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ARTIFICIAL INTELLIGENCE is that part of Computer 
Science that concerns itself with the concepts and methods of 
symbolic inference and symbolic representation of knowledge. 
Its point of departure-its most fundamental concept-is 
what Newell and Simon called (in their Turing Award Lec- 
ture) “the physical symbol system” (Newell and Simon, 
1976). 

But within the last fifteen years, it has concerned it- 
self also with signals-with the interpretation or understand- 
ing of signal data. AI researchers have discussed “signal-to- 
symbol transformations,” and their programs have shown 
how appropriate use of symbolic manipulations can be of 
great use in making signal processing more effective and 
efficient. Indeed, the programs for signal understanding have 
been fruitful, powerful, and among the most widely recog- 

nized of AI’s achievements. 
HASPI, and its follow-on, SUP, are among these pro- 

grams. HASP arose from an important national defense need. 
It appeared to be impossible to satisfy the comput,ational re- 
quirements of a major ocean surveillance system of sensors 
(at least within the bounds of economic feasibility) with con- 
ventional methods of statistical signal processing. M’s signal 
understanding methods were maturing in the early 1970s. 
\%ion research had been underway for several years. The 
ARPA Speech Understanding Project was well into its first 
phase (Newell et al., 1973). And the DENDRAL project for 
the interpretation of mass spectral data in terms of organic 
molecular structures had achieved significant, success in cer- 
tain narrow areas of chemical analysis (Lindsay, Buchanan, 
Feigenbaum, and Lederberg, 1980). The time was ripe to 
attempt the application of the emerging techniques to the 
ocean surveillance signal understanding problem. This in- 
sight was made by Dr. Lawrence Roberts, then Director of 
Information Processing Techniques for ARPA 

Many different people helped in building HASP/SIAP in many different 
capacities. The people acknowledged below are project leaders (*), con- 
sult.ants; and programmers who waded through the myriad of technical 
problems and codes We are also indebted to John Miller, Jay Seward, 
Dan Sestak, and Ken McCoy-our experts They cheerfully took on the 
frustrating and time-consuming jobs of having their brains picked by 
knowledge engineers, and their own performance then outstripped by 
the nro~ram Those who helDed with HASP include John Anton. Scottie 

A4t his request, and with ARPA support, scientists at the 
Stanford Heuristic Programming Project, with the help of 
scientists at Systems Control Technology, Inc. (SCI), began 
in 1972 to study the feasibility of the project. System design 
and programming began in 1973. The project was located at BrooksyEdward Feigenbaum, Gregory Gibbons, Marsha Jo Ha&a, Neil 

Miller, Mitchell Model, Penny Nii*, and Joe Rockmore Those who 
helped with SL4F’ include John Anton *, Al Bien, Scottie Brooks, Robert 
Drazovich*, Scott Foster, Cordell Green, Bruce Lowerre, Neil Miller*, 
hlitchell Model, Roland Payne, Joe Rockmore, and Reid Smith 

‘In earlier literature, HASP was referred to as SU/X (Feigenbaum, 1977; 
Feigenbaum, 1980; Nii and Feigenbaum, 1978) 
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SC1 because of the company’s expertise in the military prob- 
lem and because of the classified nature of the work. Feigen- 
baum was the principal investigator, and Nii was respon- 
sible for the detailed design and much of the program- 
ming. Scottie Brooks also contributed significant program- 
ming. The primary expert in this Expert System project 
was John Miller, a recently retired officer from the military. 
Scottie Brooks acquired expertise about acoustic and other 
data charateristics and took over some of the expert’s role 
during SIAP development. Many others (mentioned above) 
contributed. 

The first year was spent in understanding the nature of 
the signals, the signal-generating objects, the symbolic con- 
text in which the signal analysis was taking place, and in 
demonstrating that one could not “DENDRALize” this prob- 
lem. Systematic generation and pruning of the hypothesis 
space w-as not the appropriate model. But we learned a 
great deal, and were able by the end of the year to recognize 
the appropriate framework when it presented itself. That 
framework was the “blackboard” model of the HEARSAY-II 
effort in speech understanding being done at Carnegie-Mellon 
University (CMU) (Erman, Hayes-Roth, Lesser, and Reddy, 
1980; Lesser and Erman, 1977). 

The second year and beyond consisted of a rush of ac- 
tivity to program, adapt, and alter the CMU model to fit the 
problem at hand, to finish the acquisition and encoding of the 
knowledge, and to perform a series of tests to demonstrate 
and validate the work. The HASP phase ended in the fall of 
1975. 

SC1 scientists continued the work in SLAP, which began 
in 1976. The HASP project had intentionally evaded one 
difficult part of the overall signal-to-symbol transforma- 
tion problem, the part that is sometimes called “low-level” 
processing, the processing activity closest to the signal data. 
HASP never saw real signals. It saw descriptions of signals, 
albeit “low-level” descriptions. The identification of line seg- 
ments and their characterization were done by people. SIAP 
was an attempt to automate this phase, and involved as well 
some necessary modifications to HASP to allow it to cope 
with this additional confrontation with reality. The SIAP 
work was complicated by the fact that the SC1 scientists 
were constrained by their sponsor to use signal processing 
programs that had been developed in another context by 
another ARPA contractor The SLAP’ effort ended early in 
1980 after showing significant demonstration on real ocean 
data in real time.2 

2Some purists insist that the only valid use of the term “signal” is 

the set of digitized voltages that arise from the normal functioning of 
the sensor. But we are not that rigid in our view We are willing to 
consider as “signal” those low-level algorithmic transformations of the 

“raw data” that are in the standard tool-kit of the signal processing 
community (sush as the Fast Fourier Transform). Indeed, the humans 
who do the HASP/SLAP task manually never see “the numbers” either 
Their job begins after some elementary transforms have been computed 
This is not to imply that there isn’t additional leverage in pushing AI 

methods one last level closer to “the numbers.” But to assert that 
HASP/SMP is not really looking at “the signal” is to be splitting hairs 

System Operation-What it Does 

The problem. The embassy cocktail party problem 
captures important features of the ocean surveillance mis- 
sion. Suppose microphones are concealed for intercepting 
important conversations of foreign dignitaries at a party. 
Because bug emplacements are near the heavily trafficked 
bar and buffet tables, the basement sleuth who monitors 
the phones must contend with the babble of simultaneous 
speakers. The party-goers move into and out of range of 
the microphones in imperfectly predictable patterns. Their 
speaking patterns also change, as does the background clat- 
ter of plates, glasses, orchestra, and so on. Room echoes 
confound otherwise discernible conversations. Worst of all, 
the guests of greatest concern to the basement sleut,h are 
prone themselves to covertness, using low voices and furtive 
movements in pursuit of their business. 

HASP/SLAP sleuths in the deep ocean. Using data from 
concealed hydrophone arrays, it must detect, localize, and 
ascertain the type of each ocean vessel within range. The 
presence and movements of submarines are most important. 
Nevertheless, there are strategic and tactical motives for 
monitoring all vessel types. 

Just as for the embassy sleuth, the program has to over- 
come the problems of non-cooperative subjects in a noisy, 
complex medium Ocean-going vessels typically move within 
fixed sea lanes, but storms and currents cause shifts in routes 
and operations. The background noise from distant ships 
is mixed with storm-induced and biological noises. Sound 
paths to the arrays vary with diurnal and seasonal cycles. 
Arrival of sound energy over several paths may suddenly 
shift to no arrivals at all, or arrivals only of portions of vessel 
radiation. Sound from one source can appear to arrive from 
many directions at once. Characteristics of the receivers can 
also cause sound from different bearings to mix, appearing to 
come from a single location. Finally, the submarine targets 
of most interest are very quiet and secretive. 

What HASP/HAP does to solve the problem. The 
program starts with digitized data from hydrophone arrays 
that monitor an ocean region from its periphery. The arrays 
have some directional resolution. Ideally each look direction 
produces a data channel with sound energy only from vessels 
near its axis, a spatial partition resembling spoke gaps on a 
bicycle wheel. In practice, radiation from a single vessel may 
spread across several gaps, and many vessels may be located 
in any one gap, or in adjacent gaps, a situation that can 
produce a kaleidoscope of sound. 

Rotating shafts and propellers, and reciprocating ma- 
chinery on board a ship are major sources of the intercepted 
radiation. The signature, or sound spectrum, of a ship un- 
der steady operation contains persistent fundamental nar- 
rowband frequencies and certain of their harmonics. Imagine 
the ship’s propeller saying “ahhhhh” on its way across the 
ocean. On a speech analyst’s sonogram, this sound would 
appear as a collection of dark vertical stripes against a fuzzy 
gray background. 
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Figure 1. A simulated sonogram (with noise suppressed). 

Sonar analysts have been trained to recognize the sound 
signature traits of ships on their sonogram displays, and to 
classify a signature into one of several important classes If 
only one ship is present on a channel, the problem is essen- 
tially to match the measured signature (it may be imperfectly 
measured or partially present) to a collection of stored refer- 
ences for the best fit. Most computer-aided ship classification 
schemes have achieved some measure of success at this level. 

When several ships radiate into the same array chan- 
nels, the problem becomes more demanding. Highly skilled 
analysts use a collection of tricks in sonogram interpreta- 
tion to disentangle the signatures for classification Their 
procedures are not strictly separable for these tasks That 
is, they do not disentangle signatures first without regard to 
classification information.3 IwSP/SIAP is unique among cur- 
rent machine-aided classifiers in imitating this non-separable 
approach. 

Sonogram displays used by a sonar analyst are analog 
histories of the spectrum of received sound energy. New 
data on a channel are portrayed by varying the intensity 
of pixels on the display. Greater concentrations of energy 
at a given frequency are translated into higher intensities 
at corresponding horizontal positions. Synchronous horizon- 
tal sweeps, therefore! leave vertical lines on a display where 
persistent frequencies are present. (See Fig 1 for a simu- 
lated sonogram.) Starting, stopping, frequency shifting, and 
even subtle traces, are discernible to a trained eye. Recog- 
nition of these analysis elements must also be carried out 
automatically if the program is to emulate human analysts’ 

3 “Disentangle” means to separate correctly signature components of 
different vessels This process is aided by contextual information about 
the plausible behavior of the sources on ships 

procedures in subsequent processing. The data streams 
from each hydrophone array channel are then converted 
into hypotheses on the class type of each detected ves- 
sel. The data, rules, and procedures associated with a par- 
ticular hypothesis can be recalled, so supporting evidence 
for the program’s conclusions are also available for operator 
scrut.iny. 

System Organization-How It Does It 

Major terms and concepts. The understanding of 
sonograms often requires using information not present in 
the signals themselves. Major sources of information are 
reports from other arrays and intelligence reports. More 
general knowledge, like the characteristics of ships and com- 
mon sea-lanes, also contributes significantly. Each such 
source of knowledge may at any time provide an inference 
which serves as a basis for another knowledge source to make 
yet another inference, and so on, until all relevant infor- 
mation has been used and appropriate inferences have been 
drawn. 

Essential to the operation of the program is its model 
of the ocean scene. The model is a symbol-structure that 
is built and maintained by the program and contains what 
is known about the unfolding situation. The model thus 
provides a context for the ongoing analysis. More commonly 
known as the situation board to the analysts, the model is 
used as a reference for the interpretation of new informa- 
tion, assimilation of new events, and generation of expecta- 
tions concerning future events. It is the program’s cognitiue 
flywheel. 
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Figure 2. Levels of analysis and some of the knowledge sources 

The task of understanding the sit.uation from the sono- 
gram and other data is accomplished at various levels of 
analysis. These levels are exhibited in Figure 2. The most in- 
tegrated, or the highest, level represents the situation board 
describing all the ships hypothesized wit’h some confidence. 
The lowest level, that is, the level closest to the data, consists 
of connected line segments containing features derived from 
the signal data. During the HASP design an assumption was 
made that a front-end program could be written to extract 
major signal features-intensity, stability, bandwidth, dura- 
tion, etc. SLAP, in fact, integrates such a front-end signal 
processor into the system. 

At each level, the units of analysis are the hypotheses 
elements. These are symbol-structures that describe what 
the available evidence indicates in terms that are meaning- 
ful at that particular level. Thus, on the Vessel level, in 
Figure 2, the descriptive properties that each Vessel element 
can have are Vessel Class, Location, Current speed, Course, 
and Destination. Each of the values of the properties has as- 
sociated with it weights, an informal measure of confidence 
in the hypothesis. The example below shows a part of a 
hypothesis element on the Source level with different expres- 
sions of confidence. 

SOURCE-l 
TYPE (Engine .5) (Shaft 3) (Propeller - 3) 
LOCATION ((Lat 34.2) (Long 126 5) (Error 9)) 

Links between the levels of analysis are built from 
sources of knowledge. A knowledge source (KS) is capable 
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of putting forth the znference that some hypot’hesis elements 
present at its “input” level imply some particular hypothesis 
element(s) at its “output” level. A source of knowledge con- 
tains not only the knowledge necessary for making its own 
specialized inferences, but also the knowledge necessary for 
checking the inferences made by other sources of knowledge 
The inferences which draw together hypothesis elements at 
one level into a hypothesis element at a higher level (or which 
operate in the other direction) are represent,ed symbolically 
as links between levels as shown in Figure 2. The result- 
ing network, rooted in the input data and integrated at t,he 
highest level into a descriptive model of the situation is called 
the current best hypothesis (CBH), or the hypothesis for short. 

Each source of knowledge holds a considerable body 
of specialized information that an analyst would generally 
consider “ordinary ” Sometimes this is relatively “hard” 
knowledge, or “textbook” knowledge. Also represented are 
the heuristzcs, that, is, “rules of good guessing” an analyst 
develops through long experience. These judgmental rules 
are generally accompanied by estimates from human expert’s 
concerning the weight that each rule should carry in the 
analysis. 

Each KS is composed of “pieces” of knowledge. By a 
piece of knowledge we mean a production rule, that is, an IF- 
THEN type of implication formula. The “IF” side, also called 
the situation side, specifies a set of conditions or patterns 
for the rule’s applicability The “THEN” side, also called 
the action side, symbolizes the implications to be drawn (or 
various processing events to be caused) if the “IF” conditions 
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are met Foilowing is a heuristic represented as a production 
rule: 

IF Source was lost due to fade-out in the near-past, and 
Similar source started up in another frequency, and 
Locations of the two sources are relatit-ely close, 

THEN They are the same Source with confidence of 3 

Source Pefers to some no&se produczng objects, such as propellers 
and shafts on ships 

Hypothesis formation is an “opportunist!ic” process 
Both data-drzuen and model-drzven hypothesis-formation 
t,echniques are used within the general hypothesize-and-test 
paradigm The knowledge of how to perform, that is, how 
to use the available knowledge, is another kind of knowledge 
that the analysts possess. This type of knowledge is rep- 
resented in the form of control rules to promote flexibility 
in specifying and modifying analysis strategies. One of the 
tasks of the cont,rol knowledge source is to determine t.he 
appropriate techniques to use for different’ sit,uations 

The unit of processzng actzzrity is the event. Events sym- 
bolize such things as “what inference was made,” “what 
symbol-structure was modified,” “what event is expected in 
t,he future,” and so on. The basic control loop for these 
event-driven programs is one in which list’s of events and a 
set of control rules are periodically scanned to determine the 
next thrng to do. 

HASP/SKAP organization. Most signal processing 
programs are organized in a pipeline fashion starting with 
signal data, segmenting the signals, identifying the segments, 
and so on One way to view HASP/SLAP is as a signal process- 
ing paradigm with multiple feedbacks and many data input 
points. The primary input data is a sequence of described 
line segments [from each channel, for each array) present in 
the frequency vs t)ime data. The secondary inputs are infor- 
mation available from other arrays and a variety of reports 
routinely available to the analysts. The output of the pro- 

gram is a data structure containing the program’s best. ex- 
planat’ion of the current input data considered in conjunction 
with previous analyses of earlier-received data. This data 
structure is the machine equivalent of the analyst,‘s situation 
board, except that it contains more information. In par- 
ticular, it contains the basis for the explanation as recorded 
by the program during its analysis process. Figure 3 shows 
the general program structure of HASP/SLAP, and Figures 4 
and 7 show some of the output. 

Integration of many diverse data and knowledge sources 
is accomplished through a hierarchic data structure, as 
shown in Figure 2. The interpretation process is viewed as a 
problem of bidirectional, step-wise transformations between 
signals and the symbolic description of objects at various 
levels of abstraction, using as many intermediate steps as 
needed. Thus, for each level in the hierarchy, there must be 
at least one KS that can transform information on one level 
into information that is meaningful on some other level For 
example, the following rule transforms a line segment into a 
line by attaching it t,o a previously identified line: 

IF Characteristic.s of a new segment “match” an 
earlier line, and 

Source associated with the line is not currently 
heard, and 

Source had disappeared less than 30 minutes ago, 

THEN Source is being picked up again with 
confidence .5, and 

Segment is assigned to the old line 

The word “transformation” is used loosely to mean a 
shift from one representation of an object (e.g., signal seg- 
ment) to another (e.g., propeller) using any formal or infor- 
mal rules. 

The current best hypothesis. As KSs are applied to 
a stream of input data, a solution hypothesis emerges The 
hypothesis structure represents the “best hypot’hesis” at, any 

THE AT MAGAZINE Spring 1982 27 



I 1 
The Current Best Hypothesis at time 20455 

Vessel- 1 
Class (OR (Cherry 8.4) (Iris 6.9) (Tulip 6.2) (Poppy 4.8) 20455 . . . ) 
Location ((Lat 37.3) (Long 123.1) (Error 37)) 
Speed 15.7 
Course 135.9 
Sources (AND Source-l Source-5) 

Source-l 
Type (OR (Cherry Propeller 5.5) (Poppy Shaft 2.5) 

(Poppy Propeller 2.0) (Cherry Shaft 2.5) 20455 . . . ) 
Dependency Unknown 
Regain (20230) 
Harmonics (Harmonic-l) 

Harmonic;1 
Fundamental (224 5 20520) 
Evolution (fade-in 20230 fade-out 20210 . , ) 
Lines (AND Line-l Line-2 Line-6 Line-12) 

Source-5 
Type (OR (Cherry Shaft 6.0) (Poppy Shaft 4.0) 

(Iris Propeller 5.0) (Tulip Propeller 2.0) 20455) 
Dependency 6 
Harmonics (Harmonic-5) 

Harmonic-5 
Fundamental (162.4 20455) 
Evolution (fade-in 20455) 
Lines (AND Line-25) 

ASSIMILATION (RATIO Source-l Source-5 .5) 20455) 

Problem-list 
(EXPECT Vessel-l (SUPPORT Cherry) (Dependency Propeller 5)) 
(EXPECT Vessel-l (PRED.LOC (Lat 37.2) (Long 123.) (Error 41.3)) 
(REPORT REPORT-GEN Rose (Signature (Engine 30 166.7) . . . . . . . ...)) 

The class of Vessel-l, located in the vicinity of Latitude 37.3 and Longitude 123.1 
at time day 2, 4 hours, 55 minutes, can be either Cherry, Iris, Tulip, or Poppy 
class. Two distinct acoustic sources, supported by respective harmonic sets, 
have been identified for Vessel-l. Source-l could be due to a shaft or propeller 
of vessel class Cherry or Poppy. Similar source possibilities exist for Source-5. 
These two sources were assimilated into Vessel-l because of the possibility of a 
known mechanical ratio that exists between the two sources. If a dependency of 
the Cherry propeller for Source-l can be determined to be 5, then the supporting 
evidence that Vessel-l is a Cherry class can be increased. Additional information 
on the Problem-list suggests the expected position of Vessel-l computed at the 
next time interval on the basis of its currently hypothesized location, course, 
and speed. In addition, there is a report that a Rose class vessel is expected in 
the area. (Also see Fig. 7 for a program-generated summary explanation.) 

Figure 4. A part of a current best hypothesis. 
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given time for the data available up to that time. It is the 
most up-to-date situation board and contains all supporting 
evidence. The structure of the GBH is a linked network of 
nodes, where each node (hypothesis element) represents a 
meaningful aggregation of lower level hypothesis elements. 
A link between any two hypothesis elements represents a 
result of some action by a KS and indirectly points to the KS 

itself A link has associated with it directional properties. A 
direction indicates one of the following: 

1 A link that goes from a more abstract to a less 
abstract level of the hypothesis is referred to as 
an expectation-lank. The node at the end of an 
expectation-link is a model-based hypothesis element, 
and the link represents support from above (i e , the 
reason for proposing the hypothesis element is to be 
found at the higher level). 

2. ,4 link which goes in the opposite direction, from 
lower levels of abstraction to higher, is referred to as a 
reduction-/ink The node at the end of a reduction-link 
is a data-based hypothesis element, and the link rep- 
resents support from below (i e , the reason for propos- 
ing the hypothesis element is to be found at a lower 
level). An example of hypothesis elements generated 
by the KSs are shown in Figure 4 

Knowledge about how to use other knowledge: Since the 
strategy is opportunistic, the program must know when 
an opportunity for further interpretation has arisen and 
how best to capitalize on the situation. In HASP/SIAp 
this type of knowledge is made explicit as will be ex- 
plained in the following section. 

How the knowledge is organized and used. How 
well an Expert System performs depends both on the com- 
petence of the KSs and on the appropriate use of these KSs 

Thus, the primary considerations in the design of Expert 
Systems revolve around the availability and the quality of the 
KSs, and the optimal utilization of these KSs When and how 
a KS is used depends on its quality and its relevancy at any 
given time The relevance of a KS depends on the state of the 
CBH. The control mechanism for KS selection needs to be 
sensitive to, and be able to adjust to, the numerous possible 
solution states which arise during interpretation. Given this 
viewpoint, what is commonly called a “control strategy” can 
be viewed as another type of domain-dependent knowledge, 
albeit a high level one. Organizing the knowledge sources 
in a hierarchy is an attempt to unify the representation of 
diverse knowledge needed for the interpretation task 

In a hierarchzcally organized control structure, problem 
solving activities decompose into a hierarchy of knowledge 
needed to solve problems. On the lowest level is a set of 
knowledge sources whose charter is to put inferences on the 
CBH We refer to KSs on this level as Speczalists. At the 
next level there are KS-activators that know when to use 
the various Specialists. On the highest level a Strategy- 
KS analyzes the current solution stat’e to determine what 
information to analyze next. The last activity is also known 
as focussing-of-attention 

Kinds of knowledge represented. There are several 
kinds of knowledge used in HASP/SUP, each represented in 
a form that seems the most appropriate. 

Knowledge about the environment: The program must know 
about common shipping lanes, location of arrays and 
their relation to map coordinates, and known maneuver 
areas. This knowledge is represented in procedures that. 
compute the necessary information. 

Knowledge about vessels: All the known characteristics 
about vessel types, component parts and their acoustic 
signatures, range of speed, home base, etc , are repre- 
sented in frame-like structures. These constitute the 
static knowledge used by rules whenever a specific class 
of vessels is being analyzed. In addition, when some ves- 
sel class is inferred from a piece of data, detailed infor- 
mation is available to help make that hypothesis more 
credible. The use of this information by model-driven 
KSs reduces the amount of computation by directing 
other KSs to look for specific data 

Merpretation knowledge: All heuristic knowledge about 
transforming information on one level of the CBH to 
another level is represented as sets of production rules 
The rules in a KS usually generate inferences between 
adjacent levels However, some of the most powerful KSs 
generate inferences spanning several levels For example, 
a line with particular characteristics may immediately 
suggest a vessel class. This type of knowledge is very 
situation-specific. It was elicited from human experts 
who know and use much of the specialized, detailed 
knowledge now in the program (It is said that chess 
masters can immediately recognize approximately fifty 
thousand board patterns.) There are more examples of 
rules in the next section. 

The execution cycle consists of 

1 focussing attention on pending time-dependent ac- 
tivities, on verification of a hypothesis, or on one of 
the hypothesized elements; 

2 selecting the appropriate KSs for the attended event; 
and 

3. executing the selected KSs 

The KSs will generate a new CBH or expectations for some 
future events. The cycle is then repeated. Figure 5 shows the 
major flow of information and control. Since the program 
is event-driven, it is impossible to show the detailed flow of 
control in this type of a diagram. 

The KS hierarchy should be clearly distinguished from 
the hierarchy of analysis levels The hypothesis hierarchy 
represents an a priorz plan for the solution determined by 
a natural decomposition of the analysis problem. The KS 

hierarchy, on the other hand, represents a plan for organizing 
the problem-solving activities, or control, needed to form 
hypotheses. Figure 6 shows a general relationship between 
the organization of the hypothesis hierarchy and the KS 

hierarchy. 
KSs on the Specialist level. Each Specialist has the 

task of creating or modifying hypothesis elements, evaluat- 
ing inferences generated by other Specialists, and cataloging 

THE AI MAGAZINE Spring 1982 29 



-----_------------P-a 
I 
I 
I 
I 

: 

--------. w-w- - - -  

t----- .  
r/--- - 

l t 
I I 

I 
I I I Expec 

I I tatior 

I I I Drivel 

I I 
I 
I 

Clock-events Problems Events 

D I I 

L -a-- J. w.--b;‘-w-w 

I I 
Data------J 1: CBH 

7 1 1 
Event-History I 

I 

Tl 
I 1 

--- - - 

Incoming data are treated as events and are put on the Event-list. At the begining of the processing cycle at time t, the 
items on the Clock-event list are scanned to see if it’s time for any particular item to be processed If so, the appropriate 
KS is called. Next, the Expectation-driver is called to see if any pending problems can be resolved with the events on the 
Event-list. All resolvable problems are taken care of at this point. Next, the Event-driver is called to process the events. 
It first determines what changes of the CBH to focus on. (Note that each event represents either a new piece of data or a 
change made to the CBH during the last process cycle.) The Event-driver then calls the appropriate KSs to make further 
inferences on the basis of the focused event. The invoked KSs make changes to the CBH and add new events to the Event-list. 
A processing cycle terminates when the Event-list becomes empty. 

Figure 5. Information and control flow. 

missing evidences that are essential for further analysis. Its listed below. 
focus of attention is generally a hypothesis element contain- Inference-Generation: 
ing the latest changes. Although a KS has access to the en- rJ? Characteristics of a Harmonic set match another 
tire hypothesis, it normally LLunderstands” only the descrip- set on another channel, 
tions contained in two levels, its input level and its output THEN Both sets are coming from the same source with 
level. Some examples of different types of Specialists are confidence of .6. 
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Figure 6. Relationship between the analysis levels and the KS levels. 

Inference-Evaluation: 
IF Source belongs to Vessels of class Cherry or Iris, and 

Harmonics associated with Source have been stable 
for a while, 

THEN Increase the confidence of Cherry and Iris by .3 

Problem-Cataloging: 
IF Report exists for a vessel class Rose to be in the 

vicinity, and 
Source likely to be associated with Rose has been 

detected, 
THEY Expect to find other Source types associated with 

Rose class. 

KSs at the KS-activation level. A KS on this level 
has the task of invoking the appropriate Specialists given 
the kind of strategy being employed. For example, a KS 
charged with calling the appropriate KSs within a model- 
driven strategy has a different goal than one charged with 
a data-driven strategy. Different KS-activators can be made 

to reflect different policies, ranging from using the fastest- 
first to the most-accurate-first. HASP/SUP has two KS- 
activators, the Event-driver and the Expectation-driver. If 
there is more than one Specialist available to process an 
event, some policy is needed to guide the order in which 
these KSs are to be used. The Event-driver chooses items 
on the Event-list and activates Specialist-KSs based on the 
degree of specialization (and assumed accuracy) of the KSs. 
The Expectation-driver processes items on the Problem-list 
on the basis of how critical the needed evidence is to the 
emerging hypothesis. 

Event-driver: An event type represents an a priori 
grouping of similar changes to the hypothesis (i.e. it repre- 
sents the abstractions of possible changes to the hypothesis). 
An example event is “source-type-identified.” The changes, 
together with the identity of the rules that produced the 
changes, are put on a globally accessible list called the Event- 
list. The Event-driver invokes the appropriate Specialist-KSs 
based on the focused event or group of events. 
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Expectation-driver: The Expectation-driver monitors 
the items on the Problem-list to see if any event that might 
satisfy an expectation on the Problem-list has occurred. If 
an expected event does occur, the Expectation-driver will call 
the Specialist-KS which put the expectation on the Problem- 
list. For example, in Figure 4, if a source belonging to a 
reported Rose class is detected, then REPORT-GEN (the KS 
that put the item on the Problem-list) will be called. 

KS on the Strategy level. The Strategy-KS reflects 
a human analyst’s problem-solving strategy. Its expertise 
consists of det,ermining how accurate the current hypothesis 
is and in deciding what task will have the highest impact 
on the CBH. It has a variety of possible activities to choose 
from: 

“Is it time to check for specific data?” 

“Has anything happened since the last processing cycle 
that might invalidate the hypothesis?” 

“Has an expected event occurred?” 

“What is the best region in the CBH to work on next 
(i.e., what is the region of minimal ambiguity)?” 

In HASP/SLAP there are no formal mechanisms to mea- 
sure the differences between the current best hypothesis and 
the “right answer.” The program detects when the solution 
hypothesis is “on the right track” by a periodic use of heuris- 
tic criteria. A consistent inability to verify expectation-based 
hypothesis elements may signal an error in the hypothesis. 
A more general indication of ineffective hypothesis forma- 
tion appears as a consistent generation of conjectures whose 
confidence values are below a threshold value; and which 
therefore indicates that the analysis is “bogged down.” 

Dealing with time-dependent analysis. The task of 
HASP/SIAP is to interpret continuous streams of data and 
to maintain a current situation model. The primary input 
data currently consists of 5-minute segments describing, in 
effect, a summary of observed signals at various frequencies. 
These segments must be integrated into the existing Line- 
level elements. In addition; lines must be integrated into 
harmonic sets; sources must be attributed to vessels. The 
CBH serves as the historical context by which the integra- 
tion can occur. Through the CBH one can incorporate ap- 
pearances and disappearances of signals over time, using only 
common-sense reasoning, such as, “ships can’t just disap- 
pear, or appear, from nowhere ” The CBH must keep track 
of the times when specific events occurred, as well as main- 
tain a network of relationships between Lines, Sources, and 
Vessels. Time markers are placed with hypothesized values; 
new time markers are added only when the values change. In 
the example below, there were no changes to the Source type 
for two hours even though weights may have been changed 
during that time. (Also see Fig. 4.) 

SOURCE-l 
TYPE [(OR (Cherry Propeller 7 5)) 10650 

(OR (Cherry Propeller 6 0) 
(Poppy Propeller 2.5)) 104501 

HASP/SLAP must also analyze t’ime-oriented signatures 
and movements of vessels over time. The signature analysis 
is similar to trend analysis. The signature analysis depends 
on the type of vessel-some vessel signatures may last 15- 
minutes, others may last for hours or days. This type of 
time-dependent analysis is accomplished through the use of a 
mechanism called Cloclc events. When a Specialist-KS needs 
to look at or verify signatures, it puts on the Clock-event 
list a request to be recalled at a specific time. The request 
contains information that needs to be reviewed at that time. 
The Strategy-KS also generates Clock events in order to 
periodically review certain hypothesis elements at specified 
time intervals. In the example below a Specialist-KS called 
RATIO-FINDER will be called at time 22055 to check for 
a ratio between the Shaft and the Propeller for the Cherry 
class hypothesis. 

Clock Event 
(22055 RATIO-FINDER Source-l Source-5 
(Cherry Shaft Propeller)) 

Explanation and summary of the CBH. Every so 
often an explanation of the current best hypothesis is printed, 
together with unresolved issues. There were difficult.ies in 
generating an explanation that the analysts could under- 
stand. Although the basic processing strategy of the pro- 
gram had to be breadth-first, the analysts wanted to know 
all the supporting rationale for the situation one vessel at 
a time, that is, depth-first. Furthermore, analysts were 
not interested in every inference step, only the Ymportant” 
ones. These requirements eliminated the use of a straightfor- 
ward back-trace explanation currently in use in most Ex- 
pert Systems. Another knowledge source had t,o be brought 
to bear on the History-list to identify “important” events 
and to present these events in a sequence acceptable to the 
analysts. Figure 7 contains a small sample of a HASP/SIAF’ 
summary explanation. The first statement requires a search 
through the History-list to collect several events that support 
the Vessel-l hypothesis. These events are widely separated 
events in the processing cycle. 

AI and Signal Processing 

Decomposition of the HASP/SIAP program offers an in- 
teresting avenue for highlighting the value of combining AI 
with signal processing. The two segments of importance are 
the following: 

1 Translation of the data into sonogram lines and 
measurement of line parameters; and 

2 The disentanglement of intermingled target signa- 
tures and their classification. 

The HASP system used skilled human perception to per- 
form the first step in the signal-to-symbol transformation- 
the encoding of the signal data into segments and features 
For a largely automated classification program this is a task 
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Summary of Events at this Time Slot 

l Newly reported line segment which does not seem to be a part of any previously observed lines 
is assigned to a new line: Line-25. This line is assigned to a new lineset Harmonic-5, from which 
in turn a new source Source-5 is created. 

l Sources Source-l and Source-5 of vessel Vessel-l have a known ratio; this provides further evidence 
for the association of these two sources with this vessel. 

l Source type of Source-5 is updated due to an observed ratio: (Cherry Shaft 6.0) (Poppy Shaft 4.0) 
(Iris Propeller 5.0) (Tulip Propeller 2.0). 

l Source type of Source-l is updated due to an observed ratio: (Cherry Propeller 4.0). 

l Based on modified Source types (Source-l), the class type of Vessel-l are weighted as follows: 
(Cherry 7.2). 

l Based on modified Source types (Source-5), the class types of Vessel-l are weighted as follows: 
(Cherry 8 4) (Iris 6.9) (Tulip 6 2) (Poppy 4.8). 

Pending Problem 

There is evidence that Vessel-l is a Cherry class, because there is a relation 
between Shaft and Propeller. 

If it is a Cherry class, there should be a dependency of 5 in the propeller 
and dependency of 6 in the shaft. We have not yet observed the dependency 5. 

Problem list = (EXPECT Vessel-l (SUPPORT Cherry) (Dependency Propeller 5)) 

A summary explanation is printed with the current best hypothesis, shown in Figure 4. The CBH 
describes the current situation; the summary explanation provides the rationale for the changes in the 
situation since the last processing cycle. 

Figure 7 Example of a summary explanation. 

that requires substantial signal processing. Complex algo- 
rithms have now been developed for this front-end applica- 
tion, incorporating many of the skills of the analyst. 

However, in the SW project the sponsor required that 
a particular front-end be used. This program unfortunately 
smoothed over many of the key clues that permitted the 
HASP program to perform so well. To compensate for this 
setback, some AI had to be moved into the signal process- 
ing front-end and the processing adjusted in the second seg- 
ment. For example, the automated front-end had a ten- 
dency to break certain wideband lines into several adjacent 
narrowband lines. An uninformed grouping of these lines 
can be incorrect, since in some cases they could be neigh- 
boring narrowband lines. The grouping needs to be ac- 
complished within the context of what is already known 
about the relationship among the lines, and between the 
lines, the sources, and the vessel classes. A new knowledge 
source was added that used the context to process the algo- 

rithmic outputs. 
Two other major issues involving AI and signal process- 

ing surfaced in the course of building HASP/?&W They are: 

1. the feedback to the signal processing front-end; and 
2 the allocation of signal processing resources 

There are two kinds of feedback that the situation model 
can provide to signal processors. First, special purpose 
detection and parameter measurement algorithms depend on 
higher level information-the CBH has the necessary infor- 
mation. Second, threshhold values for the front-end need to 
be adjusted according to the current needs and expectations. 
In both cases, the processing of information over a period of 
time leads to modifications of parameters in the front’-end 
for more accurate subsequent processing. 

In the undersea surveillance problem, a variety of signal 
processing techniques can be brought to bear in the front- 
end. Some of these fall in the category of “standard” algo- 
rithms that are more or less always used. But others are 
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specialized algorithms that cannot be used for all channels 
at all times because of their cost. Because these algorithms 
can provide important processing clues when used, the al- 
location of these scarce resources is an important issue. The 
appropriate use of the resource is especially important be- 
cause the use of these special algorithms can significantly 
reduce the time required to produce an accurate situat’ion 
model 

The resource allocation problem is knowing when to in- 
voke the special signal processors. The approach to its solu- 
tion lies in rules that can recognize when the context will per- 
mit the special processor to resolve important ambiguities. 
In HASP/SIAP only a rudimentary capability for this process 
was used, but its value was conclusively demonstrated. 

The resource allocation problem pointed out another 
“signal processing” capability that can be utilized on a 
demand basis to resolve ambiguities. This resource is the 
human operator, who generally has great expertise in the 
entire process, including the processing of the sonogram 
information. This interaction was performed off-line in 
HASP/SLAP, but on-line capabilities are being incorporated 
in the HASP/SIAP derivatives. This approach is more in 
line with using the Expert System as an analyst aid, rather 
than a stand-alone system, but the combination of man and 
machine will be far more powerful than either alone. 

The HASP/SUP experience indicates that some good AI 
can cover a multitude of signal processing inadequacies and 
can direct the employment of signal processing algorithms. 
The intelligent combination of AI and signal processing 
views the signal processing component as another knowledge 
source, with rules on how best to employ algorithms and how 
to interpret their output. 

Evaluation 

MITRE Corporation undertook a detailed analysis of the 
performance of SUP in a series of experiments conducted 
between December 1976 and March 1978 at DARPA’s Acous- 
tic Research Center. The experiments compared HASP/SUP 
performance with those of two expert sonar analysts in three 
task categories. 

The first experiment, designed to test the performance 
in detection and classification of vessels using data derived 
from actual ocean events, led to the general conclusion 
that “HXSP/SIAP has been shown to perform well on ocean 
derived data. . . For this restricted ocean scene, the program 
is not confused by extraneous data and gives results com- 
parable to an expert analyst.” 

The second experiment, designed to test the information 
integration capability, using derived data for multi-arrays, 
led to the conclusion that “HASP/SLAP understood the ocean 
scene more thoroughly than the second analyst and as well as 
the first analyst.. . The program can work effectively with 
more than one acoustic array. SLAP classified an ocean scene 
over a three hour time period indicating the plausibility of 
SLAP efficacy in an evolving ocean situation.” 

The third and final experiment, documented by MITRE: 
was designed to test the automatic parameter extraction 
capability added during the SLAP phase of HASP/SLAP de- 
velopment. It led to the conclusion that “with the excep- 
tion that the SLAP program obtained significantly more con- 
tacts than the human analysts, the descriptions of the ocean 
scene are very similar.” Moreover, “SUP can perform vessel 
classification in increasingly difficult ocean scenes without 
large increases in the use of computer resources.” Hence, 
continued better-than-real-time performance could be ex- 
pected if the system were deployed 

In a later experiment, it was shown that the additional 
contacts seen by SIAP in the third experiment were due to 
the front-end processor provided by the sponsor-namely, 
taking relatively wideband lines and decomposing them into 
erratic collections of narrowband lines. These problems were 
essentially eliminated by additional heuristics in the line- 
formation knowledge source. 

Conclusions 

In signal processing applications, involving large amounts 
of data with poor signal-to-noise ratio, it is possible to reduce 
computation costs by several orders-of-magnitude by the use 
of knowledge-based reasoning rather than brute-force statis- 
tical methods We estimate that HASP/SLAP can reduce 
computation costs by 2 to 3 orders-of-maginitude over con- 
ventional methods. It makes lzttle sense to use enormous 
amounts of expenszve computation to tease a little szgnal out 
of much noise, when most of the understanding can be readzly 
inferred from the symbolic knowledge surroundzng the satua- 
tion. 

There is an additional cost saving possible. Sensor 
bandwidth and sensitivity is expensive. From a symbolic 
model it is possible to generate a set of signal expectations 
whose emergence in the data would make a difference to the 
verification of the ongoing model. Sensor parameters can 
then be “tuned” to the expected signals and signal directions; 
not every signal in every direction needs to be searched for. 

Suitable application areas. Building a signal inter- 
pretation system within the program organization described 
above can best be described as opportunzstic analysis. Bits 
and pieces of information must be used as opportunity arises 
to build slowly a coherent picture of the world-much like 
putting a jigsaw puzzle together. Some thoughts on the 
characteristics of problems suited to this approach are listed 
below. 

Large amounts of signal data need to be analyzed. Ex- 
amples include the interpretation of speech and other 
acoustic signals, x-ray and other spectral data, radar 
signals, photographic data, etc A variation involves 
understanding a large volume of symbolic data; for 
example, the maintenance of a global plotboard of 
air traffic based on messages from various air traffic 
control centers. 
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2 Formal or informal interpretive theories exist. By ini’or- 
ma1 interpretive theory we mean lore or heuristics 
which human experts bring to bear in order to under- 
stand the data These inexact and informal rules are 
incorporated as KSs in conjunction with more formal 
knowledge about the domain. 

3 Task domain can be decomposed hierarchically in a natural 
way In many cases the domain can be decomposed 
into a series of data reduction levels, where various in- 
terpretive theories (in the sense described above) exist 
for transforming data from one level to another 

4 “Opportunistzc” strategies must be used. That is, there is 
no computationally feasible legal move generator that 
defines the space of solutions in which pruning and 
steering take place Rather, by reasoning about bits 
and pieces of available evidence, one can incremen- 
tally generate partial hypotheses that will eventualy 
lead to a more global solution hypothesis. 

Data-driven vs. model-driven hypothesis-forma- 
tion methods. Data- and model-driven methods of hypoth- 
esis formation were combined in the design of HASP/SUP. 
By data-driven we mean “inferred from the input data.” By 
model-drzven we mean “based on expectation” where the 
expectation is inferred from knowledge about the domain. 
For example; a hypothesis generated by a KS which infers a 
source type from a harmonic set is a data-driven hypothesis. 
On the other hand, a hypothesis about the possible existence 
of a harmonic set based on the knowledge about a ship is 
a model-based hypothesis. In the former case, the data are 
used as the basis for signal analysis; in the latter case, the 
primary data are used solely to verify expectations. 

There are no hard-and-fast criteria for determining 
which of the two hypothesis formation methods is more ap- 
propriate for a particular signal-processing task. The choice 
depends, to a large extent, on the nature of the KSs that 
are available and on the power of the analysis model avail- 
able. Our experience points strongly toward the use of a 
combination of these techniques; some KS’s are strongly data 
dependent’ while others are strongly model dependent. In 
HASP/%@ the majority of the inferences are data-driven, 
with occasional model-driven inferences. The following are 
guidelines we have used in the past to determine which of 
the two methods is more appropriate: 

1. Signal-to-noise ratio Problems which have inherently 
low S/N ratios are better suited to solutions by 
model-driven programs; the converse is true for prob- 
lems with high S/N ratios. However, designers should 
beware that t,he model-driven approach is prone to 
“finding what is being looked for ” Model-driven ap- 
proaches should be supplemented with strong verifi- 
cation heuristics. 

2. Availability of a model A model, sometimes referred 
to as the semantics of the task domain, can be used 
in various ways: (a) as input at some level of the 
hypothesis structure, (b) to make inferences based 
on general knowledge about the task domain, or 
(c) to make inferences based on specific knowledge 
about the particular task In HASP/SUP, the model 

is drawn from general knowledge about the signal 
sources and from external reports that serve to define 
the context. If a reliable model is available, the data- 
interpretation KSs can be used as verifiers rather than 
generators of inferences; this reduces the computa- 
tional burden on the signal-processing programs at 
the “front end.” 

The general methodology used in HASP/SIX’ have been 
applied in many other problem areas. A small sampling in- 
cludes the HEARSAY-II speech understanding program, the 
original Blackboard program (Erman, Hayes-Roth, Lesser, 
and Reddy, 1980; Lesser and Erman, 1977); CRYSALIS, a 
program that interprets protein x-ray crystallographic data 
(Engelmore and Terry, 1979); a program that generates plans 
(Hayes-Roth and Hayes-Roth, 1979); a program that inter- 
prets aerial photographs (Nagao, Matsuyama, and Mori, 
1979). In addition, program packages that help users imple- 
ment a variety of Blackboard programs have been under 
development for the past few years (Erman, London, and 
Fickas, 1981; Nii and Aiello, 1979). 
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