
For Alan Turing, the problem of creating an intelligent
machine was to be reduced to the problem of creating a
thinking machine (Turing 1950). He observed, however,

that such a goal was somewhat ill-defined: how was one to
conclude whether or not a machine was thinking (like a
human)? So Turing replaced the question with an operational
notion of what it meant to think through his now famous
Turing test. The details are well known to all of us in AI. One
feature of the test worth emphasizing, however, is its direct
focus on language and its use: in its most well known form,
the human interrogator can communicate but not see the
computer and the human subject participating in the test.
Hence, in a sense, it has always been tacitly assumed that
physical embodiment plays no role in the Turing test. Hence,
if the Turing test is to represent the de facto test for intelli-
gence, having a body is not a prerequisite for demonstrating
intelligent behavior.1

The general acceptance of the Turing test as a sensible
measure of achievement in the quest to make computers
intelligent has naturally led to an emphasis on equating
intelligence with cogitation and communication. But, of
course, in AI this has only been part of the story: disembod-
ied thought alone will not get one very far in the world. The
enterprise to achieve AI has always equally concerned itself
with the problems of perception and action. In the physical
world, this means that an agent needs to be able to perform
physical actions and understand the physical actions of oth-
ers.

Also of concern for the field of AI is the problem of how to
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� The Turing test, as originally con-
ceived, focused on language and reason-
ing; problems of perception and action
were conspicuously absent. To serve as a
benchmark for motivating and monitor-
ing progress in AI research, this article
proposes an extension to that original
proposal that incorporates all four of
these aspects of intelligence. Some ini-
tial suggestions are made regarding how
best to structure such a test and how to
measure progress. The proposed test also
provides an opportunity to bring these
four important areas of AI research back
into sync after each has regrettably
diverged into a fairly independent area
of research of its own.



quantify progress and how to support incremental
development; it is, by now, pretty much agreed upon
that the Turing test represents a rather weak tool for
measuring the level of demonstrable intelligence or
thinking associated with a particular subject, be it
human or artificial. The passing of the test by a
machine would certainly justify one in announcing
the arrival of human-level AI, but along the way, it
can only provide a rather crude measure. To address
this deficiency, variants of the Turing test have been
proposed and are being pursued; one notable exam-
ple is the Winograd Schema Challenge2 that supports
incremental testing and development (Levesque,
Davis, and Morgenstern 2012). The Winograd
Schema Challenge does not, however, address the
physical embodiment concerns that are the subject
of this article. Nevertheless, any proposed alternative
must bring with it a reasonable set of quantifiable
measures of performance. 

So, what is it about the Turing test that makes it
unsuitable for gauging progress in intelligent percep-
tion and action? 3 From the perspective of action, the
Turing test can only be used to judge descriptions of
actions that one could argue were sufficiently
detailed to be, in principle, executable. Consider
some simple everyday ascriptions of action: “Little
Johnny tied his shoelace,” or “LeBron James just hit
a layup.” If perception is taken completely out of the
picture, a purely linguistic description of these types
of actions is rather problematic (read: a royal pain):
one would have to write down a set of rules or axioms
that correctly captured the appropriate class of move-
ment actions and how they were stitched together to
produce a particular spatiotemporally bounded high-
level movement, in this case, bona fide instances of
shoelace tying or basketball layups. A more sensible
alternative might involve learning from many exam-
ples, along the lines demonstrated by Li and Li
(2010). And for that, you need to be able to perceive.
It’s hard for me to describe a shoe-tying to you if you
have never seen one or could never see one.4

However, consider now the problem of judging the
feasibility of certain actions without perception, such
as reported by the statement, “the key will not fit in
the lock.” Through a process of spatial reasoning, an
agent can determine whether certain objects (such as
a ball) might fit into certain other objects (such as a
suitcase). However, this sort of commonsense rea-
soning could only help with our example during ini-
tial considerations: perhaps to conclude whether a
particular key was a candidate for fitting into a par-
ticular lock given that it was of a particular type. After
all, old antique keys, car keys, and house keys all look
different. However, it would still be quite impossible
to answer the question, “Will the key fit?” without
being able to physically perceive the key and the key-
hole, physically manipulating the key, trying to get it
into the hole, and turning the key.5 It’s no surprise,
then, that the challenges that these sorts of actions

raise have received considerable attention in the
robotics literature: Matt Mason at CMU categorizes
them as paradigmatic examples of “funneling
actions” in which other artifacts in the environment
are used to guide an action during execution (Mason
2001). Note that from a purely linguistic standpoint,
the details of such action types have never figured
into the lexical semantics of the corresponding verb.
From a commonsense reasoning perspective in AI,
their formalization has not been attempted for the
reasons already given.6

These observations raise the question of whether
verbal behavior and reasoning are the major indica-
tors of intelligence, as Descartes and others believed.
The lessons learned from AI over the last 50 years
should suggest that they do not. Equally challenging
and important are problems of perception and
action. Perhaps these two problems have historically
not received as much attention due to a rather firm-
ly held belief that what separates human from beast
is reasoning and language: all animals can see and
act, after all: one surely should not ascribe intelli-
gence to a person simply because he or she can, for
example, open a door successfully. However, any
agent that can perform only one action — opening a
door — is certainly not a very interesting creature, as
neither is one that can utter only one particular sen-
tence. It is, rather, the ability to choose and compose
actions for a very broad variety of situations that dis-
tinguishes humans. In fact, humans process a rather
impressive repertoire of motor skills that distinguish
them from lower primates: highly dexterous,
enabling actions as diverse as driving, playing the
piano, dancing, playing football, and others. And cer-
tainly, from the very inception of AI, problems of
planning and acting appeared center stage
(McCarthy and Hayes 1969).

Functional Individuation of Objects
The preceding illustrations served to emphasize the
difficulty in reasoning and talking about many
actions without the ability to perceive them. Howev-
er, our faculty of visual perception by itself, without
the benefit of being able to interact with an object or
reason about its behavior, runs up against its own dif-
ficulties when it attempts to recognize correctly
many classes of objects. 

For example, recognizing something as simple as a
hinge requires not only that one can perceive it as
something that resembles those hinges seen in the
past, but also that one can interact with it to con-
clude that it demonstrates the necessary physical
behavior: that is, that it consist of two planes that
can rotate around a common axis. Finally, one must
also be able to reason about the object in situ. The
latter requires that one can reason commonsensical-
ly to determine whether it is sufficiently rigid, can be
attached to two other objects (such as a door and a

Articles

56 AI MAGAZINE



Articles

SPRING 2016   57

wall), and is also constructed so that it can bear the
weight of one or both of those objects. So this very
simple example involving the functional individua-
tion of an object requires, by necessity, the integra-
tion of perception, action, and commonsense rea-
soning. The challenge tasks described in the next
section nicely highlight the need for such integrated
processes.

The Challenge
This leads finally to the question of what would con-
stitute a reasonable physically embodied Turing test
that would satisfy the desiderata so far outlined:
physical embodiment coupled with reasoning and
communication, support for incremental develop-
ment, and the existence of clear quantitative meas-
ures of progress. 

In my original description of this particular chal-
lenge, I attempted to parallel the original Turing test
as much as possible. I imagined a human tester com-
municating with a partially unseen robot and an
unseen human; the human would have access to a
physically equivalent but teleoperated pair of robot
manipulators. The tester would not be able to see the
body of either, only the mechanical arms and video
sensors. Significant differences in the appearance of
motion between the two could be reduced through

stabilizing software to smooth any jerky movements. 
The interrogator would interact with the human

and robot subject through language, as in the Turing
test, and would be able to ask questions or make com-
mands that would lead to the appropriate physical
actions. The tester would also be able to demonstrate
actions.

However, some of the participants of the workshop
at which this idea was first presented7 observed that
particular expertise involving tele-operation might
render comparisons difficult. The participants of the
workshop agreed that the focus should instead be on
defining a set of progressively more challenging
problem types. The remainder of this document fol-
lows that suggestion.

This challenge will consist of two tracks: The con-
struction track and the exploration track.

The construction track’s focus will be on building
predefined structures (such as a tent or modular fur-
niture) given a combination of verbal instructions
and diagrams or pictures. A collaborative subtrack
will extend this to multiple individuals, a human
agent and a robotic agent. 

The exploration track will be more improvisation-
al in flavor and focus on experiments in building,
modifying, and interacting with complex structures
in terms of more abstract mental models, possibly
acquired through experimentation itself. These struc-

Figure 1. Collaboratively Setting Up a Tent. 

A major challenge is to coordinate and describe actions, such as “Hold the pole like this while I attach the rope.”



tures can be static (for example, as in figure 3) or
dynamic (as in figure 6). 

Communication through natural language will be
an integral part of each track. One of the principal
goals of this challenge is to demonstrate grounding
of language both during execution of a task and after
completion. For example, for both the exploration
and the construction tracks, the agents must be able
to accept initial instructions, describe and explain
what they are doing, accept critique or guidance, and
consider hypothetical changes. 8 

The Construction Track
The allowable variability of target structures in the
construction track is expected to be less than in the
exploration track. The construction task will involve
building predefined structures that would be speci-
fied through a combination of natural language and
pictures. Examples might include an object such as a
tent (figure 1) or putting together Ikea-like furniture
(figure 2). Often, ancillary information in the form of
diagrams or snapshots plays an important role in
instructions (see, for example, figure 4). During the
task challenge definition phase, the degree to which
this complex problem can be limited (or perhaps
included as part of another challenge) will be inves-
tigated. Crowdsourced sites that contain such

instructions might be useful to consult in this
respect.9

The collaboration task requires that the artificial
and human agents exchange information before and
during execution to guide the construction task. A
teammate might ask for help through statements
such as, “Hold the tent pole like this while I tighten
the rope”; the system must reason commonsensical-
ly about the consequences of the planned action
involving the rope-tightening to the requested task
as well as how an utterance such as “Hold . . . like this
. . .” should be linguistically interpreted and coordi-
nated with the simultaneous visual interpretation. 

Rigidity of materials, methods of attachment, and
the structural function of elements (that is, that tent
poles are meant to hold up the fabric of a tent) will
be varied as well as the successful intended function-
ality of the finished product (for example, a tent
should keep water out and also not fall apart when
someone enters it). Eventually, time to completion
could also be a metric; however, for now, these pro-
posed tasks are of sufficient difficulty that the major
concern should simply be success. 

The description given here of the construction task
places emphasis on robotic manipulation; however,
there are nonmanipulation robotic tasks that could
be incorporated into the challenge that also involve
an integration of perception, reasoning, and action.
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Figure 2. The IkeaBots Developed at the Massachusetts Institute of Technology 
Can Collaborate on the Construction of Modular Furniture. 



Examples include finding a set of keys, counting the
number of chairs in a room, and delivering a message
to some person carrying a suitcase.10 An organization
committee that will be selected for this challenge will
investigate the proper mix of such tasks into the final
challenge roadmap. 

There are many robotic challenges involving
manipulation and perception related to this chal-
lenge. However, a number of recent existence proofs
provide some confidence that such a challenge can
be initiated now. The final decisions on subchallenge
definition will be made by the organizing committee.
As the complexity of these tasks increases, one can
imagine their real-world value in robot-assistance
tasks as demanding as, say, repairing roads, housing
construction, or setting up camp on Mars.

The IkeaBot system (figure 2) developed at MIT is
one such existence proof: it demonstrates the collab-
oration of teams of robots in assembling Ikea furni-
ture during which robots are able to ask automatical-
ly for help when needed (Knepper et al. 2013). Other
work involving communication and human-robot
collaboration coupled with sophisticated laboratory
manipulation capabilities has been demonstrated at
Carnegie Mellon University, and represents another
good starting point (Strabala et al. 2012). 

Research in computer vision has made impressive
progress lately (Li and Li 2010, Le et al. 2012),
enabling the learning and recognition of complex
movements and feature-rich objects. It is hoped that
this challenge would motivate extensions that would
factor in functional considerations into any object-
recognition process. 

Finally, the organization committee hopes to be
able to leverage robotic resources under other activi-
ties such as the RoboCup Home Challenge,11 as
much as possible. 

The Exploration Track
If you’ve ever watched a child play with toys such as
Lego blocks, you know that the child does not start

with a predefined structure in mind. There is a strong
element of improvisation and experimentation dur-
ing a child’s interactions, exploring possible struc-
tures, adapting mental models (such as that of a
house or car), experimenting with sequences of
attachment, modifying structures, and so on. Toys
help a child groom the mind-body connection, serv-
ing as a sort of laboratory for exploring common-
sense notions of space, objects, and physics. 

For the exploration track, I therefore propose
focusing on the physical manipulation of children’s
toys, such as Lego blocks (figure 3). The main differ-
ence between the two tracks is that the exploration
track supports experimentation involving the modi-
fication of component structures, adjusting designs
according to resources available (number of blocks,
for example), and exploring states of stability during
execution. These are all possible because of the sim-
ple modular components that agents would work
with. The exploration track would also allow for test-
ing the ability of intelligent agents to build a dynam-
ic system and describe its operation in commonsense
terms.

Incremental progression of difficulty would be
possible by choosing tasks to roughly reflect levels of
child development.

Table 2 summarizes possible levels of progression.
The idea is to create scenarios with a pool of physical
resources that could support manipulation, com-
monsense reasoning, and abstraction of structures
and objects, vision, and language (for description,
explanation, hypothetical reasoning, and narrative).

Figure 3 illustrates a static complex structure while
the object in figure 6 involves the interaction of
many parts. In the latter case, success in the con-
struction of the object also involves observing and
demonstrating that the end functionality is the
intended one. In the figure, there is a small crank at
the bottom left that results in the turning of a long
screw, which lifts metal balls up a column into
another part of the assembly in which the balls fall
down ramps turning various wheels and gates along
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Stage Abilities demonstrated 

Construction by one agent Basic physical, perceptual, and motor skills 

Collaboration Monitoring the activity (perceive progress, 
identify obstacles), contribute help  

Communication Reference (“hold like <this>”), offer help, 
explain, question answering (“why did you let 
go?”), narrate activity as necessary 

Table 1. Some Possible Levels of Progression for the Construction Track Challenge Tasks.

Certain capabilities might best be first tested somewhat independently; for example, perception faculties might be tested
for by having the agent watch a human perform the task and being able to narrate what it observes.



the way. A description along the lines of the last sen-
tence is an example of the sort of explanation that a
robot should be able to provide, in which the abstract
objects are functionally individuated, in the manner
described earlier. 

Figure 5 shows another assembly that demon-
strates the creation of new objects (such as balls from
clay, a continuous substance), operating a machine
that creates small balls, fitting clay into syringes, and
making lollipop shapes with swirls made from multi-
ple color clays.12 Tasks involving explaining the oper-
ation of such a device, demonstrating its operation,
having a particular behavior replicated, and answer-
ing questions about processes involved are all beyond
the abilities of current AI systems.

Manipulation of Lego blocks and other small toy
structures would require robotic manipulators capa-
ble of rather fine movements. Such technology exists
in robotic surgical systems as well as in less costly
components under development by a number of
organizations.

Relation to Research in 
Commonsense Reasoning

The more ambitious exploration track emphasizes
the development of systems that can experiment on
their own, intervening into the physical operation of
a system and modifying the elements and connec-
tions of the system to observe the consequences and,
in the process, augment their own commonsense
knowledge. Rather than having a teacher produce
many examples, such self-motivated exploring
agents would be able to create alternative scenarios
and learn from them on their own. Currently this is
all done by hand; for example, if one wants to encode
the small bit of knowledge that captures the fact that
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Development stage Example 

1. Simple manipulation Create a row of blocks; then a wall 

2. Construction and abstraction Connect two walls; then build a “house”; size 
depends on number of blocks available 

3. Modification Add integrated structures such as a parking 
garage to house  

4. Narrative generation “This piece is like a hinge that needs to be 
placed before the wall around it; otherwise it 
won’t fit later” (said while installing the door 
of a house structure) 

5. Explanation “The tower fell because the base was too 
narrow” 

6. Hypothetical reasoning “What will happen if you remove this?” 

Table 2. A Sequence of Progressively More Sophisticated Skills 
to Guide the Definition of Subtask Challenges Within the Exploration Track.

Figure 3. An Abstract Structure of a House Built Using Lego Blocks.



not tightening the cap on a soda bottle will cause it
to loose its carbonation, one would write down a
suitable set of axioms. The problem, of course, is that
there is so much of this sort of knowledge. 

Research in cognitive science suggests the possibil-
ity of the existence of bodies of core commonsense
knowledge (Tenenbaum 2015). The exploration track
provides a setting for exploring these possibilities.
Perhaps within such a laboratory paradigm, the role
of traditional commonsense reasoning research
would shift to developing general principles, such as
models of causation or collaboration. AI systems
would then instantiate such principles during self-
directed experimentation. 

The proposed tests will provide an opportunity to
bring four important areas of AI research (language,
reasoning, perception, and action) back into sync
after each has regrettably diverged into a fairly inde-
pendent area of research. 

Summary
This article was not about the blocks world and it has
not argued for the elimination of reasoning from
intelligent systems in favor of a stronger perceptual
component. This article argued that the Turing test
was too weak an instrument for testing all aspects of
intelligence and, inspired by the Turing test, pro-
posed an alternative that was argued to be more suit-
able for motivating and monitoring progress in set-
tings that demand an integrated deployment of
perceptual, action, commonsense reasoning, and lan-
guage faculties. The challenge described in this doc-
ument differs from other robotic challenges in terms
of its integrative aspects. Also unique here is the per-
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Figure 5. Manipulation and Object 
Formation with Nonrigid Materials.

Figure 6. The Exploration Track Will Also Involve Dynamic Toys with
Moving Parts and Some Interesting Aggregate Physical Behavior. 

The modularity afforded by toys makes this much easier than working with
large expensive systems. This picture is a good illustration of the need for
functional understanding of elements of a structure. In the picture, the child
can turn a crank at the bottom left — a piece that has functional signifi-
cance — that turns a large red vertical screw that then lifts metal balls up a
shaft after which they fall through a series of ramps turning various gears
along the way. 

Figure 4. Instructions Often Require Pictures or Diagrams. 

The step-by-step instructions are for a Lego-like toy. Notice that cer-
tain pieces such as the window or wheels are unrecognizable as such
unless they are placed in the correct context of the overall structure.
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spective on agent embodiment as leading to an
agent-initiated form of experimentation (the world
as a physical laboratory) that can trigger common-
sense learning. 

The considerable span of time that has elapsed
since Turing proposed his famous test should be suf-
ficient for the field of AI to devise more comprehen-
sive tests that stress the abilities of physically embod-
ied intelligent systems to think as well as do.

Notes
1. One should resist the temptation here of equating intel-
ligence with being smart in the human sense, as in having
a high IQ. That has rarely been the case in AI where we have
usually been quite happy to try to replicate everyday
human behavior. In the remainder of this article, I will use
the term intelligence in this more restrictive, technical sense. 

2. Winograd Challenge, 2015, commonsensereasoning.org/
winograd.html.

3. I certainly would not deny that a program that passed the
Turing test was intelligent. What I am suggesting is that it
would not be intelligent in a broad enough set of areas for
the many problems of interest to the field of AI. The Turing
test was never meant as a necessary test of intelligence, only
a sufficient one. The arguments that I am presenting, then,
suggest that the Turing test also does not represent a suffi-
cient condition for intelligence, only evidence for intelli-
gence (Shieber 2004). 

4. I take this point to be fairly uncontroversial in AI: a man-
ual with a picture describing some action (such as setting
up a tent) is often fairly useless without the pictures. 

5. A similar observation was made in the context of the spa-
tial manipulation of buttons (Davis 2011).

6. Put most simply, the best that the Turing test could test
for is whether a subject would answer correctly to some-
thing like, “Suppose I had a key that looked like . . . and a
lock that looked like . . .  Would it fit?” How on earth is one
to find something substantive to substitute (that is, to say)
for the ellipses here that would have any relevant conse-
quence for the desired conclusion in the actual physical
case?

7. Beyond the Turing Test: AAAI-15 Workshop WS06. Janu-
ary 25, 2015, Austin, Texas.

8. One might be concerned that the inclusion of language
is overly ambitious. However, without it one would be left
with a set of challenge problems that could just as easily be
sponsored by the robotics or computer vision communities
alone. The inclusion of language makes this proposed chal-
lenge more appropriately part of the concerns of general AI. 

9. See, for example, www.wikihow.com/Assemble-a-Tent. 

10. I am grateful to an anonymous reviewer for bringing up
this point. 

11. www.robocupathome.org.

12. See www.youtube.com/watch?v=Cac7Nkki_X0. 
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