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Anew generation of cognitive robots has emerged in
recent years to provide service, care, and companion-
ship to humans. To support natural dialogue between

a human and these robots, technology enabling grounded
language communication has become increasingly impor-
tant. During human-robot dialogue, given a human utter-
ance, the robot needs to understand what objects and activ-
ities in its representation of the perceived world the human
is talking about. When the human issues a language com-
mand, the robot needs to identify a sequence of low-level
operations to execute that command. To support these capa-
bilities, language grounding addresses the problem of connect-
ing human language to robot internal representations of the
world, which include the robot’s knowledge of the world, the
perception of the environment, and the control of actions
that can change the world. Only when such grounding is
made is the robot able to understand human language, fol-
low language instructions, and communicate with humans
in language. 

However, grounding language to the robot internal senso-
rimotor representations is extremely challenging. For exam-
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n To enable situated human-robot dia-
logue, techniques to support grounded
language communication are essential.
One particular challenge is to ground
human language to a robot’s internal
representation of the physical world.
Although copresent in a shared environ-
ment, humans and robots have mis-
matched capabilities in reasoning, per-
ception, and action. Their
representations of the shared environ-
ment and joint tasks are significantly
misaligned. Humans and robots will
need to make extra effort to bridge the
gap and strive for a common ground of
the shared world. Only then is the robot
able to engage in language communica-
tion and joint tasks. Thus computation-
al models for language grounding will
need to take collaboration into consid-
eration. A robot not only needs to incor-
porate collaborative effort from human
partners to better connect human lan-
guage to its own representation, but also
needs to make extra collaborative effort
to communicate its representation in
language that humans can understand.
To address these issues, the Language
and Interaction Research group (LAIR)
at Michigan State University has inves-
tigated multiple aspects of collaborative
language grounding. This article gives a
brief introduction to this research effort
and discusses several collaborative
approaches to grounding language to
perception and action. 
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ple, grounding language to perception requires the
robot to process perceived visual signals and infer
high-level concepts and structures (for example,
objects, actions, and others). How to ground linguis-
tic expressions to the underlying numerical visual
features and how to acquire and learn grounded
semantic models become critical questions. Similarly,
grounding language to actions requires the robot to
make connections between high-level concepts (for
example, expressed by a verb) and the low-level
robotic control system, which is often programmed
to control only a set of primitive operations (for
example, move to, open gripper, and close gripper for
a robotic arm). How to acquire and learn grounded
meanings of concepts that can support automatic
planning for primitive robotic operations is another
critical question. 

Grounding language to perception and action is
further complicated by the lack of common ground
in representing the shared world. Compared to
human partners, robots have mismatched capabili-
ties in perception and reasoning. As shown in figure
1, although a human and a robot are copresent in a
shared physical world, their representations of the
shared environment and joint tasks are significantly
misaligned. The human, who has higher capabilities,

may have enriched representations, while the robot
with lower capabilities may only have impoverished
representations of the same world. Thus, although
they are copresent, they don’t share joint perceptual
experience, which will jeopardize the common
ground of the shared environment. Communication
between humans and robots will become difficult.
For example, the human may specify “the blue cup
next to the panda,” but the robot may not be able to
understand which object in its representation is
being referred to if the cup cannot be recognized cor-
rectly. This is a typical problem of grounded language
interpretation. Similarly, for language generation,
suppose the robot wants to refer to the blue cup (but
cannot recognize it correctly). The robot may use lan-
guage “the small white blue object, next to a big
object.” It will be difficult for the human to under-
stand which object in his/her representation is being
talked about. Because of these difficulties, language
grounding often cannot be succeeded by one
attempt, but rather is achieved by a collaborative
process between humans and robots based on multi-
ple iterations (for example, through refashion, clari-
fication, and others). Therefore, algorithms for lan-
guage grounding in human-robot dialogue will need
to take collaboration into account.

Figure 1. Collaborative Language Grounding to Establish a Joint Perceptual Basis.
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To address these issues, the Language and Interac-
tion Research (LAIR) group at Michigan State Univer-
sity has investigated several aspects of collaborative
language grounding toward situated human-robot
dialogue. This article gives an overview of this
research effort. It starts with a simulation experiment
to examine collaborative effort in mediating a shared
perceptual basis between human partners with mis-
matched perceptual capabilities. It then describes
approaches that incorporate collaboration to ground
language to perception as motivated by observations
from human communication studies. It further
shares two experiments that demonstrate the advan-
tage of collaborative effort from the robot in lan-
guage grounding to mitigate perceptual differences.
In addition to discussing grounding language to per-
ception, this article also provides a brief introduction
to grounding language to action, focusing on repre-
sentations of grounded verb semantics and their
acquisitions through collaborative step-by-step lan-
guage instructions. 

Collaborative Effort in Mediating
Shared Perceptual Basis 

In conversation, participants coordinate their men-
tal states based on their mutual understanding of
their intention, goals, and current tasks (Austin 1962,
Grice 1975, Clark 1996). An important notion, which
is also critical to the success of communication, is
common ground. According to Clark (1996), “two
people’s common ground is, in effect, the sum of
their mutual, common, or joint knowledge, beliefs,
and suppositions.” What allows participants to suc-
cessfully establish common ground largely depends
on the shared bases: their joint experiences, events,
or episodes. One type of shared basis, which is
extremely important for situated communication, is
the perceptual basis, which describes joint perceptu-
al experiences. Clark (1996) explains that:

Each of us lives in a world of perceptible things, enti-
ties we can look at, feel, hear, smell, taste. At any
moment, we have perceptual access, with more or less
effort, to only part of that world, our perceptual shell.
You and I have distinct perceptual shells, but when we
are together, they overlap. But having overlapping
perceptual shells isn’t sufficient for perceptual copres-
ence. You and I manage to attend to the same things
and to become confident that we have done so in the
right way.

As shown in figure 1, although humans and robots
are copresent, their perceptual shells no longer over-
lap because of their mismatched capabilities. This is
quite different from human-human communication.
Thus one critical question is how humans with mis-
matched perceptual capabilities communicate with
each other to establish a joint perceptual basis. While
previous works have studied the role of mismatched
spatial reasoning capabilities and diverse culture

background in human-human communication, mis-
matched perceptual capabilities have not been
addressed. As it is difficult to recruit human subjects
with measurable differences in perceptual capabili-
ties, a simulation system was developed to conduct
experiments as shown in figure 2 (Liu, Fang, and
Chai 2012). 

At one end of the system is a director who is
assumed to have higher perceptual capabilities; and
at the other end is a matcher who is assumed to have
lower perceptual capabilities. To simulate differences
in perception, the director is given an original image
and the matcher is given an impoverished image,
which is rendered by applying a simple computer
vision algorithm on the original scene. Some objects
available to the director have a unique name. The
director’s goal is to communicate the names of the
objects to the matcher so that the matcher comes to
an understanding of which object has what name.
Using this system, we conducted several user studies
and collected a set of conversation data that demon-
strated how the director and the matcher strived to
mitigate perceptual differences and reach a mutual
understanding of object names. 

Figure 2 also shows an example of collaborative
dialogue between the director (D) and the matcher
(M). This example demonstrates similarity in collab-
orative behaviors as identified in collaborative refer-
ential communication. Clark and Wilkes-Gibbs
(1986) describe referential communication as a col-
laborative process following the principle of least col-
laborative effort: “speakers and addressees try to min-
imize collaborative effort, the work both speakers
and addressees do from the initiation of the referen-
tial process to its completion.” As shown in figure 2,
the partners make extra efforts to refer and ground
their references. For example, instead of directly
going to the “yellow pepper” and convey its name
“Brittany,” the director takes an extra effort by start-
ing with “a cluster of four objects in the upper left.”
The director then goes through step-by-step install-
ments (Clark and Wilkes-Gibbs 1986) and waits for
the matcher’s acceptance before taking another step
that leads closer to the targeted object (that is, the
yellow pepper). The matcher also makes an extra
effort. Not only does the matcher provide feedback
and acknowledgement at each step, but the matcher
also provides additional descriptions about what the
matcher perceives from the environment. Spatial
expressions are commonly used to describe objects in
the environment, which include not only the binary
relations (for example, “the one to the left of the blue
cup”), but also the group-based descriptions (for
example, “a cluster of four objects in the upper
right”). Thus computational models for both lan-
guage interpretation (for example, reference resolu-
tion) and language generation (for example, referring
expression generation) will need to model different
spatial relations and take collaboration into account. 
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Grounding Language to Perception
Recent years have seen an increasing amount of work
on grounding language to visual perception (Tellex
et al. 2011; Matuszek et al. 2012; Yu and Siskind
2013; Naim et al. 2015; Yang et al. 2016). At the LAIR
lab, we focus on collaboration in grounding language
to perception. Starting with simplified scenes, we
have developed collaborative models for language
grounding that are essential for both language inter-
pretation and language generation. 

Grounded Language Interpretation
Grounded language interpretation refers to the prob-
lem of grounding human language to the robot’s
internal representation of the perceived world. This
often involves grounding referring expressions (for
example, “a cluster of four objects,” “a blue cup,” and
others from the director’s utterances in figure 2) to
the external world perceived by the robot. Under-
standing which object(s) are talked about is chal-
lenging given mismatched underlying representa-
tions. However, shown in figure 2, as the col  -
laborative discourse unfolds, referring expressions
can be refashioned and more evidence (for example,

through different spatial or group relations) can be
provided by the director. Thus it is important to keep
track of different relations and use these relations to
help identify target objects. An effective way to cap-
ture relations is through graphs. This section intro-
duces graph-based approaches to interpreting and
grounding language to agents’ perceptions. 

Attributed relational graphs are particularly suit-
able for representing the perceived environment and
conversation discourse (Chai, Hong, and Zhou 2004;
Liu, Fang, and Chai 2012; Fang, Liu, and Chai 2012).
Figure 3 shows an example of the graph representa-
tion. As the conversation unfolds, a language graph is
constructed where each node captures a referring
expression (for example, “yellow pepper”) and the
desired attributes for the grounded referents (for
example, type: pepper; color: yellow). Various rela-
tions such as spatial relations between different refer-
ring expressions are captured by the edges in the
graph. Similarly, the perceived objects and their spa-
tial relations can be represented by a vision graph.
Each node in the vision graph captures the lower-lev-
el numerical features associated with different dimen-
sions of perception. The edges in the vision graph
capture the spatial relations between every pair of

Figure 2. A Simulated Environment to Study Human-Human Communication Under Mismatched Perceptual Basis. 

Director Matcher 

D1: there is basically a cluster of four objects in the upper left, do you see that?  

M1:  yes    
D2:  ok, so the one in the corner is a blue cup  
M2:  not a cup, I see there is a square, it is blue  

D3:  alright, I will go with that, right under that is a yellow pepper  

M3:  ok, I see apple but orangish yellow     
D4:  ok, so that yellow pepper is named Brittany  
M4:  uh, the bottom left of those four? Because I do see a yellow pepper in the upper right  
D5:  the upper right of the four of them?   



perceived objects. Thus, given a language graph and
a vision graph, the problem of interpreting referring
expressions becomes a graph matching problem that
finds a best match (θ) between nodes and edges in
the language graph to the nodes and edges in the
vision graph that achieves the maximum compati-
bility between the two graphs. The graph compati-
bility can be measured based on node compatibility
and edge compatibility. Node/edge compatibilities
can be further decomposed into the match between
a set of language descriptors (for example, the color
“yellow” or the size “big”) and the lower-level
numerical features (for example, the color histogram
or the size of the bounding box). These matches
between language descriptors and corresponding fea-
tures are also referred to as semantic grounding func-
tions. Different weights can be associated with
semantic grounding functions to indicate the
strength of a particular dimension of perception
applied to the overall matching. Given this graph-
matching formulation, different approaches can be
applied to obtain a solution, for example through
greedy beam search algorithms as described in Liu,
Fang, and Chai (2012) or probabilistic matching
using the graduated assignment algorithm (Fang, Liu,
and Chai 2012). The graph-based approaches have
several advantages as will be illustrated.

Modeling Rich Relations to 
Compensate Visual Recognition Errors
Graph-based approaches can effectively capture rich
relations among objects and compensate for percep-
tual errors on individual objects. The matching algo-
rithm does not enforce all language descriptors (for
example, captured in the language nodes) complete-
ly match the lower-level perceived features (for exam-
ple, captured in the vision nodes). Instead, semantic
grounding functions return a real number indicating
compatibility between a symbolic term and the per-
ceived visual features. The algorithm relies on all the
nodes/edges in the graphs to find the best approxi-
mation. By relying on these relations, the graph-
based approach can compensate for visual recogni-
tion errors and mitigate perceptual differences
between humans and agents.

A graph-based approach using greedy beam search
was applied to the director-matcher communication
data collected from our studies (described earlier). It
has demonstrated some promising results. For exam-
ple, when most of the objects (85 percent) could not
be correctly recognized (by a simple computer vision
algorithm), the graph-based approach successfully
grounded to 66 percent of these misrecognized
objects, leading to an over 27 percent performance
gain compared to the approach without modeling
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Figure 3. Graph-Matching for Interpreting Referring Expressions. 

……. 
H: ok, so the one in the corner is a blue cup
R: not a cup, I see there is a square, it is blue 
H: alright, I will go with that, right under that is a 
yellow pepper

Language Graph Vision Graph 

Type: Pepper 
Color: Yellow 
Position: .. 

SpatialRelation: Under

ObjectID : 0120 
Type: ?  
Color: [218,198,87] 
B-Box: [45,30] 
Position: [650,70] 

ObjectID : 0122 
Type: apple 
Color: [200,156,187] 
B-Box: [40,72] 
Position: [60,45] 

Type: Square 
Color: Blue 

graph matching 

must-link 

θ∗ = arg max
θ
 f (θ)
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relations (Prasov and Chai 2010). Detailed results and
analysis can be found in the paper by Liu, Fang, and
Chai (2012). Regular graphs can only model binary
relations between two entities. But they can be
extended to hypergraphs to capture higher order (n-
ary) relations, specifically for group-based expres-
sions such as “a cluster of four objects at upper right.”
Details on using the hypergraphs are described by Liu
et al. (2013). 

Incorporating Collaborative 
Patterns to Reduce Search Space
Graph-based approaches can effectively take into
consideration collaborative patterns to reduce the
search space for finding the best match. As shown in
figure 2, the director and the matcher collaborate
with each other to strive for a common ground of the
shared environment. There are different types of dis-
course dynamics conversation partners engage in.
For example, in M2 in figure 2, the matcher says “not
a cup, I see there is a square, it is blue.” In this case,
the matcher first rejects the director’s presentation
and then presents what the matcher perceives from
the environment. Given this presentation from the
matcher, the director immediately accepts that in D3
(“all right, I will go with that”) and then extends
from there to the target object (“right under that is a
yellow pepper”). This matcher-present-director-
accept strategy (also called robot-present-human-
accept strategy) has occurred frequently in our col-
lected data. It can be directly incorporated in the
graph-based approach to improve grounding of refer-
ring expressions (Liu et al. 2013). 

For example, as shown in figure 3, when the robot
introduces “a blue square” into the discourse, a node
representing “a blue square” is added to the language
graph. One nice thing is that when the robot intro-
duces this node, it precisely knows which object in its
own representation the expression “a blue square” is
grounded to. Thus as shown in figure 3, there is a
“must-link” between the language node and the
vision node. These “must-links” provide additional
constraints that lead to a smaller and more promising
subspace for searching for solutions. Our empirical
results have shown that incorporating the collabora-
tive pattern of robot-present-human-accept strategy
with the hypergraphs significantly improves per-
formance of grounding language to the target objects
by an absolute gain of more than 18 percent. More
details can be found in Liu et al. (2013). 

Efficient Algorithms to Produce 
Multiple Matching Hypotheses
Efficient graph-matching algorithms are available to
provide fast solutions with multiple hypotheses for
follow-up dialogue. For example, in the paper by Liu,
et al. (2014), a matching algorithm based on proba-
bilistic labeling is presented. This approach integrates
different types of evidence from the collaborative dis-
course into a Bayesian reasoning framework to
ground referring expressions. In this algorithm,

nodes in the vision graph are considered as labels.
Labeling refers to assigning a label (from the vision
graph) to a node in the language graph. The algo-
rithm finds a ranked list of labels to each node in the
language graph in an iterative manner. It first initi-
ates the labeling probabilities by considering only the
unary attributes, which can model any prior knowl-
edge about how a node might be related to a label. It
then updates the labeling probability of each node
based on the labeling of its neighbors and the rela-
tions with them. Coreference relations between lin-
guistic entities in the language graph are also mod-
eled during updating. A nice feature of this approach
is that when the labeling probabilities converge, the
system can obtain multiple hypotheses (that is, a
ranked list of labels for each node in the language
graph), which can be naturally incorporated into dia-
logue (for example, for clarification). The empirical
results have shown that the probabilistic labeling
approach significantly outperforms the state-space
search approach in both grounding accuracy and effi-
ciency (Liu et al. 2014). 

Incremental Learning Algorithms to 
Support Adaptation to Perceptual Capability
Graph-based approaches allow robots to incremen-
tally learn and assess their own perceptual capability
and to use more reliable perceptual channels for bet-
ter grounding. As described earlier, a key component
in graph-matching is semantic grounding functions,
which essentially match a linguistic descriptor (for
example, the word “red”) to the underlying visual
features (for example, color histogram distribution).
When grounding an expression (for example, “the
red cup on the left”) to the environment, the robot
often needs to combine the semantic grounding
functions for each attribute together through a
weighted sum. The weight assigned to each semantic
grounding function reflects how reliable the robot
considers the associated semantic grounding func-
tion. Some semantic grounding functions may be
more reliable than others and thus should be
assigned higher weights. This is particularly impor-
tant as humans and robots may have different per-
spectives of the visual features. For example, the
robot’s perception of “red” may be very different
from the human’s perception of red. Therefore, an
important question is whether the robot can learn
how reliable these semantic grounding functions are
and, more importantly, whether the robot can update
semantic grounding functions when it realizes they
are not reliable.

To address these questions, we developed an opti-
mization approach based on linear programming to
automatically learn the weights during human-robot
dialogue (Liu and Chai 2015). The idea is that, by
interacting with its human partner (for example,
through dialogue and feedback from the human), the
robot is able to assess what dimension(s) of its own
perception (for example, object recognition or color



distribution) are more aligned with the human’s per-
ception and thus the corresponding semantic
grounding functions are more reliable. For example,
when the robot cannot recognize objects in the envi-
ronment very well, after a few rounds of interactions
with humans, the robot will realize that the seman-
tic grounding function associated with object type is
not reliable and thus drop the associated weight. It
will then rely on other perceptual features (and their
associated semantic grounding functions) to match
the linguistic expressions to its perception. The cor-
rect grounding to perception will become another
training example to update the semantic grounding
function itself. The detailed method and evaluations
are provided by Liu and Chai (2015). 

Grounded Language Generation
The last section addresses the interpretation problem,
namely, given language descriptions from human
partners, how to ground them to perceived objects
even though the robot only has imperfect perception
of the shared environment. To enable human-robot
communication, an equally important problem is
how the robot can effectively generate a language
description to enable its human partner understand
which object is being referred to. 

There has been a tremendous amount of work on
referring expression generation (REG) in the last two
decades (Dale 1995; Krahmer and Deemter 2012).
The typical objective is to generate a single minimum
language description that allows the listener to dis-
tinguish the target object from the distractors. Except
for a few (Mitchell, Van Deemter, and Reiter 2013),
most previous works have applied the assumption
that agents and humans have access to the same
domain information and the agent has a complete
representation of the shared world. However, this
assumption no longer holds in situated human-robot
dialogue as humans and robots have mismatched
representations of the shared environment. In addi-
tion, the perfect knowledge of the environment is
not available to the robot ahead of time. The agent
needs to make inference of the shared environment
and connect lower-level visual features with words.
This process is full of uncertainties and also error
prone. Perceptual differences in situated human-
robot dialogue pose new challenges to REG. 

Revisiting REG
To understand this new challenge, we have revisited
the problem of REG in the context of mismatched
perceptual basis (Fang et al. 2013). We extended a
well-known graph-based approach (Krahmer, Van
Erk, and Verleg 2003) that has shown effective in pre-
vious works and by incorporating uncertainties in
perception into cost functions. We further extended
regular graph representation into hypergraph repre-
sentation to account for group-based spatial relations
that are important for visual descriptions. Our empir-
ical results have demonstrated that if the agent has a

perfect perception and has a complete representation
of the shared environment (the setting most previ-
ous works were based on), our hypergraph based
approach achieved higher performance (84.2 percent
accuracy) compared to the original approach based
on regular graphs (80.4 percent). However, when the
agent does not have a perfect perception of the
shared environment (which is often the case in
human-robot dialogue), the performance of our
hypergraph has dropped significantly to 45 percent.
This performance gap indicates that the current
approach to generate minimum descriptions may
not be applicable for situated human-robot dialogue.
It calls for new solutions for REG that are capable of
mediating mismatched perceptual basis. These
results have motivated our work on collaborative
models for REG. 

Collaborative Models for REG
Previous work on the collaborative process for refer-
ential communication (Clark and Wilkes-Gibbs
1986) states that, to minimize collaborative effort,
partners tend to go beyond issuing an elementary
referring expression, but rather use other different
types of expressions such as episodic, installment,
self-expansion, and others. Motivated by these find-
ings as well as observations from our own study on
human-human communication described earlier, we
have developed collaborative models for REG partic-
ularly to capture the following two types of collabo-
rative behaviors. 

Episodic Model generates referring expressions in an
“episodic” fashion by generating a sequence of small-
er noun phrases, which lead to the target object, for
example, as in “below the orange, next to the apple,
it’s the red bulb.”

Installment Model generates referring expressions in an
“installment” fashion by generating one small noun
phrase, waiting for the listener’s response, and then
generating another small noun phase based on the
feedback. This process iterates until the target object
is attained. For example: 

Speaker: under the pepper
Listener: yes.
Speaker: there is a group of three objects.
Listener: OK.
Speaker: there is a yellow object on the right within
the group.

In order for agents to generate these episodes in an
installment manner, we treated REG as a sequential
decision-making problem and formulated it under
the reinforcement learning framework (Fang, Doer-
ing, and Chai 2014). The idea is that, from its prior
experience engaging in referential communication
with a human, the agent should be able to learn a
good generation policy for any given state of com-
munication. Using terms from reinforcement learn-
ing, a policy π : S → A is a mapping from states (S) to
actions (A). The action-value function Q(s, a) is the
expected return for starting in state s ∈ S and taking
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Figure 4. Example Responses Under Two 
Different Levels for the Collaborative Effort.

Low Collaborative Effort High Collabrative Effort 

Accept Accept and Describe 

Weak Accept Weak Accept and Describe 

Reject Reject and Describe 
“I don’t see it, but I see an orange 
bottle there (pointing)”

“I see something there (pointing), 
it is an orange bottle”

“Sure, the orange bottle is Eric”

“I don’t see it”

“Got it”

“II think I see it, (pointing
to the object)”

action a ∈ A. The goal is to learn an optimal policy π*
= arg maxa Q(s, a) that maximizes Q(s, a). In the con-
text of REG, a state can be characterized by many fac-
tors such as the uncertainties of the perceived envi-
ronment, the target object, the current landmark
object, which has been confirmed by the human,
and the human feedback. An action describes a gen-
eration strategy such as what object to describe for an
episode and what descriptor to use (for example,
whether using attributes or spatial relations to land-
mark objects to describe it). As the space of S and A
can be big, it’s not possible to enumerate all possible
pairs. Thus function approximation is used to
approximate the value function through linear
regression, that is, a linear combination of weighted
features. Using a simulated environment, we con-
ducted experiments where the agent interacted with
users from Amazon Mechanic Turk. The SARSA algo-
rithm (Sutton and Barto 1998) was applied to learn
the weights associated with the features for Q(s, a).
The learned value function can be used to identify
the best generation action for any state during com-
munication. Our experimental results have shown
that, compared to the leading noncollaborative
approach (based on hypergraphs), the collaborative
models significantly improve the performance. In
particular, the installment model (68.9 percent accu-
racy) has led to an absolute gain of 21 percent com-
pared to the noncollaborative approach (47.2 percent
accuracy). These results have shown that collabora-
tive models are more effective in mitigating percep-
tual differences between humans and robots in refer-
ential communication. More details about the
approach and empirical results are described by Fang,
Doering, and Chai (2014). 

Experiments on Human-
Robot Communication
Previous sections give a brief overview to collabora-
tive models for grounded language interpretation
and language generation with a goal to mediate per-
ceptual discrepancies. This section describes two
empirical studies that extend these models in
human-robot communication with a particular focus
on the robot’s collaborative behaviors. 

Collaborative Effort in Establishing 
Common Ground of Shared Environment
The graph-based approach for grounding language to
environment is integrated in a human-robot com-
munication system. The first experiment investigates
the role of collaborative effort from the robot in facil-
itating language interpretation to establish a com-
mon ground of shared environment (Chai et al.
2014). A demo of the system used in the experiment
can be seen on YouTube.1

A 2x2 factorial design was applied in the experi-
ment. There were two factors: perceptual difference
and collaborative effort. Each factor has two levels. A
high perceptual difference means the human and the

robot have a high mismatch in their perceptions. In
this case, we manipulated the robot vision system so
that 60 percent or 90 percent of the objects in the
shared environment couldn’t be correctly recognized.
A low perceptual difference refers to the situation
where only 10 percent or 30 percent of objects could-
n’t be recognized correctly by the robot. A low col-
laborative effort refers to the robot’s minimum effort
in accepting or rejecting a presentation from the
human through explicit confirmation. A high collab-
orative effort models the matcher’s behavior in
human-human communication. In this setting, the
robot makes an extra effort in proactively describing
what it perceives from the shared environment in
addition to an explicit confirmation. Figure 4 shows
some examples of these two different settings. 

In the experiments, human subjects were instruct-
ed to teach the robot names of different objects in the
shared environment through natural language dia-
logue. At the end of the dialogue, two metrics were
measured: (1) perceived grounding, which counts
percentage of dialogues where the human partners
believed that the robot had successfully acquired all
the names; and (2) true grounding, which counts the
number of correct names that are actually acquired
by the robot through the dialogue. 

Our empirical results have shown that a low col-
laborative effort leads to a higher perceived ground-
ing performance, which means it can fool its human
partners into believing a common ground is estab-
lished. However, such beliefs do not reflect true com-
mon ground and are even more detrimental than fail-
ure in reaching a common ground. Our results
further show that, under a low perceptual difference,
different levels of collaborative effort do not make a
difference in true grounding; however under a high
perceptual difference, a high collaborative effort leads
to significantly higher performance in true ground-
ing. These results suggest that, to mediate perceptual
differences and establish a common ground of the
shared environment, the robot should make an extra



effort to communicate with its partner and make him
or her aware of its internal representation of the
shared world. Detailed results of this experiment are
described by Chai et al. (2014).

Embodied Collaboration in 
Referential Communication 
As described earlier, collaborative models for REG
have shown promising results in language-based
communication in a simulated environment of mis-
matched perceptual basis. In human-robot commu-
nication, a unique characteristic of physical world
interaction is embodiment: robots and humans both
have physical bodies and they can use nonverbal
modalities (for example, gesture and eye gaze) to refer
to the shared world and to provide immediate feed-
back (Chen et al. 2015, Kennington et al. 2015). Thus
one of our efforts was to integrate the installment
model with embodiment to facilitate human-robot
referential communication. We were particularly
interested in two variables representing embodiment
— robot pointing gesture and human eye gaze feed-
back. 

Deictic gestures play an important role in human-
robot referential communication (Sauppe and Mutlu
2014). In our work, we directly model the pointing
gesture as an additional action in the value function
(described earlier). The cost of pointing gestures is
incorporated as a feature in the linear regression
model, which is calculated based on the distance
from the robot to the target object, the size of the tar-
get object, adjacency of other objects to the target
object, and so on. 

Psycholinguistic studies have shown that human
eye gaze is directly linked with language comprehen-
sion (Tanenhaus et al. 1995). Immediately after hear-
ing a referring expression, the listener’s eyes move to
the objects being referred to. Motivated by these find-
ings we incorporated human’s real-time gaze as inter-
mediate feedback in the installment model. We used

an ASL eye tracker to measure whether the fixated
object coincided with the agent’s intended object. If
yes, the human feedback was considered positive;
otherwise, it was considered negative. 

Based on these two factors, we conducted an
experiment to examine embodied collaboration in
referential communication (Fang, Doering, Chai
2015). In figure 5, the left picture shows the experi-
mental setting where the human wears an ASL
mobile eye tracker and the right picture shows an
example of a gaze fixation captured by the ASL track-
er during communication. As we were particularly
interested in the situation where humans and robots
have mismatched perceptual basis, we intentionally
applied a very simple CV algorithm to generate a
high misrecognition rate (73 percent). 

Our empirical results have shown that models that
incorporate the robot pointing gesture consistently
outperformed the models that don’t incorporate the
pointing gesture. However, the incorporation of
human eye gaze as intermediate feedback did not
perform well. Human verbal feedback performed bet-
ter than the gaze feedback by itself or together. Our
results indicate that human gaze can be very noisy,
especially in situated interaction. It is very difficult to
reliably capture gaze fixations and thus reflect the
corresponding feedback. More in-depth investiga-
tions on human gaze feedback are needed in the
future. 

Grounding Language to Action
For robots to follow human language instructions
and perform actions in the physical world, ground-
ing language to perception alone is not sufficient.
This section gives a brief introduction to grounding
language to robot actions (She et al. 2014a, b; Misra
et al. 2014). Most robotic systems are programmed
with primitive operations such as move to, open
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gripper, and close gripper. For a robotic arm to
achieve a high-level action (for example, stack an
object on top of another), a discrete controller is
often first applied to find a sequence of primitive
operations. These primitive operations are then
passed to a continuous planner and translated into
trajectories of arm motors. Thus a critical question is
how to connect language commands (for example,
“stack the blue cylinder on the red block”) with the
corresponding sequence of primitive robotic opera-
tions. To address this question, our effort has focused
on the representation of grounded verb frames and
the acquisition and learning of grounded representa-
tions through collaborative step-by-step instructions. 

Learning Grounded Verb Semantics Through 
Collaborative Step-by-Step Instructions
Suppose a human operator asks a robotic arm (shown
in figure 6) to “stack the green block on the left to the
green block on the right,” and suppose the robot’s
language interpretation can perfectly identify the
verb frame stack with two arguments (origin and des-
tination) and successfully ground the arguments
(that is, “the green block on the left” and “the green
block on the right”) to the respective objects in
world. The arm may still not be able to perform the
action if it does not have knowledge of how to con-
nect the “stack” action with the low-level primitive
operations. However, the human operator can teach
the robot high-level actions (for example, stack) in a

Figure 6. An Example of a Robotic Arm Learning New Actions through Step-by-Step Natural Language Instructions.

Human: Stack the green block on the left to the  green block on the  right 
Robot:    I don’t know how to perform this stack,  please give step-by- step instructions. 
Human:  Move the green block on the left to the  top of the green block  on the right. 
Robot:    Alright then (performing the move  action). 
Human:  Open gripper. 
Robot:    OK. 
Human:  Now you achieved the stack action. 
Robot:    Understood. 
Human:  Sort the blocks by color 
Robot:    What do you mean by this sort? 
Human:   Put the red blocks in the brown box.  
Robot:      …. 

Human View 

Robot



step-by-step manner as shown in figure 6.2 In this
case, a stack action involves two primitive opera-
tions: move to and open gripper.

Given this teaching and learning instance, how
should the robot internally represent knowledge or
grounded semantics for the verb frame stack? If it’s
only associated with “move to” followed by “open
gripper,” the acquired knowledge will not be very
useful in a new situation where it may involve sever-
al “move to” and “open gripper” operations to
accomplish the stack action. Thus, a more desirable
representation for grounded semantics of the verb
frame stack(A, B) should capture the desired goal state
of the physical world caused by this action. The goal
state, which is represented by a conjunction of logi-
cal predicates, for example, “on(A, B) ∧ G_open,” can
be acquired by the robot after performing the low
level operations. Representing verb semantic frames
with final state of the physical world allows the plan-
ner to automatically identify a sequence of low-level
primitive operations for any situation. For example,
in our experiment with a SCHUNK robotic arm (She
et al. 2014a), a teacher used 4 steps to teach the stack
action. When applying the acquired model for
“stack” in 20 novel situations, the robot was able to
complete the action with an average of approximate-
ly 7 steps. In one particular situation, the robot was
able to take 12 steps to successfully complete the
stack action. 

In our experiments, we have also examined the
role of collaboration in teaching new actions (She et
al. 2014b). We controlled two settings. In the collab-
orative step-by-step instruction setting, the human
teacher provides one step at a time and watches the
robot’s corresponding action. If the action is success-
fully performed, the teacher will move to the next
step; otherwise, the teacher will change its course of
instruction to cope with the incorrect response. In
the noncollaborative one-shot instruction setting,
the teacher provides the instructions all at the begin-
ning without watching and waiting for feedback
from the robot. Our experimental results have shown
that, although one-shot instructions take less time to
teach and learn, collaborative step-by-step instruc-
tions allow the robot to acquire better representa-
tions of verb frames and thus lead to more action
completion in novel situations. 

Learning Grounded Verb Hypothesis Space
While representing grounded verb semantics with
the intended goal state has shown promising in a
simplified block world (She et al. 2014b), the
acquired representation can be overfitting to the par-
ticular learning instances. To address this problem,
our recent work extends a single goal state represen-
tation to a hypothesis space of goal states for verb
representations (She and Chai 2016). For example,
suppose a human teaches the robot how to “fill the
cup with water.” After experiencing the change of

state of the physical world by performing the action
taught by the human, the robot is able to ground
verb frame fill(x, y) to the desired goal state “Has(x, y)∧ Grasping(x) ∧In(x, o1) ∧¬ In(x, o2).” Based on this
goal state, a hypothesis space using a specific-to-gen-
eral hierarchy can be built as shown in figure 7. In
this hypothesis space, any hypothesis of goal state
other than the shaded ones allows the planner to
come up with exactly the same sequence of primi-
tive operations as the original goal state (at the bot-
tom of the hierarchy). The hypotheses higher on the
hierarchy have fewer number of predicates and thus
have higher chances to be satisfied in novel situa-
tions. Therefore during learning, the robot automat-
ically acquires and updates a hypothesis space for
each verb frame. Given a new situation, when a verb
command is issued by the human, the robot will
identify the most relevant hypothesis from the
hypothesis space to calculate a sequence of primitive
operations. Using data made available by Misra et al.
(2015), our empirical results have shown that the
hypothesis space representation significantly out-
performs the representation with single hypothesis
of goal state. Details on this approach and empirical
evaluations are described by She and Chai (2016).

Conclusions
Enabling situated human-robot communication
faces many challenges and opportunities (Bohus and
Horvitz 2010). One of the significant challenges is
the capability of grounding human language to a
robot’s internal representations of perception and
action. This involves multiple aspects of complexi-
ties. Even the robot has existing knowledge about
how a word (for example, an adjective or a noun) is
connected with the underlying visual features; dur-
ing real-time communication, the robot may still not
be able to ground human language to its own repre-
sentation of the perceived world due to subtle
change of the environment. Computer vision algo-
rithms have improved tremendously in recent years,
especially given the advances in deep learning. How-
ever, in a new environment, when there is not suffi-
cient training data, machine perceptual systems are
still fragile. The perceptual differences between
humans and robots in situated communication
remain a practical problem. As shown in this article,
an effective solution to this problem is to incorpo-
rate collaborative behaviors into grounded language
processing and enable collaboration from the robot
to ground communication. 

It is often the case that during communication a
robot will encounter new words, new objects, and
new actions it does not have existing knowledge
about. As shown in this article and other recent work
(Cantrell et al. 2012; Mohan, Kirk, and Laird 2013;
Mohseni-Kabir et al. 2015; Thomason et al. 2016),
language and collaborative dialogue play an impor-
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tant role in enabling the robot to continuously learn
grounded meanings, the environment, and tasks
from its human partners. To further support interac-
tive robot learning through natural language dia-
logue, our current work is to develop approaches to
ground language to participants of actions in more
complex visual scenes (for example, a kitchen envi-
ronment) (Yang et al. 2016, Gao et al. 2016). In addi-
tion, we are exploring acquisition of rich task struc-
tures from human language instructions and visual
demonstrations (Liu et al. 2016a, 2016b). The ulti-
mate goal is to enable robots to continuously learn
from human partners through their life-long interac-
tions. 
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Notes
1.  A system demo can be found at www.youtube.com/
watch?v=vPA2AUJq6cI

2.  A system demo can be found at www.youtube.com/
watch?v=MGA6aqKGM0w
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