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Abstract

Cooperative distributed problem solving networks are distiibuted net-
works of semi-autonomous processing nodes that work together to solve
a single problem The Distributed Vehicle Monitoring Testbed is a
flexible and fully-instrumented research tool for empirically evaluating
altcinative designs for these networks The testbed simulates a class
of a distributed knowledge-based problem solving systems operating on
an abstracted version of a vehicle monitoring task

There are two important aspects to the testbed: (1) it implements
a novel generic architecture for distributed problem solving networks
that exploits the use of sophisticated local node control and meta-level
contiol to improve global coherence in network problem solving; (2) it
serves as an example of how a testbed can be engineered to permit the
empirical exploration of design issues in knowledge-based Al systems.
The testbed is capable of simulating different degrees of sophistica-
tion in problem solving knowledge and different focus-of-attention
mechanisms, for varying the distribution and characteristics of error in
its (simulated) input data, and for measuring the progress of problem
solving. Node configurations and communication channel characteris-
ties can also be independently varied in the simulated network

A piroject as large and complex as the Distributed Vehicle Monitor-
ing Testbed involved a number of individuals and became itself a dis-
tributed problem solving task The efforts of Richard Brooks, Eva
Hudlicka, Larry Lefkowitz, Raam Mukunda, Jasmina Pavlin, and Scott
Reed contributed to the success of the testbed We would also like to
acknowledge Lee Erman’s collaboration on the initial formulation of the
Functionally Accurate, Cooperative approach and his work on the pilot
experiments This research was sponsored, in part, by the National
Science Foundation under Grant MCS-8006327 and by the Defense Ad-
vanced Research Projects Agency (IDOD), monitored by the Office of
Naval Research under Contract NR049-041

THERE ARE TWO MAJOR THEMES of this article.
First, we introduce readers to the emerging subdiscipline of
AT called Diustributed Problem Solving, and more specifically
the authors’ research on Functionally Accurate, Cooperative
systems Second, we discuss the structure of tools that al-
low more thorough experimentation than has typically been
performed in AT research An example of such a tool, the
Distributed Vehicle Monitoring Testbed, will be presented.
The testbed simulates a class of distributed knowledge-based
problem solving systems operating on an abstracted version
of a vehicle monitoring task. This presentation emphasizes
how the testbed is structured to facilitate the study of a wide
range of issues faced in the design of distributed problem
solving networks.

Characteristics of Distributed Problem Solving.

Distributed Problem Solving (also called Distributed
Al) combines the research interests of the fields of Al and
Distributed Processing (Chandrasekaran 1981; Davis 1980,
1982; Iehling & Erman 1983). We broadly define dis-
tributed problem solving networks as distributed networks
of semi-autonomous problem solving nodes (processing ele-
ments) that are capable of sophisticated problem solving and
cooperatively interact with other nodes to solve a single prob-
lem. Each node can itself be a sophisticated problem solving
system that can modify its behavior as circumstances change
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and plan its own communieation and cooperation strategies
with other nodes.

Distributed problem solving is an important research
area for several reasons First, hardware technology has
advanced to the point where the construction of large dis-
tributed problem solving networks is not only possible, but,
cconomically feasible. While the first networks may consist
of only a small number of nodes, distributed problem solv-
ing networks may eventually contain hundreds or thousands
of individual nodes. We are nearing a situation of excit-
ing hardware possibilities unaccompanied by the problem
solving technology required for their effective utilization.
Second, there arc Al applications that are inherently spa-
tially distributed A distributed architecture that matches
their spatial distribution offers many advantages over a
centralized approach. Third, understanding the process of
cooperative problem solving is an important. goal in its own
right. Whether the underlying system is societal, managerial,
biological, or mechanical, we seem to understand competi-
tion far better than cooperation It is possible that the devel-
opment of distributed problem solving networks may serve
the same validating role to theories in sociology, manage-
ment, organizational theory, and biology as the development
of Al systems have served to theories of problem solving and
intelligence in psychology and philosophy.

Although this new area borrows ideas from both AT and
Distributed Processing, it differs significantly from each in
the problems being attacked and the methods used to solve
these problems

Distributed Problem Solving
and Distributed Processing

Distributed problem solving networks differ from dis-
tributed processing systems in both the style of distribution
and the type of problems addressed (Smith & Davis 1981).
These differences are most apparent when we study the inter-
actions among nodes in each of the types of networks A dis-
tributed processing network typically has multiple, disparate
tasks executing concurrently in the network. Shared access
to physical or informational resources is the main reason for
interaction among tasks The goal is to preserve the illusion
that each task is executing alone on a dedicated system by
having the network operating system hide the resource shar-
ing interactions and conflicts among tasks in the network. In
contrast, the problem solving procedures in distributed prob-
lem solving networks are explicitly aware of the distribution
of the network components and can make informed inter-
action decisions hased on that information. This difference
in emphasis is, in part, due to the characteristics of the ap-
plications heing tackled by conventional distributed process-
ing methodologies These applications have permitted task
decompositions in which a node rarely needs the assistance
of another node in carrying out its problem solving func-
tion. Thus, most of the research as well as the paradigms of
distributed processing do not directly address the issues of
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cooperative interactions of tasks to solve a single problem.
As will be discussed later, highly cooperative task interac-
tion is a requirement for many problems that seem naturally
suited to a distributed network.

Distributed Problem Solving
and Artificial Intelligence

Distributed problem solving also differs from much of
the work in Al because of its emphasis on representing prob-
lem solving in terms of asynchronous, loosely-coupled process
networks that operate in parallel with limited interprocess
communication Networks of cooperating nodes are not, new
to artificial intelligence. However, the relative autonomy and
sophistication of the problemn solving nodes, a direct conse-
quence of limited communication, sets distributed problem
solving networks apart from most others, including Hewitt’s
work on the actor formalism, Kornfeld’s ETHER language,
Lenat’s BEINGS system, and the augmented Petri nets of Zis-
man (Hewitt 1977, Kornfeld 1979, Lenat 1975, Zisman 1978)
The requirement for limited communication in a distributed
network has also led to the development of problem solving
architectures that can operate with possibly inconsistent and
incomplete data and control information. In many applica-
tions, communication delay makes it impractical for the net-
work to be structured so that each node has all the relevant
information needed for its local computations and control
decisions. Another way of viewing this problem is that the
spatial decomposition of information among the nodes is ill-
suited to a functionally distributed solution Each node may
possess the information necessary to perform a portion of
each function, but insufficent information to completely per-
form any function.

The Uses of Distributed Problem Solving.

Most. initial work in distributed problem solving has
focused on three distributed air traffic control, and dis-
tributed robot systems (Davis 1980, 1982; Fehling 1983). All
of these applications need to accomplish distributed inter-
pretation (situation assessment) and distributed planning.
Planning here refers not only to planning what actions to
take (such as changing the course of an airplane), but also
to planning how to use resources of the network to carry out
the interpretation and planning task effectively This latter
form of planning ecncompasses the classic focus-of-attention
problem in AT

In addition to the commonality in terms of the generie
tasks being solved, these application domains are charac-
terized by a natural spatial distribution of sensors and
effectors, and by the fact that the subproblems of both the lo-
cal interpretation of sensory data and the planning of effector
actlons are interdependent in time and space For example,
in a distributed sensor network tracking vehicle movements,
a vehicle detected in one part of the sensed arca implies that a



vehicle of similar type and veloeity will be sensed a short. time
later in an adjacent area (Figure 1). Likewise, a plan for guid-
ing an airplane must be coordinated with the plans of other
nearby airplanes in order to avoid collision. Interdependency
also arises from redundancy in sensory data Often different
nodes sense the same event due to overlaps in the range of
sensors and the use of different types of sensors that sensc
the same event in different ways. Exploiting these redundant
and alternative views and the interdependencies among sub-
problems require nodes to cooperate in order to interpret and
plan effectively. This cooperation leads to viewing network
problem solving in termns of a single problem rather than a
set of independent subproblems.

It is difficult to develop a distributed problem solving
architecture that can exploit the characteristices of these ap-
plications to limit internode communication, to achieve real-
time response, and to provide high reliability. Nodes must
cooperate to exploit and coordinate their answers to inter-
dependent. subproblems, but must do so with limited inter-
processor communication. This requires the development
of new paradigms that permit the distributed system to
deal effectively with environmental uncertainty (not having
an accurate view of the number and location of processors,
effectors, sensors, and communication channels), data uncer-
tainty (not having complete and consistent local data at a
node) and control uncertainty (not having a completely ac-
curate model of activities in other nodes).

We see the development of these paradigms as draw-
ing heavily on the work in knowledge-based Al systems and,
simultaneously, making contributions to AI. As Nilsson has
noted, the challenges posed by distributed Artificial Intel-
ligence will contribute to (and may even be a prerequisite for)
progress in “ordinary” artificial intelligence ( Nilsson, 1980)
Once example of this interaction is the problem of controlling
semi-autonomous problem solving agents possessing only a
local and possibly errorful view of the global state of problem
solving. Solutions being developed for this problem have in-
volved the use of meta-level control, integrated data-directed
and goal-directed control, and focus-of-attention strategies
hased on reasoning about the state of local problem solving
(Corkill 1983). Approaches similar to these are being used to
solve the control problems that are faced in the development
of a new generation of centralized knowledge-based problem
solving systems, which have significantly larger and more
diverse knowledge bases

In the remainder of this article we first describe the Func-
tionally Acecurate, Cooperative distributed problem solving
paradigm and pilot experiments that explored the viability of
this approach After describing the issues we wish to explore
using the Distributed Vehicle Monitoring Testhed, we present
the vehicle monitoring task, followed by a detailed discus-
sion of the testbed. Later sections describe how we have
quantified system behavior and the use of these measures for
simulating and evaluating the performance of various sys-
tem components, overview the tools that help a user define
experiments and analyze their output, review the current

status of the testbed implementation, and outline future re-
scarch directions.

Functionally Accurate, Cooperative
Distributed Problem Solving

Our research has focused on the design of distributed
problem solving networks for applications in which there is
a natural spatial distribution of information and processing
requirements, but insufficient information for each process-
ing node to make completely accurate control and processing,
decisions withoul extensive internode communication (used
to acquire missing information and to determine appropriate
node activity). An example of this type of application is dis-
tributed vehicle monitoring. Vehicle monitoring is the task
of generating a dynamic, area-wide map of vehicles moving
through the monitored area. Distributed vehicle monitoring
typically has a number of processing nodes, with associated
acoustic sensors (of limited range and accuracy), geographi-
cally distributed over the area to be monitored (Lacoss
1978, Smith 1978). Each processsing node can communicate
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with other nearby nodes over a packet radio communica-
tion network (Kahn 1978). Each sensor includes the actual
acoustic transducer, low-level signal processing hardware and
software, and communication equipment necessary to trans-
mit the processed signals to a high-level (symbolie) processing
site.

As a vehicle moves through the monitoring area, it
generates characteristic acoustic signals. Some of these sig-
nals are recognized by nearby sensors which detect the fre-
quency and approximate location of the source of the signals.
An acoustic sensor has a limited range and accuracy, and
the raw data it generates contains significant error. Using
data from only one sensor can result in “identification” of
non-existent vehicles and ghosts, missed detection of actual
vehicles, and incorrect location and identification of actual
vehicles. To reduce these errors, information from various
sensors must be correlated over time to produce the answer
map. The amount of communication required to redistribute
the raw sensory data necessary for correct, localized process-
ing makes such an approach infeasible.

One way to reduce the amount of communication and
synchronization is to loosen the requirement that nodes al-
ways produce complete and accurate results. Instead, each
node produces tentative results which may be incomplete,
incorrect, or inconsistent with the tentative partial results
produced by other nodes. For example, a node may produce a
set of alternative partial hypotheses based on reasonable ex-
pectations of what the missing data might be. In the vehicle
monitoring task, each node’s tentative vehicle identification
hypotheses can be used to indicate to other nodes the areas
in which vehicles are more likely to be found and the
details (vehicle type, rough location, speed, ete.) of probable
vehicles. This information help a node to identify the actual
signals in its noisy sensory data. In addition, consistencies
between these tentative identification hypotheses serve to
reinforce confidence in each node’s identifications. Such
cooperation is not only appropriate for vehicle identification,
but also potentially useful in other stages of processing
(identification of raw signals, groups of harmonically related
signals, patterns of vehicles, ete.).

This type of node processing requires a distributed prob-
lem solving structure in which the nodes cooperatively con-
verge to acceptable answers in the face of incorrect, inac-
curate, and inconsistent intermediate results. This is ac-
complished using an iterative, coroutine type of node in-
teraction in which nodes’ tentative partial results are itera-
tively revised and extended through interaction with other
nodes. A network with this problem solving structure is
called Functionally Accurate, Cooperatwe (FA/C) (Lesser
1981). “Functionally accurate” refers to the generation of
acceptably accurate solutions without the requirement that
all shared intermediate results be correct and consistent
(as is the case with conventional distributed processing).
“Cooperative” refers to the iterative, coroutine style of node
interaction in the network. The hope of this approach is
that much less communication is required to exchange these
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high-level, tentative results than the cominunication of raw
data and processing results that would be required using
a conventional distributed processing approach. In addi-
tion, synchronization among nodes can also be reduced or
eliminated entirely, resulting in increased node parallelism.
Finally, this approach leads to a more robust network since
errors resulting from hardware failure are potentially cor-
rectable in the same fashion as errors resulting from the use
of incomplete and inconsistent local information.

A Pilot Experiment in Distributed Interpretation

A set of pilot experiments was performed to investigate
the suitability of the FA/C approach using a network of com-
plete HEARSAY-II interpretation systems (Lesser 1980). The
HEARSAY-II architecture appeared to be a good structure
for each node because it incorporates mechanisms for deal-
ing with uncertainty and error as an integral part of its basic
problem solving. Further, the processing can be partitioned
or replicated naturally among network nodes because it is al-
ready decomposd into independent and self-directed modules
called, knowledge sources, which interact anonymously and
are limited in the scope of the data they need and produce.
For further information about the HEARSAY-II architecture
see Erman, et al (1980).

Experiments were performed to determine how the prob-
lem solving behavior of a network of HEARSAY-II nodes com-
pared to a centralized system. HEach node was completely
self-directed in its decisions about what work it should per-
form and what information it should transmit to other nodes.
The aspects of behavior studied included the accuracy of the
interpretation, the time required, the amount of internode
communication, and network robustness in the face of com-
munication errors. These experiments simulated only the dis-
tributed hardware — they used an actual HEARSAY-II speech
understanding system analyzing real data. A spatial dis-
tribution of sensory data was modelled by having each node
of the distributed speech understanding network sample one
part (time-contiguous segment) of the overall speech signal.

The experiments showed that a network of three HEAR-
SAY-1I speech understanding nodes performs well as a coopera-
tive distributed network even though each node has a limited
view of the input data and exchanges only high-level (phrasal)
partial results with other nodes. In an experiment with er-
rorful communication, network performance degraded grace-
fully with as much as 50% of the messages lost, indicating
that the system can often compensate automatically for the
lost messages by performing additional computation.

Although these experiments were extremely positive,
they did point up a key issue in the successful application
of the FA/C approach. This issue, which we feel is also
important for the design of any complex distributed prob-
lem solving network, is that of obtaining a sufficient, level of
cooperation and coherence among the activities of the semi-
autonomous, problem solving nodes in the network (Davis &



Smith 1982, Corkill 1982). If this coherence is not achieved,
then the performance (speed and accuracy) of the network
can be significantly diminished as a result of lost processing
as nodes work at cross-purposes with one another, redun-
dantly applied processing as nodes duplicate efforts, and
misallocation of activities so that important portions of the
problem are either inaccurately solved or not solved in timely
fashion.

In the pilot experiments with the three-node network,
we observed that the simple data-directed and self-directed
control regime used in these experiments can lead to non-
coherent behavior (Lesser 1980). Situations occurred when
a node had obtained a good solution in its area of interest
and, having no way to redirect its attention to new problems,
simply produced alternative but worse solutions. Another
problem occurred when a node had noisy data and could not
possibly find an accurate solution without help from other
nodes. In this situation, the node with noisy data often
quickly generated an inaccurate solution which, when trans-
mitted to the nodes working on better data, resulted in the
distraction of these nodes. This distracting information in
turn caused significant delay in the generation of accurate
solutions by nodes with accurate as well as noisy data. We
believe that development of appropriate network coordina-
tion policies (the lack of which resulted in diminished net-
work performance for even a small network) will be crucial to
the cffective construction of large distributed problem solving
networks containing tens to hundreds of processing nodes.

The Need for a Testbed

Although these experiments provided intitial empirical
validation for the FA/C approach and pointed out an impor-
tant set of issues that needed to be solved, they were just a
first step. These experiments were not based on a realistic
distributed task, and more importantly were limited in the
scope of issues that could be addressed. Thus, a more ex-
tensive sct of empirical investigations was necessary in order
to better understand the utility and limitations of the FA/C
approach Empirical performance measures were needed for
a wide range of task and problem solving situations in order
to evaluate and analyze the following issues:

e Self-correcting computational structures. What and how
much uncertainty and error can be handled using
these types of computational structures? What are
the costs (and trade-offs) in processing and com-
munication to resolve the various types of errors?
How does the quality of knowledge used in the net-
work affect the amount of uncertainty and error that
can be accomodated?

o Tuask characteristics and the selection of an appropriate
network configuration: What characteristics of a task
can be used to select the network configuration ap-
propriate for it? When should problem solving
among nodes be organized hierarchically? What type

of authority relationship should exist among nodes?
Should nodes be completely self-directed or should
there be certain nodes that decide explicitly what
other nodes should do, or should there be a nego-
tiation structure among nodes (Smith & Davis 1981)?
Similarly, should information be transmitted on a
voluntary basis or only when requested or some mix-
ture of these policies?

The candidate task characteristics to evaluate included
the size of the network and the communication topol-
ogy; the type, spatial distribution, and degree of uncer-
tainty in information; the quality of knowledge in the net-
work;interdependencies among subproblems; and the size of
the search space.

Unfortunately, it was difficult to extend the distributed
HEARSAY-II speech understanding system for these studies.
There were two major reasons for this difficulty: the com-
putation time needed to run experiments and inflexibilities
in the design of the system. We discuss these reasons be-
cause they point out why extensive experimentation with
large knowledge-based Al systems is very difficult.

The use of an existing knowledge-based system as the
basic underlying problem solving system in the experiments
lent credibility to the simulation results and also avoided
the extensive knowledge engineering that normally would
have been required. The importance of having a concrete
framework to explore ideas cannot be underestimated. Not
until the problems of getting the HEARSAY-II speech un-
derstanding network to work appropriately in a distributed
setting were confronted did many of our intuitions about
how to design distributed problem solving networks evolve.
However, there were major negative implications of using
the real HEARSAY-II speech understanding system. First, it
was extremely time consuming to run the multi-node simula-
tions since the underlying problem solving system was large
and computationally slow. Second, the speech understand-
ing system did not naturally extend to larger numbers of
nodes and more complex communication topologies without
significant changes to the system. In part, this is because
the speech task is not a realistic distributed processing task
and its sensory data is one-dimensional (the time dimen-
sion). Third, efficiency considerations in the design of the
speech understanding system led to a tight coupling among
knowledge sources and the elimination of data-directed con-
trol at lower blackboard levels. This tight coupling precluded
the exploration of many interesting network architectures.
It was not possible to configure nodes with only a partial
set of knowledge sources without significant modifications to
the knowledge source interaction patterns. Fourth, the sheer
size and complexity of knowledge source code modules made
modification a difficult and time consuming process.

Basically, the flexibility of the HEARSAY-II speech un-
derstanding system (in its final configuration) was sufficient
to perform the pilot experiments, but was not appropriate for
more extensive experimentation. Getting a large knowledge
based system to turn over and perform creditably requires
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a flexible initial design but, paradoxically, this flexibility is
often engineered out as the system is tuned for high per-
formance. Extensive experimentation, if not originally con-
ceived and maintained as a goal of the system design, is a
difficult task.

The Distributed Vehicle Monitoring Testbed

This section introduces the distributed vehicle monitor-
ing testbed, a flexible and fully-instrumented research en-
vironment constructed for the empirical evaluation of al-
ternative designs for functionally accurate, cooperative dis-
tributed problem solving networks. The concept of the
testbed evolved from:

e An understanding of both the difficulties and im-
portance of an empirical approach to issues in dis-
tributed problem solving;'

e The need for a realistic environment for cxploring
new paradigms for obtaining global coherence

Ilere, the motivation for the testbed, its basic structure,
and its paramcterization and measurement capabilities are
described.

Motivation

Our approach to designing the testbed was to:

1 Take a realistic distributed problem solving task and
appropriately abstract it to reduce the problems of
knowledge engineering, to speed up problem solving,
and to make it a more generic and parameterizable
task;

2 Develop for this abstracted task a distributed prob-
lem solving system that can model (through ap-
propriate parameter settings and pluggable modules
of code) a wide class of distributed problem solving
architectures;

3 Creatle a simulation system that can run this dis-
tributed problem solving system under varying en-
vironmental scenarios, different node and communica-
tion topologies, and different task data.

We feel that this approach is the only viable way to gain
extensive empirical cxperience with the important issues in
the design of distributed problem solving systems. In short,
distributed problem solving networks are highly complex.
They are difficult to analyze formally and can be expensive
to construct, to run, and to modify for empirical evaluation.

IWe had, in fact, earlier embarked on the development of such an
environment, based on what we called the Distributed Processing Game
(Lesser & Corkill, 1978), but failed This venture failed because we
had chosen an application for which the knowledge engineering was so
complex and our understanding of the task was so vague that we could
not, develop sufficient knowledge for the system to turn over
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Real distributed problem solving applications are difficult,
to construet due to the large knowledge acquisition and en-
gineering effort required, and once built, they are difficult
to instrument and modify for experimentation. Thus, it is
difficult and expensive to gain these experiences by develop-
ing a “real” distributed problem solving application in all its
detail.

Likewise, we see the formal modelling route as not vi-
able. The research in distributed problem solving is still in
its infancy and formal analytic approaches are not, yet avail-
able. Underlying, the development of analytical approaches
are intuitions gained from experiences with actual systems.
Without sufficient intuitions for appropriately simplifying
and abstracting network problem solving, the development of
a model that is both mathematically tractable and accurate
is difficult.

Our hope is that the testbed will provide the appropriate
environment for acquiring this experience and will even-
tually be useful in evaluating the accuracy of the analyti-
cal models.? Especially important are experiences with large
distributed problem solving networks of ten to hundreds of
nodes. It is with networks of this size the we expect to see
the problems of cooperation and coherence dominate and
where important intuitions about how to design distributed
problem solving networks will arise.

In summary, the empirical approach taken here repre-
sents a compromise between the reality of an actual system
and simplicity of an analytical model. We have abstracted
the task and simplified the knowledge but still are per-
forming a detailed simulation of network problem solv-
ing. It should be mentioned that even with significant.
simplifications the building of the testbed was a substantial
implementation effort. However, in contrast to the construc-
tion of a “real” application where considerable effort. must be
spent in knowledge engineering, our efforts have heen spent in
parameterizing the problem-solving architecture and making
the testbed a useful experimental tool

Why Distributed Vehicle Monitoring?

Distributed vehicle monitoring has four characteristics
that make it an ideal problem domain for research on dis-
tributed problem solving.

F'irst, distributed vehicle monitoring is a natural task for
a distributed problem solving approach since the acoustic
sensors are located throughout a large geographical area.
The massive amount of sensory data that must be reduced
to a highly abstract, dynamic map seems appropriate for a
distributed approach.

Second, distributed vehicle monitoring can be formu-
lated as an interpretation task in which information is in-
crementally aggregated to generate the answer map Nilsson

?The testbed is already beginning to be used in this manner Sec the
work by Pavlin (1983) on initial attempts at formulating a model for
distributed intrepretation systems



has termmed systems with this characteristic commutative
(Nilsson 1980).
Commutative systems have the following propertics:

1. Actions that are possible at a given time remain pos-
sible for all future times.

2. The system state that results from performing a se-
quence of actions that are possible at a given time is
invariant under permutations of that sequence.

Commutativity allows the distributed vehicle monitor-
ing network to be liberal in making tentative initial vehicle
identifications, since generation of incorrect information
never precludes the later generation of a correct answer
map. Without commutativity, the basic problem solving
task would be much more difficult.

Although the generation of the answer map is commuta-
tive, controlling node activity is not. Here we enter the realm
of limited time and resources. If a crucial aspect of the
answer map is not immediately undertaken by at least one
node in the network, the network can fail to generate the map
in the required time In the determination of node activities,
mistakes cause the loss of unrecoverable problem solving time
and can therefore eliminate the possibility of arriving at a
timely answer map. If the nodes and sensors are mobile,
their placement adds another non-commutative aspect to the
distributed vehicle monitoring task; a misplaced node or sen-
sor can require substantial time to be repositioned. (We are
currently limiting our investigations to stationary nodes and
sensors. }

Third, the complexity of the distributed vehicle monitor-
ing task can be easily varied. For example:

e Increasing the density of vehicle patterns in the
environment increases the computational and com-
munication load on the network.

e Increasing the similarity of the vehicles and patterns
known to the network increases the effort required to
distinguish them

e Increasing the amount of error in the sensory data in-
creases the effort required to discriminate noise from
reality.

Fourth, the hierarchical task processing levels coupled
with the spatial and temporal dimensions of the distributed
vehicle monitoring task permit a wide range of spatial, tem-
poral, and functional network decompositions. Node respon-
sibilities can be delineated along any combination of these
dimensions.

An important decision in the design of the testbed was
the level at which the network would be simulated. An
abstract modeling level, such as the one used by Fox (1979),
that represents the aclivities of nodes as average or prob-
abilistic values accumulated over time would not capture the
changing intermediate processing states of the nodes. It is
precisely those intermediate states that are so important in
both building and evaluating in a realistic way different net-
work coordination strategies. Instead, the testbed duplicates

(as closely as possible) the data that would be generated in
an actual distributed vehicle monitoring network as well as
the effect of knowledge and control strategies on that data
This approach also allows users of the testbed to receive
concrete feedback about how their algorithms are perform-
ing However, because the purpose of building the testbed
is to evaluate alternative distributed problem solving net-
work designs rather than to construet an actual distributed
vehicle monitoring network, a number of simplifications of
the vehicle monitoring task were made (Table 1). The goal of
these simplifications was to reduce the processing complexity
and knowledge engineering effort required in the testbed

The major task simplifications in the Distributed
Vehicle Monitoring Testbed include:

o The monitoring area is expressed as a two-dimensional
square grid, with a maximum spatial resolution of one
unit square.

e The environment is not sensed continuously Instead,
it is sampled at discrete time intervals called tume
frames

e Frequency is represented as a small number of fre-
quency classes

e Communication from sensor to node uses a different
channel than internode communication.

Internode communication is subject to random loss,
but if a message is received by a node it is received
without error

Sensor to node communication errors are treated as
SENSOr errors.

e Signal propagation times from source to sensor are
processed by the (simulated) low-level signal process-
ing hardware of the sensor;

e Sensors can make three types of errors: failure to
detect a signal; detection of a non-existent signal; and
incorrect determination of the location or frequency
of a signal.

e Sensors output signal events, which include the loca-
tion of the event (resolved to a unit square), time
frame, frequency (resolved to a single frequency class),
and belief (based on signal strength)

e Incompletely resolved location or frequency of a signal
is represented by the generation of multiple signal
events rather than a single event with a range of
values

e Nodes, sensors, and internode communication chan-
nels can temporarily or permnanently fail without
warning

Table 1.
The Simplified Vehicle Monitoring Task
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without significantly changing the basic character of the dis-
tributed interpretation task.

A second design decision was to instrument the testbed
fully. The testbed includes measures that indicate the
quality of the developing solution at each node in the net-
work, the quality of the developing solution in the network as
a whole, and the potential effect of each transmitted message
on the solution of the receiving node. This is made possible
through the use of an oracle containing the structure of the
actual problem solution.

A third decision in the design of the testbed was to make
it parameterized. Experience with complex artificial intel-
ligence systems demonstrated the difficulty of experiment-
ing with alternative knowledge and control strategies. As
a result, potential experimentation with the system is often
not performed. Incorporated into the testbed are capabilities
for varying:

e The knowledge sources available at each node, per-
mitting the study of different problem solving decom-
positions;

e The accuracy of individual knowledge sources, per-
mitting the study of how different control and com-
munication policies perform with different levels of
system expertise;?

e Vehicle and sensor characteristics, permitting control
of the spatial distribution of ambiguity and error in
the task input data;

o Node configurations and communication channel charac-
teristics, permitting experimentation with different
network architectures;

e Problem solving and communiecation responsibilities
of each node, permitting exploration of different
problem solving strategies;

e The authority relationships among nodes, permit-
ting experimentation with different organizational
relationships among nodes.

The result is a highly flexible research tool which can be
used to explore empirically a large design space of possible
network and environmental combinations.

Testbed Node Architecture

The Distributed Vehicle Monitoring Testbed simulates
a network of HEARSAY-II nodes working on the vehicle
monitoring task. Each node is an architecturally-complete

3The quality of the knowledge used by each node to distinguish be-
tween consistent and inconsistent data plays a major role in the suc-
cess of a functionally accurate, cooperative approach A network using
low quality knowledge is unable to detect subtle inconsistencies among
tentative partial results and may be unable to arrive at an acceptable
solution As the quality of knowledge used in the network is improved,
the network should generate an answer with greater accuracy in less
time.

4With knowledge sources appropriate for the task of vehicle monitoring
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Figure 2: Testbed Node Architecture.

HEARSAY-II 4 system (Erman et al 1980), capable of solv-
ing the entire vehicle monitoring problem if it is given all of
the sensory data and makes use of all of its knowledge. This
permits any subset of the knowledge sources to be used at a
node and allows the simulation of a single node (centralized)
system to provide a benchmark for various distributed net-
works monitoring the same environment.

The basic HEARSAY-II architecture has been extended in
each testbed node to include the capability of communicating
hypotheses and goals among nodes, more sophisticated local
control, and an interface to meta-level network coordination
components {Corkill 1981, 1982, 1983). In particular, com-
munication knowledge sources, a goal blackboard, a plan-
ning module, and a meta-level control blackboard have been
added (Figure 2). The testbed also has several components
that are used to measure the performance of each node and
the overall network and to vary the “intelligence” of each
node’s knowledge sources and scheduler. These components
are the consistency blackboard and the knowledge source and
scheduler resolvers.

The Structure of the Data Blackboard

Hypothesized vehicle movements are represented on the
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data blackboard. This blackboard is partitioned into four
task abstraction levels: signal, group, vehicle, and pattern
(Figure 3). Signals are at the lowest abstraction level and are
the output of low-level analysis of sensory data. Each signal
includes the frequency, approximate position, time frame of
detection, and belief (based partly on signal strength and
sensor quality) of the acoustic signal as well as the identity
of the detecting sensor. Signals are the basic input to the
problem solving network.

At the next level in the data hierarchy are signal
groups. A group is a collection of harmonieally related signals
(emanating from a common source). Each group includes
the fundamental frequency of the related signals and its ap-
proximale position, time frame, and belief (a function of the
beliefs and characteristics of the related signals).

Vehicles are the next level in the data hierarchy. A
vehicle consists of a collection of groups associated with a
particular vehicle. Vehicles include the identily of the vehicle
and its time frame, approximate position, and belief.

At the highest level of processing are vehicle patterns.
A pattern is a collection of particular vehicle types with a
particular spatial relationship among them. Patterns were
included in the testbed {o investigate the effects of strong
constraints between distant nodes. A pattern includes the

Vehicle Patterns

Vehicles

Signal Groups

l Signals

Vehicle Monitoring Task Processing Levels

Figure 3
Forming a vehicle pattern from sensory signals involves com-
bining harmonically related signals into signal groups Various
signal groups can collectively indicate a particular type of
vehicle Specific vehicle types with a particular spatial
relationship among themselves form a vehicle pattern.

identity of the pattern and its time frame, approximate posi-
tion, and belief. A single vehicle can be a pattern.

The desired solution, or answer map, is produced from
the vehicle patterns based upon their beliefs and continuity
over time. Therc are two types of answer map distribution:
one where a complete map is to be located at one or more
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answer sites within the monitored area and one where a par-
tial (spatially relevant) map is to be located at numerous sites
within the area In distributed vehicle monitoring tasks such
as air or ship traffic control, both distributions of the answer
map may be required. Each node might use its portion of the
distributed map to control nearby vehicles, while the com-
plete map might be produced for external monitoring of the
network.

Each of these four abstraction levels is further divided
into two levels, one containing location hypotheses and one
containing track hypotheses. A location hypothesis repre-
sents a single event at a particular time frame A track
hypothesis represents a connected sequence of events over a
number of contiguous time frames.

These orthogonal partitionings result in the eight black-
board levels shown in Figure 4. Location hypotheses are
formed from location hypotheses at the next lower abstrac-
tion level. Track hypotheses can he formed from loca-
tion hypotheses at the same abstraction level or from track
hypotheses at the next lower level. The task processing level
most appropriate for shifting from location hypotheses to
track hypotheses is dependent on the problem solving situa-
tion.

The relationships among the hypotheses at cach level is
supplied to the testbed as part of a testhed grammar. Chang-
ing the grammar automatically varies behavior throughout
the testbed. By increasing the size and connectivity ol the
grammar, the interpretation task can be made more difficult
Another aspect of a testbed grammar that specifies the
difficulty of the interpretation task involves tracking vehicle
movement. The tracking component of a {estbed grammar
contains two values: the maximum velocity of a vehicle (and
implicitly, events at all levels) and the maximum acceleration
of a vehicle. These values are used in the creation and ex-
tension of track hypotheses. By reducing the constraints on
vehicle movement, the tracking task becomes more difficult.

Knowledge Source Processing

An important consideration in developing the set of
knowledge sources for the testbed was to structure processing
so that information could be asynchronously transmitted and
received at any blackboard level. This permits exploration
of a wide range of different processing decompositions based
on partially configured nodes (nodes without all knowledge
sources} without modilying the knowledge source modules
and local control structures.

There are six basic problem solving activitics performed
by the processing knowledge sources in the testbed. They
are:

Location Synthesis — Abstracting location hypotheses at
one level of the blackboard into a new location hypothesis
at, the next higher location level

Track Synthesis — Abstracting track hypotheses at one
level of the blackboard into a new track hypothesis at
the next higher track level
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Figure 4 Blackboard Levels in the Testbed
The eight blackboard levels in the testbed are: location

(SL) signal track (ST) group location (GL) group track
(GT) vehiele location (VL) vehicle track (VT) pattern
location (PL) pattern track (PT) The arrows indicate
the four possible synthesis paths from sensory data to
generation of the answer map

Track Formation - Combining a location hypothesis in
onc Lime frame with a “matching” location hypothesis
in an adjacent time frame to form a one-segment track
hypothesis

Track Eztension — Extending a track hypothesis into an
adjacent time frame by combining it with a “matching”
location

Location-to-Track Jorning Taking a location hypothesis
and combining it with a “matching” track hypothesis
that begins or ends in an adjacent time frame

”

Track Merging - Merging two overlapping or abutting
track hypotheses into a single track hypothesis at the
same abstraction level

Details of Goal Processing in a Node

In order to permit more sophisticated forms of coopera-
tion among nodes in the system, we have integrated goal-
directed control into the data-directed control structure
of the basic HEARSAY-II architecture This has been ac-
complished through the addition of a goal blackboard and a
planner.

The goal blackboard mirrors the structure of the data
blackboard. Instead of hypotheses, the basic data units are
goals, each representing an intention to create or extend a
hypothesis with particular attributes on the data blackboard
For example, a simple goal would be a request, for the creation
of a vehicle location hypothesis above a given belief in a
specified area of the data blackboard.®

Goals are created on the goal blackboard by the black-
board momnitor in response Lo changes on the data black-
hoard These goals explicitly represent the node’s intention
to abstract or extend particular hypotheses. Goals received
from another node may also be placed on the goal black-
board Placing a high-level goal onto the goal blackboard
of a node can eflectively bias the node toward developing a
solution in a particular way.

The planner responds to the insertion of goals on the
goal blackboard by developing plans for their achievement
and instantiating knowledge sources to carry out, those plans
The scheduler uses the relationships between the knowledge
source instantiations and the goals on the goal blackboard
as a basis for deciding how the limited processing and com-
munication resources of the node should be allocated

Communication Knowledge Sources

Internode communication is added to the node architee-
ture by the inclusion of communication knowledge sources
These knowledge sources allow the exchange of hypotheses
and goals among nodes in the same independent and asynch-
ronous style used by the other knowledge sources There are
six types of communication knowledge sources in the testbed:

Hypothesis Send — Transmits hypotheses created on the
blackboard to other nodes based on the level, time frame,
location, and belief of the hypothesis

Hypothesis Recetve — Places hypotheses received from
other nodes onto the node’s blackboard  Incoming
hypotheses are filtered according to the characteristics
of the received hypothesis to ensure that the node is in-
terested in the information Hypothesis Receive uses a
simple model of the credibility of the sending node to
possibly lower the beliel of the received hypothesis before
it is placed on the blackboard

5An important aspect in the stiucture of the integrated control ar-
chitecture is a correspondence between the blackboard area covered by
the goal and the blackboard area of the desired hypothesis This cor-
respondence allows the planner to relate goals and hypotheses quickly
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Goal Send — Transmits goals created on the goal black-
board to other nodes based on the level, time frames,
regions, and rating of the poal Goal Send transmits
goals based on meta-level control information — whether
or nol the node is to attempt to achieve the goal locally

Goal Help — Transmits goals that the node’s planner has
determined cannot he satisfied locally (possibly after ex-
ccuting a number of local problem solving knowledge
sources)

Goal Recewe — Places goals received from other nodes
onto the node’s goal blackboard. Incoming goals are
filtered according to the characteristies of the received
goal to ensure that the node is interested in receiving
goals of that type Goal Receive uses a simple model of
the node’s authority relationship with the sending node
to possibly lower the rating of the received goal before
it is placed on the blackboard

Goal Reply — Transmits hypotheses created on the black-
hoard in response to a received goal requesting informa-
tion from the node

Experimentation with more complex versions ol these
communication knowledge sources is easily accomplished by
simulating a more sophisticated knowledge source by:

e modifying ils power (¢f Modifying Knowledge
Source Power);

e modifying the code of the knowledge source to use
more sophisticated knowledge in its choices (this can
done by adding code that filters the input or output
of the knowledge sourcce);

e completely replacing a knowledge source with an al-
ternative module

Measuring Node and Network Performance

An important aspect of our use of the testbed is measur-
ing the relative performance of various distributed prob-
lem solving configurations and strategics. For example, we
conjecture that in a network with accurate knowledge and
with input data that has low error, organizing the system
hierarchically and using an explicit control and communica-
tion strategy would be effective Likewise, we conjecture
that in systems with weaker knowledge sources and with
more errorful input data, more cooperative and implicit
control/communication strategies are desirable

In order to understand the reasons for differences in the
performance characteristics of alternative systeins organiza-
tions, dynamic measures are needed that take into account
the intermediate state of system processing and thus permit
observalions of performance over time. For example, one way
of measuring the effectiveness of different communication
strategies is to develop measures that evaluate the elfect of
each transmitted message on the current processing state of
the receiving node. The need for measuring the intermediate
states of processing have led us to develop a semi-formal
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model for analyzing how a HEARSAY-II-like system con-
structs an accurate solution and resolves the uncertainty and
error in its input data (Lesser 1980) This measure increases
as the system becomes more certain of the consistency of
“correct” hypotheses and decreases as the system becomes
more certain of the consistency of “incorrect” hypotheses
The “correctness” of hypotheses is obtained from a hidden
data structure called the consistency blackboard, which is
precomputed from the simulation input data. This black-
board holds what the interpretation would be at cach infor-
mation level if the system worked with perfect, knowledge.
This blackboard is notl part of the basic problem solving ar-
chitecture of a node but rather is used to measure problem
solving performance from the perspective of the simulation
input data. The consistency blackboard is also used to mark
consistent and false hypotheses (and the activities associated
with them) in system output

Modifying Knowledge Source Power

Oune parameter that can have a significant effect on the
performance of the network is the problem solving exper-
tise of the nodes. The ability of a knowledge source to
detect local consistencies and inconsistencies among its input
hypotheses and to gencrate appropriate output hypotheses
is called the power of the knowledge source Knowledge
source power ranges {rom a perfect knowledge source able
to create output hypotheses with beliefs that refleet even the
most subtle consistencies among its input hypotheses down
to a knowledge source that creates syntactically legitimate
output hypotheses without regard to local consistency and
with beliefs generated at random. Note that a perfect
knowledge source is not the same as an omniscient, one. A
perfect knowledge source can still generate an incorrect out-
put hypothesis if supplied with incorrect, but completely
consistent, input hypotheses

The testbed can modify the power of a knowledge source
to be anywhere along this range. This is achieved by separat-
ing each knowledge source into two stages: a candidate
generator and a resolver. The candidate generator stage
produces plausible hiypotheses for the output of the know-
ledge source and assigns each hypothesis a tentative belief
value. The candidate generator stage for each knowledge
source in the testbed incorporates relatively simple domain
knowledge There are two types of knowledge used in the
candiate generator o form possible output hypotheses based
on patterns of input hypotheses. One type of knowledge
derives patterns from the particular testbed grammar and
knowledge of sensor error characteristics. The other type
of knowledge is used to compute a belief for each output
hypothesis using the beliefs of the input hypotheses and
knowledge about the relative consistency of the input pat-
tern  All of the knowledge used by the candidate generator is
easily varied through cither parameter settings or pluggable
code modules

The next stage, the resolver, uses information provided



by the consisteney blackboard to minimally alter the initial
belief values of these plausible hypotheses to achicve, on
the average, a knowledge source of the desired power. The
hypotheses with the highest altered beliefs are then used by
the resolver stage as the actual output hypotheses of the
knowledge source.

The alteration of hypothesis belief values by the resolver
stage can be used to simulate the detection of more subtle
forms of local consistency than is provided by the candidate
generator’s knowledge (and thereby increase the apparent
power of the knowledge source). Hypothesis belief alteration
can also be used to degrade the performance of the candidate
gencrator (and thereby reduce the apparent power of the
knowledge source) ©

Even with the flexibility and detail of our approach,
there arc limitations:

e Our simulation of knowledge source resolving power
is based on a combination of simple knowledge about
local consistency and reference to an oracle, while
real knowledge sources attempt to infer truth from
local consistency alone (and falsehood from local in-
consistency) 7

e The behavior of different simulated knowledge sources
sharing similar errors in knowledge will not be cor-
related due to our statistical approach to knowledge
source simulation

Given these limitations, we do not expect a simulated
knowledge source to bchave exactly as a real knowledge
source  We feel, however, that the essential behavior of
each knowledge source has been captured so that system
phenomena are adequately simulated.

Local Node Control in the Testbed

An important capability of the testbed is the ease with
which alternate control and communication strategies can he
explored. This exploration has two aspeets. The first is the
ability to perform experiments comparing the performance of

8The woik by Paxton on the SRI speech understanding system (Paxton
1978) comes closest to our approach He used ground consistency in-
formation to simulate statistically the output of the low level acoustic
processor in the SRI speech system OQui approach differs from Pax-
ton’s in that it dynamically relates characteristics of the inputs of a
knowledge source to the characteristics of its outputs, while Paxton’s
does not The output of his model depends on precomputed behavioral
statistics which are independent. of the belief valucs and consistency
valucs of its inputs Because of this difference, we are able to simulate
any or all knowledge souices in our system, while Paxton’s model is
valid only for frtont-end processing of input data similar to those used
to computle the statistics

7In order to capture more closely the notion of local consistency, we
can include on the consistency blackboard false hypotheses that would
appear to be consistent by even a perfect knowledge source operating at
that blackboard level The resolver judges the consistency of these false
hypotheses (termed “correlated-false” hypotheses) in the same way as
it does tiue hypotheses

different control strategies (for cxample, the performance of
a hierarchical network versus a laterally organized network)
The second aspect is the ability to augment the hasic testhed
node architecture with additional control components (for
example, adding a meta-level control component that varies
the organizational relationships among nodes dynamically).
Both types of experimentation are possible with the testhbed.
This section discusses how the local node control architecture
has been structured to accomplish both types of experimen-
tation.

Interest Areas

A key aspect of the control framework implemented in
the testbed is the use of a nonprocedural and dynamically
variable specification of the behaviors of each local node’s
planner, its scheduler, and its communication knowledge
sources. Called wnterest areas, these data structures reside on
the meta-level control blackboard and are used to implement
particular network configurations and coordination policies.

There are six scts of interest areas for each node in the
testbed:

Local Processing Interest Areas — Influence the local prob-
lem solving activities in the node by modifying the
priority ratings of goals and knowledge source instan-
tiations and the bechavior of the node’s planner and
scheduler

Hypothesis Transmission Interest Areas — Influence the be-
havior of ITYP-SEND knowledge sources in the node

Ilypothesis Reception Interest Areas — Influence the be-
havior of HYP-RECEIVE knowledge sources in the node

Goal Transmussion Interest Areas — Influence the behavior
of GOAL-SEND knowledge sources in the node

Goal Help Transmassion Interest Areas — Influence the be-
havior of GOAL-HELP knowledge sources in the node

Goal Reception Interest Areas — Influence the hehavior of
GOAL-RECEIVE knowledge sources in the node.

Each interest arca is a list of regions of the data or goal
blackboard.

Fach local processing interest area has a single parameter
associated with it: a weight specifying the importance of per-
forming local processing within the interest area. Transmis-
sion interest, areas (hypothesis transmission, goal transmis-
sion, and goal help transmission) are specified for one or more
lists of nodes that are to receive information from the node.
Similarly, reception interest areas (hypothesis reception and
goal reception) are specified for lists of nodes that are to
transmit information to the node Each transmission inter-
est area has a weight specifying the importance of transmit-
ting hypotheses or goals from that area (to nodes specified
in the node-list) and a threshold value specifying the min-
imum hypothesis belief or goal rating needed to transmit
from that area Each reception intercst area has a weight
specilying the importance of receiving a hypothesis or goal in

THE AT MAGAZINE  Fall 1983 27



that area (from a node specified in the node-list), a minimum
hypothesis belief or goal rating nceded for the hypothesis or
goal to be accepted, and a credibility weight. The credibility
weight parameter is used to change the belief of received
hypotheses or the rating of received goals. A node can reduce
the effect of accepting messages from a node by lowering the
belief or rating of messages received from that node Each
hypothesis reception interest area also has a focusing weight
parameter that is used to determine how heavily received
hypotheses are used in making local problem solving focusing
decisions.

Rating Goals and Subgoaling

Goal ratings specify the importance of creating hypo-
theses with particular attributes on the data blackboard.
They influence the behavior of the planner, the scheduler,
and the goal communication knowledge sources. The know-
ledge source instantiation rating calculation is basically
a weighted sum of a data-directed and a goal-directed
component. The data-directed component captures the
expected belief of an output hypothesis (as specified in
the knowledge source instantiation’s output-set, attribute)
The goal-directed component measures the ratings of goals
that would be satisfied (at least in part) by an output
hypothesis. The goal-weighting parameter can be adjusted to
change the importance given to producing strongly believed
hypotheses versus satisfying highly-rated goals. Gaussian
noise is added to the rating calculation to simulate knowledge
source precondition procedures with imperfect output hypo-
thesis estimation capabilitics

In addition to instantiating knowledge sources to achieve
a goal, the planner can also create subgoals that reflect the
importance of lower-level data in achieving the original goal
and that, if satistied, increase the likelihood of achieving
the original goal. Subgoaling is an effective means of focus-
ing low-level synthesis activities based on high-level expecta-
tions.®

The knowledge needed to perform subgoaling is based
on the behavior of the testbed knowledge sources and is
parameterized by the grammar. Because subgoaling requires
some effort, its use needs to be controlled. In the testbed,
subgoaling is controlled in two ways: by restricting subgoal-
ing to particular levels and by a minimum rating threshold
for a goal to be subgoaled. The relative seltings of these
parameters strongly influence the balance between local and
external direction Examples of how specific control and
communication relationships are specified in the testbed are
presented in a recent, paper (Corkill & Lesser 1983).

8There are no prediction knowledge sources in the testbed Predictive
knowledge is used by the planner to generate predictive goals that can
be subgoaled to focus activity on lower blackboard levels

Knowledge Source Precondition Procedures

The overall performance of each node depends on the
ability of its planner and scheduler o correctly estimate
which of the potential knowledge source actions is most likely
to improve the current problem solving state as well as the
cost of performing that action. In “real” systems, this es-
timation is based in part on information provided by each
knowledge source to the scheduler about the output the
knowledge source is likely to produce given particular in-
put hypotheses (the knowledge source response frame (Iayes-
Roth & Lesser 1977). This estimation is usually fast and
approximate - il is inade without a detailed analysis of the
knowledge source’s input, data. Inereasing uncertainty in this
estimation makes it less likely that the planner and scheduler
will appropriately decide what knowledge source actions to
perform.

In order to investigate the effects of this uncertainty the
testbed simulation preezecutes the entire knowledge source as
the precondition procedure. The knowledge source does not,
actually create any hypotheses or goals, but instead places
an exact specification of their atiributes in the output-set at-
tribute of the knowledge source instantiation. The output-
set, provides an exact description of what the knowledge
source instantiation will do if executed (The output-set is
updated if the input context of the knowledge source instan-
tiation is modified while it is awaiting execution ) The actual
hypotheses or goals are created when the knowledge source
instantiation cxecutes.

The information contained in the output-set allows the
knowledge source instantiation rating to be made with per-
fect. knowledge of the knowledge source instantiation’s be-
havior. Precondition procedures with less than perfect es-
timation luffi abilities are simulated by perturbing these per-
fect ratings. The details are described in the next section

Rating Knowledge Source Instantiations

The knowledge source instantiation rating caleulation
is basically a weighted sum of a data-directed and a goal-
directed component The data-directed component captures
the expected bhelief of an output hypothesis (as specified in
the knowledge source instantiation’s output-set attribute).
The goal-directed component measures the ratings of goals
that would be satisfied (at least in part) by each output
hypothesis. The goal-weighting parameter adjusts the im-
portance given to satisfying highly-rated goals versus produce-
ing strongly believed hypotheses The weighted sum of these
two components is computed for each output hypothesis in
the knowledge source instantiation’s output-set attribute and
the maximum value (multiplied by the knowledge source
efficiency estimate) is used as the hase rating for knowledge
source instantiation

Since the testbed precondition procedures precompute
the actual output, hypotheses of the knowledge souree in-
stantiation, the scheduler’s base rating calculation uses the
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exact beliefs of the output hypotheses and the goals that
they satisfy Gaussian noise can be added to this base rat-
ing to simulate the cffects of knowledge source precondition
procedures that are imperfeet in their estimation of output
hypotheses’s beliefs and of goal satisfaction.

The knowledge sources’ precondition procedures use in-
formation localized to a particular region of the data black-
board in estimating the belief values of oulputl hypotheses.
On the other hand, the scheduler is in a pesition to deter-
mine how a knowledge source instantiation’s expected out-
put. hypotheses fit into the overall developing solution at. the
node. This difference in viewpoint leads to an interesting
engineering issue. Should the scheduler rely solely on the
myopic estimations of the precondition functions in rating a
knowledge source instantiation or should it he given domain-
dependent knowledge of its own to determine consistencies
between knowledge source instantiations? To experiment
with this issue, an oracle weighting in the data-directed com-
ponent can be used to introduce the consistency of cach out-
put hypothesis (as specified on the consistency blackboard)
into the rating calculation As with the knowledge source in-
stantiations themselves, this consistency information is used
to simulate the cffects of developing additional knowledge
which can better detect the consistencies among hypotheses

Facilities for Experimentation

The testbed kernel is surrounded by a number of other
subsystems (o lacililtate experimentation by making it easy
to vary the parameters of an experiment and to analyze the
results of an experiment (Figure 5)

FRONTEND knowledge source is the special, simulation-
level knowledge source used to initialize the testbed network.
It is always the [irst knowledge source executed in an experi-
ment. The FRONTEND reads a complete specification of the
run from an input file called the enwronment file. The en-
vironment, file contains all the input data for the testbed, and
consists of system, structural, and environmental data Sys-
tem data denotes basic parameters of the simnulated vehicle
monitoring system: a seed for random number generation,
the minimum and maximum location and time ranges, and
the numbers of nodes and sensors. Structural data denotes
the spatial relationships among nodes and the gramimar used
by knowledge source candidate generators By varying this
grammar, the number of legal patterns of hypotheses can be
varied. The most constrained grammar would be one that
only allowed the particular scenario for the experiment. in
question to be recognized. Thus, the nature and the scope of
consistency constraints used by knowledge sources to resolve
errors can be altered This ability to modify the grammar
combined with the ability to vary the local resolving power
ol knowledge source provides a powerful tool for varying the
knowledge expertise in the simulated system. Enuvronmental
data denotes the actual environment for the vehicle monitor-
ing system: locations of patterns and vehicles at. various time
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Figure 5: Testbed Kernel and Related Subsystems

frames, and information concerning missing and false pat-
terns, vehicles, groups, and signals at various time frames
Environmental data is used in conjunction with the strue-
tural data by the FRONTEND to creale the consistency
blackboard.

The environment file has gone through several design
iterations as we have recognized the interdependencies among
the parameters that must be specified for a testbed ex-
periment and the difficulties of correctly specifying these
parameters for networks ol more than a few nodes. In its
present form, il allows the specification of generic classes
of node types, local problem solving capabilities, authorily
relationships, communication policies, and sensor charac-
teristics. These classes are then instantiated to individual
nodes and sensors in the network.

The FRONTEND, in its generation of secnsor data, can
introduce controlled error (noise) to model imperfect sensing
Noise is added to the location and signal class and the dis-
tance of the signal {rom the sensor IFRONTEND processing
is also parameterized so that either these signals can be in-
troduced into the nodes all al once or at the time they are
sensed The former provision allows exploration of systems
in which there are burst receptions of sensor data

To facilitate the inclusion of additional control, dis-
play, and measurement routines into a particular experiment,
the testbed has a number of programming “hooks” avail-
able to the experimenter Each hook consists of a dummy
module that can be easily redefined to include calls to the
experimeter’s procedures. In the testbed, there is a hook



at the beginning of the simulation, another hook follow-
ing the FRONTEND (when all sensory data and the consis-
tency blackboard have been determined), one prior to each
knowledge source execution at each node, one when messages
are transmitted or received, and one when the simulation is
finished. Each hook has sufficient information available (such
as the current node that is executing, the type of knowledge
source to be executed, the simulation time, ete } to allow the
experimenter’s procedures to decide whether or not they are
interested in being executed. The experimenter’s procedures
have complete access to all information in the testbed.

In order to help in the analysis of the results of an ex-
periment, a number of tools have been developed: a selec-
tive trace facility, a summary statistics facility, an interac-
tive, menu-driven debugging facility, an event monitoring
facility, and a color-graphies display facility. Each of these
tools use the information on the consistency blackboard to
highlight their presentations. For example, the trace facility
marks knowledge source instantiations based on the correct-
ness (consistency) of their input and output hypotheses This
permits the experimenter to quickly scan a large amount of
data for uncxpected phenomena.

The trace facility presents a chronological trace of the
knowledge sources creation and execution and the associated
creation of hypotheses and goals and a run  The user can
vary the level of details of the internal operations of the
systems that are to be traced.

The summary statistics facility is used at the end of a run
to generate a set of measures that indicate the performance
of various aspects of the systems. These statistics are both
on a node and system basis

In addition to these fairly common analysis tools, we feel
that there is need for tools that permit a more dynamic and
high-level view of the distributed and asynchronious activity
of the simulated nodes. An event monitoring facility, which
has not yet been fully implemented, will permit a user to
define and gather statistics on such uscr-defined events as
the average time it takes for a node to receive a hypothesis
and incorporate the received information into a message to
be transmitted to another node (Bates & Wileden, 1982).

Another facility which is currently operational in a
limited form is a color-graphies output facility. The current
output display provides dynamic visual representations of
the distribution of hypotheses in the x-y space of the Dis-
tributed Sensor Network during a simulation Location and
track hypotheses are displayed as symbols and paths con-
necting symbols, respectively, in the physical x-y space The
level, node, belief, and type of event of each hypothesis is
encoded in its representation. Through this display, it is
possible to get a high-level view of the relationship among
the nodes’ current interpretations and their relationship to
the actual monitored tracks. The hypotheses displayed can
be selected according to the characteristics of any of their
attributes For example, it is possible to display only those
hypotheses above some belief value or those on a certain
level, ete. In addition, an ordering function exists to rank

the hypotheses to be displayed according to several attributes
{(node, level, type of event, and end-time) allowing less impor-
tant hypotheses to be replaced (painted over) by more impor-
tant ones. We are also working on other display formats that
show more abstract measures of system performance such as
the transmission rate among nodes, the curreut reliability of
nodes, etc.

Testbed Status, Uses, and Future Directions

The testbed, which has been operational since January
of 1982, has been a much larger systemn building effort than
was originally anticipated at the onset of the project. The
current size of the testhed, which is written in CLISP (Corkill
1980) running under VMS, including support facilities is ap-
proximately 500K bytes of compiled lisp code Over the three
year development period, between fifteen and twenty man-
years of effort have gone into the construction of the testbed

This extensive construction effort has come in part from
the large number of major design iterations. The basic con-
cept of the testbed has stayed intact through thesc iterations
but significant modifications to all aspects of the testbed
have been required as we came to understand how to bhetter
parameterize the various components.

It should also be mentioned that even though the task
knowledge was simplified, considerable effort. was still re-
quired to get the planner and knowledge sources to work
effectively together The testhed uses a very general mech-
anism for knowledge source interaction, and a number of
interaction patterns that would not occur in a centralized
system do occur in distributed networks.

The saving grace of all these redesign efforts was that it
lead us to a better understanding of how knowledge-based Al
systems and, more specifically, knowledge-based distributed
problem solving systems operate In short, designing a
knowledge-based Al systemn remains an art and requires con-
siderable iteration.

A key concern that we still have ahout the testhed
design, which cannot be answered without extensive use of
the testbed, is the range of issues that can be effectively
explored in the testbed. So far, only one extensive set of
experiments have been run in the testbed. These experi-
ments emphasized the use of the testbed to explore the effects
of different network problem solving strategies (Corkill &
Lesser, 1983b). Characteristics that were varied included:

e whether communication is voluntary (a node trans-
mits hypotheses al ils pleasure), requested (a node
transmits hypotheses only when that information is
requested by another node), or a mized initiative com-
bination of voluntary and requested hypotheses (a
node volunteers only its highest rated hypotheses
and awalls requests before transmitting any other
hypotheses);

e whether a node is self-directed or externally-directed in
its activities (or a combination of both);
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Figure 6  Alternative Distributed Problem Solving Strategies

o whether hypotheses, goals, or both hypotheses and
goals are used for internode coordination

The organizational strategies were evaluated using two
different network architectures: a laterally-organized, four-
node network with broadeast communication among nodes
and a hierarchically-organized, five-node network in which
the fifth node acts as an integrating node (Figure 6). In
both architectures, the network is structured so that the
nodes cooperate by exchanging partial and tentative high-
level hypotheses.

Although these experiments did not explore all the
parameters in the testbed, they do provide evidence of
the utility and flexibility of the testbed as a research tool
The different, network problem solving strategies and en-
vironmental configurations were easily expressed, and inter-
esting empirical results indicating the performance of the
different. strategies were obtained. The most interesting
of these results were how different, organizational and con-
trol strategies performed in a noisy input environment that,
created the potential for the exchange of distracting infor-
mation among the nodes.

As part of these initial experiments, we had planned
to explore larger node configurations (with 10 to 20 nodes).
However, only a few of these larger test cases were run Be-
tween 3 and 5 hours of CPU time were required to simulate
one of these larger experiments The efliciency of the simula-
tion is crueial to exploring large node configurations. We are
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now beginning the process of selectively tuning the testbed
but do not have a feel for the potential specdup We are also
heginning work on modifying the testhed to run as a parallel
simulation system on a local area network of VAX 11/750s ?

In setting up larger and more complex configurations,
a large number of interrelated parameters needed to be
specified. This specification process was both time consum-
ing and error-prone. To remedy this problem, we are now
building additional graphical support tools to allow an ex-
perimenter to design and view the network configuration
Additionally, we are developing tools allowing complex node
topologies to be specified in a generic way, independent of
any specific number of nodes (Corkill & Pattison, 1983c)

We now firmly believe that no matter how [lexible and
general a research tool is, if it is nol convenient, to use, or
if the empirical results are not easy to understand, ounly a
small subset of its capabilities will be exploited.

Conclusion

In this article we have described the area of distributed
problem solving and discussed some of the important issues
that must be addressed. We also introduced the Functionally
Accurate, Cooperative approach with its emphasis on dealing
with uncertain data and control information as an integral
partl of network problem solving

The need for an empirical iuvestigation of distributed
problem solving was discussed, ecspecially with regard to
network coordination. Such an investigation requires a
flexible experimental tool. The Distributed Vehicle Monitor-
ing Testbed was presented as an example of such a tool.

The testbed facilitates the exploration of the following
factors in distributed problem solving:

e node-node and node-sensor configurations;

e mixes of data- and goal-directed control in the sys-
tem;

e distributions of uncertainty and error in the input
data;

e distributions of problem solving capability in the sys-
tem,

e types of communication policies used;

e communication channel characteristies;

e the problem solving and communication responsibil-

ities of each node; and

e the authorily relationships among nodes

The multiple dimensions of independent, control and the
detailed level of simulation in the testbed provide what we
feel is a very useful environment for experimentation.

9We had initially hoped to solve the effeciency problem through the use
of two different testbeds, one wiitten in LISP as the development sys-
tem and the other in PASCAL as the production systemi Unfo1tunately,
with the extensive design iterations that occurred during the building
of the testbed, it was impossible to keep the PASCAL implementation
current and eventually it was dropped



There is a need for more extensive experimentation with
Al systems All too often getting a large knowledge-based
AT system to work at all is the major goal. Extensive ex-
perimentation with the system over a range of conditions is
rarely done. The testbed is one of the few exceptions In this
presentation we have emphasized what makes the testbed a
flexible experimental tool Many of these techniques are ap-
propriate for any large knowledge-based Al system.
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