do what they do extremely well —
calculations that are either extremely complex or require an
enormous, unfailing memory — and people do what they do
well — perception, language, and many forms of learning
and of reasoning. However, the fact that computers have
almost no commonsense knowledge and rely almost entire-
ly on quite rigid forms of reasoning ultimately forms a seri-
ous limitation on the capacity of science-oriented applica-
tions including question answering; design, robotic
execution, and evaluation of experiments; retrieval, summa-
rization, and high-quality translation of scientific docu-
ments; science educational software; and sanity checking of
the results of specialized software (Davis and Marcus 2016).

A basic understanding of the physical and natural world at
the level of common human experience, and an under-
standing of how the concepts and laws of formal science
relate to the world as experienced, is thus a critical objective
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� As a challenge problem for AI sys-
tems, I propose the use of hand-con-
structed multiple-choice tests, with
problems that are easy for people but
hard for computers. Specifically, I dis-
cuss techniques for constructing such
problems at the level of a fourth-grade
child and at the level of a high school
student. For the fourth-grade-level ques-
tions, I argue that questions that require
the understanding of time, of impossi-
ble or pointless scenarios, of causality,
of the human body, or of sets of objects,
and questions that require combining
facts or require simple inductive argu-
ments of indeterminate length can be
chosen to be easy for people, and are
likely to be hard for AI programs, in the
current state of the art. For the high
school level, I argue that questions that
relate the formal science to the realia of
laboratory experiments or of real-world
observations are likely to be easy for
people and hard for AI programs. I
argue that these are more useful bench-
marks than existing standardized tests
such as the SATs or New York Regents
tests. Since the questions in standard-
ized tests are designed to be hard for
people, they often leave many aspects of
what is hard for computers but easy for
people untested.



in developing AI for science. To measure progress
toward this objective, it would be useful to have stan-
dard benchmarks; and to inspire radically ambitious
research projects, it would be valuable to have spe-
cific challenges.

In many ways, the best benchmarks and chal-
lenges here would be those that are directly connect-
ed to real-world, useful tasks, such as understanding
texts, planning in complex situations, or controlling
a robot in a complex environment. However, multi-
ple-choice tests also have their advantages. First, as
every teacher knows, they are easy to grade, though
often difficult to write. Second, multiple-choice tests
can enforce a much narrower focus on commonsense
physical knowledge specifically than on more broad-
ly based tasks. In any more broadly based task, such
as those mentioned above, the commonsense rea-
soning will only be a small part of the task, and, to
judge by past experience, quite likely the part of the
task with the least short-term payoff. Therefore
research on these problems is likely to focus on the
other aspects of the problem and to neglect the com-
monsense reasoning.

If what we want is a multiple-choice science as a
benchmark or challenge for AI, then surely the obvi-
ous thing to do is to use one of the existing multiple-
choice challenge tests, such as the New York State
Regents’ test (New York State Education Department
2014) or the SAT. Indeed, a number of people have
proposed exactly that, and are busy working on
developing systems aimed at that goal. Brachman et
al. (2005) suggest developing a program that can pass
the SATs. Clark, Harrison, and Balasubramanian
(2013) propose a project of passing the New York
State Regents Science test for 4th graders. Strickland
(2013) proposes developing an AI that can pass the
entrance exams for the University of Tokyo. Ohlsson
et al. (2013) evaluated the performance of a system
based on ConceptNet (Havasi, Speer, and Alonso
2007) on a preprocessed form of the Wechsler Pre-
school and Primary Scale of Intelligence test. Barker
et al. (2004) describe the construction of a knowl-
edge-based system that (more or less) scored a 3 (pass-
ing) on two sections of the high school chemistry
advanced placement test. The GEOS system (Seo et
al. 2015), which answers geometry problems from
the SATs, scored 49 percent on official problems and
61 percent on a corpus of practice problems.

The pros and cons of using standardized tests will
be discussed in detail later on in this article. For the
moment, let us emphasize one specific issue: stan-
dardized tests were written to test people, not to test
AIs. What people find difficult and what AIs find dif-
ficult are extremely different, almost opposite. Stan-
dardized tests include many questions that are hard
for people and practically trivial for computers, such
as remembering the meaning of technical terms or
performing straightforward mathematical calcula-
tion. Conversely, these tests do not test scientific

knowledge that “every [human] fool knows”; since
everyone knows it, there is no point in testing it.
However, this is often exactly the knowledge that AIs
are missing. Sometimes the questions on standardized
tests do test this kind of knowledge implicitly; but
they do so only sporadically and with poor coverage.

Another possibility would be to automate the con-
struction of questions that are easy for people and
hard for computers. The success of CAPTCHA (von
Ahn et al. 2003) shows that it is possible automati-
cally to generate images that are easy for people to
interpret and hard for computers; however, that is an
unusual case. Weston et al. (2015) propose to build a
system that uses a world model and a linguistic mod-
el to generate simple narratives in commonsense
domains. However, the intended purpose of this set
of narratives is to serve as a labeled corpus for an end-
to-end machine-learning system. Having been gener-
ated by a well-understood world model and linguis-
tic model, this corpus certainly cannot drive work on
original, richer, models of commonsense domains, or
of language, or of their interaction.

Having tabled the suggestion of using existing
standardized tests and having ruled out automatical-
ly constructed tests, the remaining option is to use
manually designed test problems. To be a valid test
for AI, such problems must be easy for people. Oth-
erwise the test would be in danger of running into, or
at least being accused of, the superhuman human fal-
lacy, in which we set benchmarks that AI cannot
attain because they are simply impossible to attain.

At this point, we have reached, and hopefully to
some extent motivated, the proposal of this article. I
propose that it would be worthwhile to construct
multiple-choice tests that will measure progress
toward developing AIs that have a commonsense
understanding of the natural world and an under-
standing of how formal science relates to the com-
monsense view; tests that will be easy for human sub-
jects but difficult for existing computers. Moreover,
as far as possible, that difficulty should arise from
issues inherent to commonsense knowledge and
commonsense reasoning rather than specifically
from difficulties in natural language understanding
or in visual interpretation, to the extent that these
can be separated.

These tests will collectively be called science ques-
tions appraising basic understanding — or SQUABU
(pronounced skwaboo). In this article we will consid-
er two specific tests. SQUABU-Basic is a test designed
to measure commonsense understanding of the nat-
ural world that an elementary school child can be
presumed to know, limited to material that is not
explicitly taught in school because it is too obvious.
The questions here should be easy for any contem-
porary child of 10 in a developed country.

SQUABU-HighSchool is a test designed to measure
how well an AI can integrate concepts of high school
chemistry and physics with a commonsense under-
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standing of the natural world. The questions here are
designed to be reasonably easy for a student who has
completed high school physics, though some may
require a few minutes thought. The knowledge of the
subject matter is intended to be basic; the problems
are intended to require a conceptual understanding
of the domain, qualitative reasoning about mathe-
matical relations, and basic geometry, but do not
require memory for fine details or intricate exact cal-
culations. These two particular levels were chosen in
part because the 4th grade New York Regents exam
and the physics SATs are helpful points of contrast.

By commonsense knowledge I emphatically do
not mean that I am considering AIs that will replicate
the errors, illusions, and flaws in physical reasoning
that are well known to be common in human cogni-
tion. I are here interested only in those aspects of
commonsense reasoning that are valid and that
enhance or underlie formal scientific thinking.

Because of the broad scope of the questions
involved, it would be hard to be very confident of
any particular question that AI systems will find it
difficult. This is in contrast to the Winograd schema
challenge (Levesque, Davis, and Morgenstern 2012),
in which both the framework and the individual
questions have been carefully designed, chosen, and
tuned so that, with fair confidence, each individual
question will be difficult for an automated system. I
do not see any way to achieve that level of confi-
dence for either level of SQUABU; there may be some
questions that can be easily solved. However, I feel
quite confident that at most a few questions would
be easily solved.

It is also difficult to be sure that an AI program will
get the right answer on specific questions in the cat-
egories I’ve marked below as “easy”; AI programs
have ways of getting confused or going on the wrong
track that are very hard to anticipate. (An example is
the Toronto problem that Watson got wrong [Welty,
undated].) However, AI programs exist that can
answer these kinds of questions with a large degree of
accuracy.

I will begin  by discussing the kinds of problems
that are easy for the current generation of comput-
ers; these must be avoided in SQUABU. Then I will
discuss some general rules and techniques for devel-
oping questions for SQUABU-Basic and SQUABU-
HighSchool. After that I will return to the issue of
standardized tests, and their pros and cons for this
purpose, and finally, will come the conclusion.

Problems That Are 
Easy for Computers

As of the date of writing (May 2015), the kinds of
problems that tend to arise on standardized tests that
are “easy for computers” (that is, well within the state
of the art) include terminology, taxonomy, and exact
calculation.

Terminology
Retrieving the definition of (for human students)
obscure jargon. For example, as Clark (2015) remarks,
the following problem from the New York State 4th
grade Regents Science test is easy for AI programs:

The movement of soil by wind or water is known as
(A) condensation (B) evaporation (C) erosion (D) fric-
tion

If you query a search engine for the exact phrase
“movement of soil by wind and water,” it returns
dozens of pages that give that phrase as the defini-
tion of erosion.

Taxonomy
Constructing taxonomic hierarchies of categories
and individuals organized by subcategory and
instance relations can be considered a solved prob-
lem in AI. Enormous, quite accurate hierarchies of
this kind have been assembled through web mining;
for instance Wu et al. (2012) report that the Probase
project had 2.6 million categories and 20.7 million
isA pairs, with an accuracy of 92.8 percent.

Finding the features of these categories, and carry-
ing out inheritance, particularly overridable inheri-
tance, is certainly a less completely solved problem,
but is nonetheless sufficiently solved that problems
based on inheritance must be considered as likely to
be easy for computers.

For example a question such as the following may
well be easy:

Which of the following organs does a squirrel not
have: (A) a brain (B) gills (C) a heart (D) lungs?

(This does require an understanding of not, which is
by no means a feature of all IR programs; but it is well
within the scope of current technology.)

Exact Calculation
Problems that involve retrieving standard exact phys-
ical formulas, and then using them in calculations,
either numerical or symbolic, are easy. For example,
questions such as the following SAT-level physics
problems are probably easy (Kaplan [2013], p. 294)

A 40 Ω resistor in a closed circuit has 20 volts across it.
The current flowing through the resistor is (A) 0.5 A;
(B) 2 A; (C) 20 A; (D) 80 A; (E) 800 A.

A horizontal force F acts on a block of mass m that is
initially at rest on a floor of negligible friction. The
force acts for time t and moves the block a displace-
ment d. The change in momentum of the block is (A)
F/t; (B) m/t; (C) Fd; (D) Ft; (E) mt.

The calculations are simple, and, for examples like
these, finding the standard formula that matches the
word problem can be done with high accuracy using
standard pattern-matching techniques.

One might be inclined to think that AI programs
would have trouble with the kind of brain teaser in
which the naïve brute-force solution is horribly com-
plicated but there is some clever way of looking at the



problem that makes it simple. However, these proba-
bly will not be effective challenges for AI. The AI pro-
gram will, indeed, probably not find the clever
approach; however, like John von Neumann in the
well-known anecdote,1 the AI program will be able to
do the brute force calculation faster than ordinary
people can work out the clever solution.

SQUABU-Basic
What kind of science questions, then, are easy for
people and hard for computers? In this section I will
consider this question in the context of SQUABU-
Basic, which does not rely on book learning. Later, I
will consider the question in the context of SQUABU-
HighSchool, which tests the integration of high
school science with commonsense reasoning.

Time
In principle, representing temporal information in AI
systems is almost entirely a solved problem, and car-
rying out temporal reasoning is largely a solved prob-
lem. The known representational systems for tempo-
ral knowledge (for example, those discussed in Reiter
(2001) and in Davis (1990, chapter 5) suffice for all
but a handful of the situations that arise in temporal
reasoning;2 almost all of the purely temporal infer-
ences that come up can be justified in established
temporal theories; and most of these can be carried
out reasonably efficiently, though not all, and there
is always room for improvement.

However, in practical terms, time is often serious-
ly neglected in large-scale knowledge-based systems,
although CYC (Lenat, Prakash, and Shepherd 1986)
is presumably an exception. Mitchell et al. (2015)
specifically mention temporal issues as an issue
unaddressed in NELL, and systems like ConceptNet
(Havasi, Speer, and Alonso 2007) seem to be entirely
unsystematic in how they deal with temporal issues.
More surprisingly the abstract meaning representa-
tion (AMR)3, a recent project to manually annotate a
large body of text with a formal representation of its
meaning, has decided to exclude temporal informa-
tion from its representation. (Frankly, I think this
may well be a short-sighted decision, which will be
regretted later.) Thus, there is a common impression
that temporal information is either too difficult or
not important enough to deal with in AI systems.

Therefore, if a temporal fact is not stated explicit-
ly, then it is likely to be hard for existing AI systems
to derive. Examples include the following:

Problem B.1 Sally’s favorite cow died yesterday. The
cow will probably be alive again (A) tomorrow; (B)
within a week; (C) within a year; (D) within a few
years; (E) The cow will never be alive again.

Problem B.2 Malcolm Harrison was a farmer in Vir-
ginia who died more than 200 years ago. He had a
dozen horses on his farm. Which of the following is
most likely to be true: (A) All of Harrison’s horses are
dead. (B) Most of Harrison’s horses are dead, but a few

might be alive. (C) Most of Harrison’s horses are alive,
but a few might have died. (D) Probably all of Harri-
son’s horses are alive.

Problem B.3 Every week during April, Mike goes to
school from 9 AM to 4 PM, Monday through Friday.
Which of the following statements is true (only one)?
(A) Between Monday 9 AM and Tuesday 4 PM, Mike is
always in school. (B) Between Monday 9 AM through
Tuesday 4 PM, Mike is never in school. (C) Between
Monday 4 PM and Friday 9 AM, Mike is never in
school. (D) Between Saturday 9 AM and Monday 8
AM, Mike is never in school. (E) Between Sunday 4 PM
and Tuesday 9 AM, Mike is never in school. (F) It
depends on the year.

With regard to question B.2, the AI can certainly find
the lifespan of a horse on Wikipedia or some similar
source. However, answering this question requires
combining this with the additional facts that lifespan
measures the time from birth to death, and that if
person P owns horse H at time T, then both P and H
are alive at time T. This connects to the feature “com-
bining multiple facts” discussed later.

This seems like it should be comparatively easy to
do; I would not be very surprised if AI programs could
solve this kind of problem 10 years from now. On the
other hand, I am not aware of much research in this
direction.

Inductive Arguments 
of Indeterminate Length
AI programs tend to be bad at arguments about
sequences of things of an indeterminate number. In
the software verification literature, there are tech-
niques for this, but these have hardly been integrat-
ed into the AI literature.

Examples include the following:
Problem B.4 Mary owns a canary named Paul. Does
Paul have any ancestors who were alive in the year
1750? (A) Definitely yes. (B) Definitely no. (C) There is
no way to know.

Problem B.5 Tim is on a stony beach. He has a large
pail. He is putting small stones one by one into the
pail. Which of the following is true: (A) There will nev-
er be more than one stone in the pail. (B) There will
never be more than three stones in the pail. (C) Even-
tually, the pail will be full, and it will not be possible
to put more stones in the pail. (D) There will be more
and more stones in the pail, but there will always be
room for another one.

Impossible and Pointless Scenarios
If you cook up a scenario that is obviously impossible
for no very interesting reason, then it is quite likely
that no one has gone to the trouble of stating on the
web that it is impossible, and that the AI cannot fig-
ure that out.

Of course, if all the questions of this form have the
answer “this is impossible,” then the AI or its design-
er will soon catch on to that fact. So these have to be
counterbalanced by questions about scenarios that
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are in fact obviously possible, but so pointless that no
one will have bothered to state that they are possible
or that they occurred.

Examples include the following:
Problem B.6 Is it possible to fold a watermelon?

Problem B.7 Is it possible to put a tomato on top of a
watermelon?

Problem B.8 Suppose you have a tomato and a whole
watermelon. Is it possible to get the tomato inside the
watermelon without cutting or breaking the water-
melon?

Problem B.9 Which of the following is true: (A) A
female eagle and a male alligator could have a baby.
That baby could either be an eagle or an alligator. (B)
A female eagle and a male alligator could have a baby.
That baby would definitely be an eagle. (C) A female
eagle and a male alligator could have a baby. That
baby would definitely be an alligator. (D) A female
eagle and a male alligator could have a baby. That
baby would be half an alligator and half an eagle. (E)
A female eagle and a male alligator cannot have a
baby.

Problem B.10 If you brought a canary and an alligator
together to the same place, which of the following
would be completely impossible: (A) The canary could
see the alligator. (B) The alligator could see the canary.
(C) The canary could see what is inside the alligator’s
stomach. (D) The canary could fly onto the alligator’s
back.

Causality
Many causal sequences that are either familiar or
obvious are unlikely to be discussed in the corpus
available.

Problem B.11 Suppose you have two books that are
identical except that one has a white cover and one
has a black cover. If you tear a page out of the white
book what will happen? (A) The same page will fall out
of the black book. (B) Another page will grow in the
black book. (C) The page will grow back in the white
book. (D) All the other pages will fall out of the white
book. (E) None of the above.

Spatial Properties of Events
Basic spatial properties of events may well be difficult
for an AI to determine.

Problem B.12 When Ed was born, his father was in
Boston and his mother was in Los Angeles. Where was
Ed born? (A) In Boston. (B) In Los Angeles. (C) Either
in Boston or in Los Angeles. (D) Somewhere between
Boston and Los Angeles.

Problem B.13 Joanne cut a chunk off a stick of cheese.
Which of the following is true? (A) The weight of the
stick didn’t change. (B) The stick of cheese became
lighter. (C) The stick of cheese became heavier. (D)
After the chunk was cut off, the stick no longer had a
measurable weight.

Problem B.14 Joanne stuck a long pin through the
middle of a stick of cheese, and then pulled it out.
Which of the following is true? (A) The stick remained
the same length. (B) The stick became shorter. (C) The

stick became longer. (D) After the pin is pulled out,
the stick no longer has a length.

Putting Facts Together
Questions that require combining facts that are like-
ly to be expressed in separate sources are likely to be
difficult for an AI. As already discussed, B.2 is an
example. Another example:

Problem B.15 George accidentally poured a little
bleach into his milk. Is it OK for him to drink the
milk, if he’s careful not to swallow any of the bleach?

This requires combining the facts that bleach is a
poison, that poisons are dangerous even when dilut-
ed, that bleach and milk are liquids, and that it is dif-
ficult to separate two liquids that have been mixed.

Human Body
Of course, people have an unfair advantage here.

Problem B.16 Can you see your hand if you hold it
behind your head?

Problem B.17 If a person has a cold, then he will prob-
ably get well (A) In a few minutes. (B) In a few days or
a couple of weeks. (C) In a few years. (D) He will nev-
er get well.

Problem B.18 If a person cuts off one of his fingers,
then he will probably grow a new finger (A) In a few
minutes. (B) In a few days or a couple of weeks. (C) In
a few years. (D) He will never grow a new finger.

Sets of Objects
Physical reasoning programs are good at reasoning
about problems with fixed numbers of objects, but
not as good at reasoning about problems with inde-
terminate numbers of objects.

Problem B.19 There is a jar right-side up on a table,
with a lid tightly fastened. There are a few peanuts in
the jar. Joe picks up the jar and shakes it up and down,
then puts it back on the table. At the end, where,
probably, are the peanuts? (A) In the jar. (B) On the
table, outside the jar. (C) In the middle of the air.

Problem B.20 There is a jar right-side up on a table,
with a lid tightly fastened. There are a few peanuts on
the table. Joe picks up the jar and shakes it up and
down, then puts it back on the table. At the end,
where, probably, are the peanuts? (A) In the jar. (B) On
the table, outside the jar. (C) In the middle of the air.

SQUABU-HighSchool
The construction of SQUABU-HighSchool is quite
different from SQUABU-Basic. SQUABU-HighSchool
relies largely on the same gaps in an AI’s under-
standing that we have described earlier for SQUABU-
Basic. However, since the object is to appraise the AI’s
understanding of the relation between formal sci-
ence and commonsense reasoning, the choice of
domain becomes critical; the domain must be one
where the relation between the two kinds of knowl-
edge is both deep and evident to people.
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One fruitful source of these kinds of domains is
simple high school level science lab experiments. On
the one hand experiments draw on or illustrate con-
cepts and laws from formal science; on the other
hand, understanding the experimental set up often
requires commonsense reasoning that is not easily
formalized. Experiments also must be physically
manipulable by human beings and their effects must
be visible (or otherwise perceptible) to human
beings; thus, the AI’s understanding of human pow-
ers of manipulation and perception can also be test-
ed. Often, an effective way of generating questions is
to propose some change in the setup; this may either
create a problem or have no effect.

I have also found basic astronomy to be a fruitful
domain. Simple astronomy involves combining gen-
eral principles, basic physical knowledge, elementary
geometric reasoning, and order-of-magnitude rea-
soning.

A third category of problem is problems in every-
day settings where formal scientific analysis can be
brought to bear.

One general caveat: I am substantially less confi-
dent that high school students would in fact do well
on my sample questions for SQUABU-HighSchool
than that fourth-graders would do well on the sam-
ple questions for SQUABU-Basic. I feel certain that
they should do well, and that something is wrong if
they do not do well, but that is a different question.

Chemistry Experiment
Read the following description of a chemistry exper-
iment,4 illustrated in figure 1. A small quantity of
potassium chlorate (KClO3) is heated in a test tube,

and decomposes into potassium chloride (KCl) and
oxygen (O2). The gaseous oxygen expands out of the
test tube, goes through the tubing, bubbles up
through the water in the beaker, and collects in the
inverted beaker over the the water. Once the bub-
bling has stopped, the experimenter raises or lowers
the beaker until the level of the top of water inside
and outside the beaker are equal. At this point, the
pressure in the beaker is equal to atmospheric pres-
sure. Measuring the volume of the gas collected over
the water, and correcting for the water vapor that is
mixed in with the oxygen, the experimenter can thus
measure the amount of oxygen released in the
decomposition.

Problem H.1: If the right end of the U-shaped tube
were outside the beaker rather than inside, how would
that change things? (A) The chemical decomposition
would not occur. (B) The oxygen would remain in the
test tube. (C) The oxygen would bubble up through
the water in the basin to the open air and would not
be collected in the beaker. (D) Nothing would change.
The oxygen would still collect in the beaker, as shown.

Problem H.2: If the beaker had a hole in the base (on
top when inverted as shown), how would that change
things? (A) The oxygen would bubble up through the
beaker and out through the hole. (B) Nothing would
change. The oxygen would still collect in the beaker, as
shown. (C) The water would immediately flow out
from the inverted beaker into the basin and the beaker
would fill with air coming in through the hole.

Problem H.3 If the test tube, the beaker, and the U-
tube were all made of stainless steel rather than glass,
how would that change things? (A) Physically it would
make no difference, but it would be impossible to see
and therefore impossible to measure. (B) The chemical
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decomposition would not occur. (C) The oxygen
would seep through the stainless steel beaker. (D) The
beaker would break. (E) The potassium chloride would
accumulate in the beaker.

Problem H.4 Suppose the stopper in the test tube were
removed, but that the U-tube has some other support
that keeps it in its current position. How would that
change things? (A) The oxygen would stay in the test
tube. (B) All of the oxygen would escape to the outside
air. (C) Some of the oxygen would escape to the out-
side air, and some would go through the U-shaped
tube and bubble up to the beaker. So the beaker would
get some oxygen but not all the oxygen.

Problem H.5 The experiment description says, “The
experimenter raises or lowers the beaker until the lev-
el of the top of water inside and outside the beaker are
equal. At this point, the pressure in the beaker is equal
to atmospheric pressure.” More specifically: Suppose
that after the bubbling has stopped, the level of water
in the beaker is higher than the level in the basin (as
seems to be shown in the right-hand picture). Which
of the following is true: (A) The pressure in the beaker
is lower than atmospheric pressure, and the beaker
should be lowered. (B) The pressure in the beaker is
lower than atmospheric pressure, and the beaker
should be raised. (C) The pressure in the beaker is
higher than atmospheric pressure, and the beaker
should be lowered. (D) The pressure in the beaker is
higher than atmospheric pressure, and the beaker
should be raised.

Problem H.6 Suppose that instead of using a small
amount of potassium chlorate, as shown, you put in
enough to nearly fill the test tube. How will that
change things? (A) The chemical decomposition will
not occur. (B) You will generate more oxygen than the
beaker can hold. (C) You will generate so little oxygen
that it will be difficult to measure.

Problem H.7 In addition to the volume of the gas in
the beaker, which of the following are important to
measure accurately? (A) The initial mass of the potas-
sium chlorate. (B) The weight of the beaker. (C) The
diameter of the beaker. (D) The number and size of the
bubbles. (E) The amount of liquid in the beaker.

Problem H.8 The illustration shows a graduated beaker.
Suppose instead you use an ungraduated glass beaker. How
will that change things? (A) The oxygen will not collect
properly in the beaker. (B) The experimenter will not know
whether to raise or lower the beaker. (C) The experimenter
will not be able to measure the volume of gas.

Problem H.9 At the start of the experiment, the beaker
needs to be full of water, with its mouth in the basin below
the surface of the water in the basin. How is this state
achieved? (A) Fill the beaker with water rightside up, turn
it upside down, and lower it upside down into the basin.
(B) Put the beaker rightside up into the basin below the
surface of the water; let it fill with water; turn it upside
down keeping it underneath the water; and then lift it
upward, so that the base is out of the water, but keeping
the mouth always below the water. (C) Put the beaker
upside down into the basin below the surface of the water;
and then lift it back upward, so that the base is out of the
water, but keeping the mouth always below the water. (D)
Put the beaker in the proper position, and then splash
water upward from the basin into it. (E) Put the beaker in
its proper position, with the mouth below the level of the
water; break a small hole in the base of the beaker; suction
the water up from the basin into the beaker using a
pipette; then fix the hole.

Millikan Oil-Drop Experiment
Problem H.10: In the Millikan oil-drop experiment, a tiny
oil drop charged with a single electron was suspended
between two charged plates (figure 2). The charge on the
plates was adjusted until the electric force on the drop
exactly balanced its weight. How were the plates charged?
(A) Both plates had a positive charge. (B) Both plates had
a negative charge. (C) The top plate had a positive charge,
and the bottom plate had a negative charge. (D) The top
plate had a negative charge, and the bottom plate had a
positive charge. (E) The experiment would work the same,
no matter how the plates were charged.

Problem H.11: If the oil drop started moving upward, Mil-
likan would (A) Increase the charge on the plates. (B)
Reduce the charge on the plates. (C) Increase the charge on
the drop. (D) Reduce the charge on the drop. (E) Make the
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Figure 2. Millikan Oil-Drop Experiment.
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Problem H.26: If a star is nearby, and the line from
Earth to the star is perpendicular to the plane of
Earth’s revolution, and you track its relative motion
against the background of very distant stars over the
course of a year, what figure does it trace? (A) A
straight line. (B) A square. (C) An ellipse. (D) A cycloid.

Problems in Everyday Settings
Problem H.27: Suppose that you have a large closed
barrel. Empty, the barrel weighs 1 kg. You put into the
barrel 10 gm of water and 1 gm of salt, and you dis-
solve the salt in the water. Then you seal the barrel
tightly. Over time, the water evaporates into the air in
the barrel, leaving the salt at the bottom. If you put
the barrel on a scales after everything has evaporated,
the weight will be (A) 1000 gm (B) 1001 gm (C) 1010
gm (D) 1011 gm (E) Water cannot evaporate inside a
closed barrel.

Problem H.28: Suppose you are in a room where the
temperature is initially 62 degrees. You turn on a
heater, and after half an hour, the temperature
throughout the room is now 75 degrees, so you turn
off the heater. The door to the room is closed; howev-
er there is a gap between the door and the frame, so air
can go in and out. Assume that the temperature and
pressure outside the room remain constant over the
time period. Comparing the air in the room at the
start to the air in the room at the end, which of the fol-
lowing is true: (A) The pressure of the air in the room
has increased. (B) The air in the room at the end occu-
pies a larger volume than the air in the room at the
beginning. (C) There is a net flow of air into the room
during the half hour period. (D) There is a net flow of
air out of the room during the half hour period. (E)
Impossible to tell from the information given.

Problem H.29: The situation is the same as in problem
H.28, except that this time the room is sealed, so that
no air can pass in or out. Which of the following is
true: (A) The pressure of the air in the room has
increased. (B) The pressure of the air in the room has
decreased. (C) The air in the room at the end occupies
a larger volume than the air in the room at the begin-
ning. (D) The air in the room at the end occupies a
smaller volume than the air in the room at the begin-
ning. (E) The ideal gas constant is larger at the end
than at the beginning. (F) The ideal gas constant is
smaller at the end than at the beginning.

Problem H.30: You blow up a toy rubber balloon, and tie
the end shut. The air pressure in the balloon is: (A) Low-
er than the air pressure outside. (B) Equal to the air pres-
sure outside. (C) Higher than the air pressure outside.

Apparent Advantages 
of Standardized Tests

An obvious alternative to creating our own SQUABU
test is to use existing standardized tests. However, it
seems to me that the apparent advantages of using
standardized tests as benchmarks are mostly either
minor or illusory. The advantages that I am aware of
are the following:

drop heavier. (F) Make the drop lighter. (G) Lift the
bottom plate.

Problem H.12: If the oil drop fell onto the bottom
plate, Millikan would (A) Increase the charge on the
plates. (B) Reduce the charge on the plates. (C)
Increase the charge on the drop. (D) Reduce the charge
on the drop. (E) Start over with a new oil drop.

Problem H.13: The experiment demonstrated that the
charge is quantized; that is, the charge on an object is
always an integer multiple of the charge of the elec-
tron, not a fractional or other noninteger multiple. To
establish this, Millikan had to measure the charge on
(A) One oil drop. (B) Two oil drops. (C) Many oil drops.

Astronomy Problems
Problem H.14: Does it ever happen that there is an
eclipse of the sun one day and an eclipse of the moon
the next?

Problem H.15: Does it ever happen that someone on
Earth sees an eclipse of the moon shortly after sunset?

Problem H.16: Does it ever happen that someone on
Earth sees an eclipse of the moon at midnight?

Problem H.17: Does it ever happen that someone on
Earth sees an eclipse of the moon at noon?

Problem H.18: Does it ever happen that one person on
Earth sees a total eclipse of the moon, and at exactly
the same time another person sees the moon
uneclipsed?

Problem H.19: Does it ever happen that one person on
Earth sees a total eclipse of the sun, and at exactly the
same time another person sees the sun uneclipsed?

Problem H.20: Suppose that you are standing on the
moon, and Earth is directly overhead. How soon will
Earth set? (A) In about a week. (B) In about two weeks.
(C) In about a month. (D) Earth never sets.

Problem H.21: Suppose that you are standing on the
moon, and the sun is directly overhead. How soon will
the sun set? (A) In about a week. (B) In about two
weeks. (C) In about a month. (D) The sun never sets.

Problem H.22: You are looking in the direction of a
particular star on a clear night. The planet Mars is on
a direct line between you and the star. Can you see the
star?

Problem H.23: You are looking in the direction of a
particular star on a clear night. A small planet orbiting
the star is on a direct line between you and the star.
Can you see the star?

Problem H.24: Suppose you were standing on one of
the moons of Jupiter. Ignoring the objects in the solar
system, which of the following is true: (A) The pattern
of stars in the sky looks almost identical to the way it
looks on Earth. (B) The pattern of stars in the sky looks
very different from the way it looks on Earth.

Problem H.25: Nearby stars exhibit parallax due to the
annual motion of Earth. If a star is nearby, and is in the
plane of Earth’s revolution, and you track its relative
motion against the background of very distant stars
over the course of a year, what figure does it trace? (A)
A straight line. (B) A square. (C) An ellipse. (D) A
cycloid.
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Standardized Tests Exist
Standardized tests exist, in large number; they do not
have to be created. This “argument from laziness” is
not entirely to be sneezed at. The experience of the
computational linguistics community shows that, if
you take evaluation seriously, developing adequate
evaluation metrics and test materials requires a very
substantial effort. However, the experience of the
computational linguistic community also suggests
that, if you take evaluation seriously, this effort can-
not be avoided by using standardized tests. No one in
the computational linguistics community would
dream of proposing that progress in natural language
processing (NLP) should be evaluated in terms of
scores on the English language SATs.

Investigator Bias
Entrusting the issue of evaluation measures and
benchmarks to the same physical reasoning commu-
nity that is developing the programs to be evaluated
is putting the foxes in charge of the chicken coops.
The AI researchers will develop problems that fit their
own ideas of how the problems should be solved.
This is certainly a legitimate concern; but I expect in
practice much less distortion will be introduced this
way than by taking tests developed for testing people
and applying them to AI.

Vetting and Documentation
Standardized tests have been carefully vetted and
the performance of the human population on them
is very extensively documented. On the first point,
it is not terribly difficult to come up with correct
tests. On the second point, there is no great value to
the AI community in knowing how well humans of
different ages, training, and so on do on this prob-
lem. It hardly matters which questions can be
solved by 5 year olds, which by 12 year olds, and
which by 17 year olds, since, for the foreseeable
future, all AI programs of this kind will be idiot
savants (when they are not simply idiots), capable
of superhuman calculations at one minute, and sub-
human confusions at the next. There is no such
thing as the mental age of an AI program; the abili-
ties and disabilities of an AI program do not corre-
spond to those of any human being who has ever
existed or could ever exist.

Public Acceptance
Success on standardized tests is easily accepted by the
public (in the broad sense, meaning everyone except
researchers in the area), whereas success on metrics
we have defined ourselves requires explanation, and
will necessarily be suspect. This, it seems to me, is the
one serious advantage of using standardized tests.
Certainly the public is likely to take more interest in
the claim that your program has passed the SAT, or
even the fourth-grade New York Regents test, than in
the claim that it has passed a set of questions that

you yourself designed and whose most conspicuous
feature is that they are spectacularly easy.

However, this is a double-edged sword. The public
can easily jump to the conclusion that, since an AI
program can pass a test, it has the intelligence of a
human that passes the same test. For example, Ohls-
son et al. (2013) titled their paper “Verbal IQ of a
Four-Year Old Achieved by an AI System.”5 Unfortu-
nately, this title was widely misinterpreted as a claim
about verbal intelligence or even general intelli-
gence. Thus, an article in ComputerWorld (Gaudin
2013) had the headline “Top Artificial Intelligence
System Is As Smart As a 4-Year-Old;” the Independent
published an article “AI System Found To Be as
Clever as a Young Child after Taking IQ Test;” and
articles with similar titles were published in many
other venues. These headlines are of course absurd; a
four-year old can make up stories, chat, occasionally
follow directions, invent words, learn language at an
incredible pace; ConceptNet (the AI system in ques-
tion) can do none of these.

Unpublished
Finally, some standardized tests, including the SATs,
are not published and are available to researchers
only under stringent nondisclosure agreements. It
seems to me that AI researchers should under no cir-
cumstances use such a test with such an agreement.
The loss from the inability to discuss the program’s
behavior on specific examples far outweighs the gain
from using a test with the imprimatur of the official
test designer. This applies equally to Haroun and
Hestenes’ (1985) well-known basic physics test; in
any case, it would seem from the published infor-
mation that that test focuses on testing understand-
ing of force and energy rather than testing the rela-
tion of formal physics to basic world knowledge. The
same applies to the restrictions placed by kaggle.com
on the use of their data sets.

Standardized tests carry an immense societal bur-
den and must meet a wide variety of very stringent
constraints. They are taken by millions of students
annually under very plain testing circumstances (no
use of calculators, let alone Internet). They bear a dis-
proportionate share in determining the future of
those students. They must be fair across a wide range
of students. They must conform to existing curricu-
la. They must maintain a constant level of difficulty,
both across the variants offered in any one year, and
from one year to the next. They are subject to
intense scrutiny by large numbers of critics, many of
them unfriendly. These constraints impose serious
limitations on what can be asked and how exams
can be structured.

In developing benchmarks for AI physical reason-
ing, we are subject to none of these constraints. Why
tie our own hands, by confining ourselves to stan-
dardized tests? Why not take advantage of our free-
dom?
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Conclusion
I have not worked out all the practical
issues that would be involved in actu-
ally offering one of the SQUABU tests
as an AI challenge, but I feel confident
that it can be done, if there is any
interest in it.

The kind of knowledge tested in
SQUABU is, of course, only a small part
of the knowledge of science that a K–
12 student possesses; however, it is one
of the fundamental bases underlying
all scientific knowledge. An AI system
for general scientific knowledge that
cannot pass the SQUABU challenge,
no matter how vast its knowledge base
and how powerful its reasoning
engine, is built on sand.
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Notes
1. See Nasar (1998), p. 80.

2. There may be some unresolved issues in
the theory of continuously branching time.

3. amr.isi.edu.

4. Do not attempt to carry out this experi-
ment based on the description here. Potas-
sium chlorate is explosive, and safety pre-
cautions, not described here, must be taken.

5. They have since changed the title to
Measuring an Artificial Intelligence Sys-
tem’s Performance on a Verbal IQ Test for
Young Children.
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