
THE DISTRIBUTED VEHICLE
MONITORING TESTBED:

A Tool For Investigating Distributed

Problem Solving Networks

Victor R. Lesser

Daniel D. Corkill

Computer and Information Sczence Department
Universaty of Massachusetts

Amherst, MA 01003

Abstract

Cooperative distributed problem solving networks are dist,libuted net-
works of semi-autonomous processing nodes t,hat work t,ogether t,o solve
a smgle problem The Distrihut,ed Vehicle Monitoring Testbed is a
flcxihle and fully-inst,rllmeni.ed research tool for empirically evaluating
altclnative designs fol these net.works The t.estbed simulates a class
of a distributed knowledge-based problem solving systems operating on
an abstracted version of a vehicle monitoring task
There are two important, aspects Lo the testbed: (1) it implements
a novel generic architecture for distributed problem solving net,works
that exploits Lhc use of sophisticated local node control aud meta-level
control Lo improve global coherence in network problem solving; (2) it
serves as an example of how a testbed can be engineered to permit the
empirical exp101 ation of design issues in knowledge-based AT systems.
The testbed is capable of simulating differen degrees of sophistica-
tion iu problem solving knowledge and different. focus-of-attent,ion
mechanisms, for varying the distribut,ion and characteristics of error in
its (simulat,ed) input data, and for measuring the progress of problem
solving. Node configurations and communication channel charact,eris-
tics can also he independent,ly varied in the simulated network

THERE ARE TWO MAJOR T~IEMES of this article.
First, WC introduce readers to the emerging subdiscipline of
AI called Dzstrrbuted Problem Solving, and more specifically
the authors’ research on Functionally Accurate, Cooperative
systems Second, we discuss the st,ructure of tools that al-
low more thorough experimentation than has typically been
performed in AI research An examplr of such a tool, the
Distributed Vehicle Monitoring Testbed, will bc presented.
The testbed simulates a class of dist,ributed knowledge-based
problem solving systems operating on an abstracted version
of a vehicle monitoring task. This presentation emphasizes
how the t,estbed is structured to facilit,ate the study of a wide
range of issues faced in t,he design of distributed problem
solving networks.

Characteristics of Distributed Problem Solving.

A project as large and complex as the Distributed Vehicle Monitor-
ing Testbed involved a number of individuals and became itself a dis-
tributed problem solving task The efforts of Richard Brooks, Eva
Hudlicka, Larry Lefkowitz, Raam Mukunda, .Jasmina Pavlin, and Scott
Reed contributed to the success of the testbcd We would also like to
acknowledge Lee &man’s collaboration on the initial formulation of the
Functionally Accmate, Cooperative approach and his work on the pilot
experiments This research was sponsored, in part, by the National
Science Foundation under Grant MC%8006327 and by t,he Defense Ad-
vanced Rcscarch Pr0ject.s Agency (1)01>), monitored by the Office of

Naval Kcsearch under Contract NR049-041

Distribut,ed Problem Solving (also called Distributed
Al) combines the research interests of the fields of AI and
Distributed Processing (Chandrasekaran 1981; Davis 1980,
1982; Fehling & Erman 1983). We broadly define dis-
tributed problem solving networks as distributed networks
of semi-autonomous problem solving nodes (processing ele-
merits) that are capable of sophisticated problem solving and
cooperatively int,eract with ot,her nodes to solve a szngle prob-
lcm. Each node can itself be a sophisticated problem solvzng
system that, can modify its behavior as circumstances change

THE Al MAGAZINE Fall 1983 15

AI Magazine Volume 4 Number 3 (1983) (© AAAI)

and plan its own commimication and cooperation strat)egics
with other nodes.

Distributed problem solving is an important, research
area for several reasons First, hardware technology has
advanced to the point where the construction of large dis-
tributed problem solving networks is not only possible, but
economically feasihlc. While the first networks may consist
of only a small number of nodes, distributed prohlcm solv-
ing networks may eventually contain hundreds or t,housands
of individual nodes. We arc nearing a situation of excit-
ing hardware possibilities unaccompanied by the problem
solving technology required for their effective utilization.
Second, there arc AI applicat,ions that are inherently spa-
tially distributed A distributed architecture t,hat matches
their spatial distribution offers many advantages over a
centralized approach. Third, understanding the process of
cooperative problem solving is an important, goal in its own
right,. Whether the underlying system is societal, managerial,
biological, or mechanical, we seem to understand compeid-
Con far better tharl coopcrat,ion It, is possible that the devel-
opment of dist,rihuted problem solving networks may serve
the same validating role to theories in sociology, manage-
ment, organizational theory, and biology as the development
of AI systems have served to theories of problem solving and

inl,elligcnce in psychology and philosophy.
Although this new area borrows ideas from both AI and

Distributed Processing, it difl’ers significantly from each in
the problems being attacked and the methods used to solve
these problems

Distributed Problem Solving
and Distributed Processing

Distributed problem solving networks dilfcr from dis-
tributed processing systems in both the style of distribution
and the t,ype of problems addressed (Smith & Davis 1981).
These differences are most apparent, when we study the inter-
actions among nodes in each of the types of networks A dis-
tributed processing network typically has multiple, disparate
t,asks executing concurrently in the network. Shared access
to physical or informational resources is the main reason for
int,eraction among tasks The goal is to preserve the illusion
t,hat each task is executing alone on a dedicated syst,cm by
having the network operat,ing system hide the resource shar-
ing interactions and conflicts among tasks in the network. In
contrast, the problem solving procedures in distrihuted prob-
lem solving networks are explicitly aware of the distribution
of the network components and can make informed inter-
action decisions based on that information. This difference
in emphasis is, in part, due to the characteristics of the ap-
plications being tackled by conventional distributed process-
ing methodologies These applications have permitted task
decompositions in which a node rarely needs the assistance
of another node in carrying out its prohlcm solving func-
tion. Thus, most of the research as well as the paradigms of
distributed processing do not directly address the issues of

cooperative interactions of tasks to solve a single problem.
hs will be discussed later, highly cooperative task intcrac-
tion is a requirement for many problems that seem naturally
suited to a distributed network.

Distributed Problem Solving
and Artificial Intelligence

Distributed problem solving also difl’ers from much of
the work in AI because of its emphasis on representing prob-
lem solving in terms of asynchronous, loosely-coupled process
networks that operate in parallel with limited int,erprocess
communication Networks of cooperating nodes are not new
t,o artificial intelligence. However, the relative autonomy and
sophistication of the problem solving nodes, a direct consc-
quence of limited communication, sets distributed problem
solving networks apart from most others, including Hewitt’s
work on the actor formalism, Kornfeld’s ETHER language,
Lenat’s RISINGS system, and the augmented Petri nets of Zis-
man (Hewitt 1977, Kornfeld 1979, Lenat 1975, Zisman 1978)
The requirement, for limited communication in a distributed
network has also led to the development of problem solving
archil,ectures that can operate with possibly inconsistent and
incomplete data and control information. In many applica-
tions, communication delay makes it impractical for the net-
work to be structured so that each node has all the relevant
information needed for its local computations and control
decisions. Another way of viewing t,his problem is that the
spatial decomposition of information among the nodes is ill-
suitcd to a functionally distributed solution Each node may
possess the information necessary to perform a portion of
each function, but insuficcnt information to completely per-
form any function.

The Uses of Distributed Problem Solving.

Most, initial work in distributed problem solving has
focused on three distributed air traffic control, and dis-
tributed robot systems (Davis 1980, 1982; Fehling 1983). All
of these applications need to accomplish distributed inter-
pretation (situation assessment) and distributed planning.
Planning here refers not only to planning what actions to
take (such as changing the course of an airplane), but, also
to planning how t,o use resources of t,he network to carry out,
t,he int,erpretation and planning t,ask effectively This latttr
form of planning encompasses the classic focus-of-atttntion
problem in AI

In addition to the commonality in terms of the generic
tasks being solved, t,hese application domains arc charac-
terized by a natural spatial distribution of sensors and
effecters, and by t,he fact that the subproblems of bot,h the lo-
cal interpretation of sensory data and the planning of effecl,or
actions are interdependent, in time and space For example,
in a distrihuted sensor network tracking vehicle movements,
a vehicle detected in one part of the sensed area implies t,hat a

16 THE AI MAGAZINE Fall 1983

vehicle of similar type and velocity will be sensed a short time
lat)er in an adjacent area (Figure 1). J,ikewise, a plan for guid-
ing an airplane must be coordinated with the plans of other
nearby airplanes in order to avoid collision. Interdependency
also arises from redundancy in sensory data Often different
nodes sense the same event due to overlaps in the range of
sensors and the use of different types of sensors that sense
the same event in different ways. Exploiting these redundant
and alternative views and the interdepcndencies among sub-
problems require nodes to cooperate in order to interpret and
plan elrectively. This cooperation leads to viewing network
problem solving in terms of a single problem rather than a
set of independent subproblems.

It is difficult to develop a distributed problem solving
architecture that can exploit the characteristics of these ap-
plications to limit internode communication, to achieve real-
time response, and to provide high reliability. Nodes must
coopcrat,c to exploit and coordinate their answers to inter-
dependent subproblems, but must do so with limited inter-
processor communication. This requires the development
of new paradigms that permit the distribut,ed system to
deal effectively with environmental uncertainty (not having
an accurate view of the number and location of processors,
efl”ectors, sensors, and communication channels), data uncer-
tainty (not having complete and consistent local data at a
node) and control uncertaint,y (not having a complet,ely ac-
curate model of activities in other nodes).

We see the development of these paradigms as draw-
ing heavily on the work in knowledge-based AI systems and,
simultaneously, making contributions to AI. As Nilsson has
noted, the challenges posed by distributed Artificial Intel-
ligence will contribute to (and may even be a prerequisite for)
progress in “ordinary” artificial intelligence (Nilsson, 1980)
One example of this interaction is the problem of controlling
semi-autonomous problem solving agents possessing only a
local and possibly errorful view of the global state of problem
solving. Solutions being developed for t,his problem have in-
volved the use of meta-level control, integrated data-directed
and goal-directed control, and focus-of-attention strategies
based on reasoning about, the &ate of local problem solving
((:orkill 1983). App roaches similar to these arc being used to
solve the control problems that are faced in the development
of a new generation of centralized knowledge-based problem
solving systems, which have significantly larger and more
diverse knowledge bases

In the remainder of this article we first describe the Func-
tionally Accurate, Cooperative distributed problem solving
paradigm and pilot experiments that explored the viability of
this approach After describing the issues we wish to explore
using the Distributed Vehicle Monit,oring T&bed, we present,
the vehicle monitoring task, followed by a deta.iled discus-
sion of the tentbed. Later sections describe how we have
quantified system behavior and the use of these measures for
simulating and evaluating the performance of various sys-
t,em components, overview the tools that help a user define
experiments and analyze their output, review the current,

status of the testbed implement,ation, and outline future re-
search directions.

Functionally Accurate, Cooperative
Distributed Problem Solving

Our research has focused on the design of distributed
problem solving networks for applications in which there is
a natural spatial distribution of information and processing
requirements, but insufficient information for each proccss-
ing node to make completely accurate control and processing
decisions without extensive internode communication (used
to acquire missing information and to determine appropriate
node activity). An example of this type of a.pplication is dis-
tributed vehicle monitoring. Vehicle monitoring is the task
of generating a dynamic, area-wide map of vehicles moving
through the monitored area. Distributed vehicle monitoring
typically has a number of processing nodes, with associated
acoustic sensors (of limited range and accuracy), gcographi-
tally distributed over the area to be monitored (Lacoss
1978, Smith 1978). Each processsing node can communicate

Figure 1

Tracking Vehicle Movements in a Distributed Sensor Nei,work

THE AI MAGAZINE Fall 1983 17

with other nearby nodes over a packet radio communica-
tion network (Kahn 1978). Each sensor includes the actual
acoustic transducer, low-level signal processing hardware and
software, and communication equipment necessary to trans-
mit the processed signals to a high-level (symbolic) processing
site.

As a vehicle moves through the monitoring area, it
generates characteristic acoustic signals. Some of these sig-
nals are recognized by nearby sensors which detect the fre-
quency and approximate location of the source of the signals.
An acoustic sensor has a limited range and accuracy, and
the raw data it generates contains significant error. Using
data from only one sensor can result in “identification” of
non-existent vehicles and ghosts, missed detection of actual
vehicles, and incorrect location and identification of actual
vehicles. To reduce these errors, information from various
sensors must be correlated over time to produce the answer
map. The amount of communication required to redistribute
the raw sensory data necessary for correct localized process-
ing makes such an approach infeasible.

One way to reduce the amount of communication and
synchronization is to loosen the requirement that nodes al-
ways produce complete and accurate results. Instead, each
node produces tentative results which may be incomplete,
incorrect, or inconsistent with the tentative partial results
produced by other nodes. For example, a node may produce a
set of alternative partial hypotheses based on reasonable ex-
pectations of what the missing data might be. 111 the vehicle
monitoring task, each node’s tentative vehicle identification
hypotheses can be used to indicate to other nodes the areas
in which vehicles are more likely to be found and the
details (vehicle type, rough location, speed, etc.) of probable
vehicles. This information help a node to identify the actual
signals in its noisy sensory data. In addition, consistencies
between t,hese tentat,ive identification hypotheses serve to
reinforce confidence in each node’s identifications. Such
cooperation is not only appropriate for vehicle identifica.tion,
but also potentially useful in other stages of processing
(identification of raw signals, groups of harmonically related
signals, patterns of vehicles, etc.).

This type of node processing requires a distributed prob-
lem solving structure in which the nodes cooperatively con-
verge to acceptable answers in the face of incorrect, inac-
curate, and inconsistent intermediate results. This is ac-
complished using an iterative, coroutine type of node in-
teraction in which nodes’ tentative partial results are itera-
tively revised and extended through interaction with other
nodes. A network with this problem solving structure is
called Functionally Accurate, Cooperatzve @A/C) (Lesser
1981). “Functionally accurate” refers to the generation of
acceptably accurate solutions without the requirement that
all shared intermediate results be correct and consistent
(as is the case with conventional distributed processing).
“Cooperative” refers to the iterative, coroutine style of node
interaction in the network. The hope of this approach is
that much less communication is required to exchange these

high-level, tentative results than the communication of raw
data and processing results that would be required using
a conventional distributed processing approach. In addi-
tion, synchronization among nodes can also be reduced or
eliminated entirely, resulting in increased node parallelism.
Finally, this approach leads to a more robust network since
errors resulting from hardware failure are potentially cor-
rectable in the same fashion as errors resulting from the use
of incomplete and inconsistent local information.

A Pilot Experiment in Distributed Interpretation

A set of pilot experiments was performed to investigate
the suitability of the FA/C approach using a network of com-
plete HEARSAY-II interpretation systems (Lesser 1980). The
HEARSAY-II architecture appeared to be a good structure
for each node because it incorporates mechanisms for deal-
ing with uncertainty and error as an integral part of its basic
problem solving. Further, the processing can be partitioned
or replicated naturally among network nodes because it is al-
ready decomposd into independent and self-directed modules
called, knowledge sources, which interact anonymously and
are limited in the scope of the data they need and product.
For further informat,ion about the HEARSAY-II architecture
see Erman, et al (1980).

Experiments were performed to determine how the prob-
lem solving behavior of a network of HEARSAY-II nodes com-
pared to a centralized system. Each node was completely
self-directed in its decisions about, what work it, should per-
form and what information it should transmit to other nodes.
The aspects of behavior studied included the accuracy of the
interpretation, the time required, the amount of internode
communication, and network robustness in the face of com-
munication errors. These experiments simulated only the dis-
tributed hardware ~ they used an actual HEARSAY-II speech
understanding syst,em analyzing real data. A spatial dis-
tribution of sensory data was modelled by having each node
of the distributed speech understanding network sample one
part (time-contiguous segment) of the overall speech signal.

The experiments showed that a network of three HEAR-
SAY-II speech understanding nodes performs well as a coopera-
tive distributed network even though each node has a limited
view of the input data and exchanges only high-level (phrasal)
partial results with other nodes. In an experiment with er-
rorful communication, network performance degraded grace-
fully with as much as 50% of the messages lost, indicating
that the system can often compensate automatically for the
lost messages by performing additional computation.

Although these experiments were extremely positive,
they did point up a key issue in the successful application
of the FA/C approach. This issue, which we feel is also
important for the design of any complex distributed prob-
lem solving network, is that of obtaining a sufficient, level of
cooperation and coherence among the activities of the semi-
autonomous, problem solving nodes in the network (Davis &

18 THE AI MAGAZINE Fall 1983

Smith 1982, Corkill 1982). If this coherence is not achieved,
then t,he performance (speed and accuracy) of the network
can be significantly diminished as a result of lost processing
as nodes work at cross-purposes with one another, redun-
dantly applied processing as nodes duplicate efforts, and
misallocation of activities so that important portions of the
problem are either inaccurately solved or not solved in timely
fashion.

In the pilot experiments with the three-node network,
we observed that the simple data-dzrected and self-directed

control regime used in these experiments can lead to non-
coherent behavior (Lesser 1980). Situations occurred when
a node had obtained a good solution in its area of interest
and, having no way to redirect its attention to new problems,
simply produced alternative but worse solutions. Another
problem occurred when a node had noisy data and could not
possibly find an accurate solution without help from other
nodes. In this situation, the node with noisy data often
quickly generated an inaccurate solution which, when trans-
mitted to the nodes working on better data, resulted in the
distraction of these nodes. This distracting information in
turn caused significant delay in the generation of accurate
solutions by nodes with accurate as well as noisy data. We
believe that development of appropriate network coordina-
tion policies (the lack of which resulted in diminished net-
work performance for even a small network) will be crucial to
the effective construction of large distributed problem solving
networks containing tens to hundreds of processing nodes.

The Need for a Testbed

Although these experiments provided intitial empirical
validation for the FA/C approach and pointed out an impor-
tant set, of issues that needed to be solved, they were just a
first step. These experiments were not based on a realistic
distributed task, and more importantly were limited in the
scope of issues that could be addressed. Thus, a more ex-
tensive set of empirical investigations was necessary in order
to better understand the utility and limitations of the FA/C
approach Empirical performance measures were needed for
a wide range of task and problem solving situations in order
to evaluate and analyze the following issues:

l Self-correcting computational structures. What and how
much uncertainty and error can be handled using
these types of computational structures? What are
the costs (and trade-offs) in processing and com-
munication to resolve the various types of errors?
110~ does the quality of knowledge used in the net-
work affect the amount of uncertainty and error that
can be accomodated?

l Task characteristics and the selection of an appropriate
network configuration: What characteristics of a task
can be used t,o select the n&work configuration ap-
propriate for it? When should problem solving
among nodes be organized hierarchically? What type

of authority relationship should exist among nodes?
Should nodes be completely self-directed or should
there be certain nodes that decide explicitly what
other nodes should do, or should there be a nego-
tiation structure among nodes (Smith & Davis 1981)?
Similarly, should information be transmitted on a
voluntary basis or only when requested or some mix-
ture of these policies?

The candidate task characteristics to evaluate included
the size of the network and the communication topol-
ogy; the type, spatial distribution, and degree of uncer-
tainty in information; the quality of knowledge in the net-
work;interdependencies among subproblems; and the size of
the search space.

Unfortunately, it was difficult to extend the distributed
HEARSAY-II speech understanding system for these studies.
There were two major reasons for this difficulty: the com-
putation time needed to run experiments and inflexibilities
in the design of the system. We discuss these reasons be-
cause they point out, why extensive experimentation with
large knowledge-based AI systems is very difficult.

The use of an existing knowledge-based system as the
basic underlying problem solving system in the experiments
lent credibility to the simulation results and also avoided
the extensive knowledge engineering that normally would
have been required. The importance of having a concrete
framework to explore ideas cannot be underestimated. Not
until the problems of getting the HEARSAY-II speech un-
derstanding network to work appropriately in a distributed
setting were confronted did many of our intuitions about
how to design distributed problem solving networks evolve.
However, there were major negative implications of using
the real HEARSAY-II speech understanding system. First, it
was extremely time consuming to run the multi-node simula-
tions since the underlying problem solving system was large
and computationally slow. Second, the speech understand-
ing system did not naturally extend to larger numbers of
nodes and more complex communication topologies without
significant changes to the system. In part, this is because
the speech task is not a realistic distributed processing task
and its sensory d’ata is one-dimensional (the t,ime dimen-
sion). Third, efficiency considerations in the design of the
speech understanding system led to a tight coupling among
knowledge sources and the elimination of data-directed con-
trol at lower blackboard levels. This tight coupling precluded
the exploration of many interesting network architectures.
It was not possible to configure nodes with only a partial
set of knowledge sources without significant modifications to
the knowledge source interaction patterns. Fourth, the sheer
size and complexity of knowledge source code modules made
modification a diflicult and time consuming process.

Basically, the flexibility of the HEARSAY-II speech un-
derstanding system (in its final configuration) was sufficient
to perform the pilot experiments, but was not appropriate for
more extensive experimentation. Getting a large knowledge
based system to turn over and perform creditably requires

THE hI MAGAZINE Fall 1983 19

a flexible initial design but, paradoxically, this flexibility is
often engineered out as the system is tuned for high per-
formance. Extensive experimentation, if not originally con-
ceived and maintained as a goal of the system design, is a
difficult task.

The Distributed Vehicle Monitoring Testbed

This section introduces the distributed vehicle monitor-
ing testbed, a flexible and fully-instrumented research en-
vironmcnt constructed for the empirical eva.lua.tion of al-
ternative designs for functionally accurate, cooperative dis-
tributed problem solving networks. The concept of the
tcstbed evolved from:

. An understanding of bot,h the difficulties and im-
portance of an empirical approach to issues in dis-
tributed problem solving;’

l The need for a realistic environment for exploring
new paradigms for obtaining global coherence

IIere, the motivation for the t,est,bed, its basic structure,
and its paramcterization and measurement capabilities arc
described.

Motivation

Our approach to designing the testbed was to:

1 Take a realistic distributed problem solving t,ask and
appropriately abstract it to reduce the problems of
knowledge engineering, to speed up problem solving,
and to make it a more generic and parameterizable
f,ask;

2 Develop for this abstracted task a distributed proh-
lem solving system that can model (through ap-
propriate parameter settings and pluggable modules
of code) a wide class of distributed problem solving
architectures;

3 Create a simulation system that can run this dis-
tributed problem solving system under varying en-
vironmental scenarios, different node and communica-
tion topologies, and different task data.

We feel that this approach is t,he only viable way to gain
extensive empirical experience with the important issues in
the design of distributed problem solving systems. In short,
distributed problem solving networks are highly complex.
They are difficult to analyze formally and can be expensive
to construct, to run, and to modify for empirical evaluation.

‘WC had, in fact, earlier embarked on the development of such an
environment,, based on what we called the Distributed Processing Game
(Lesser &: Corkill, 1978), but failed This venture failed because we
had chosen an application for which the knowledge engineering was so
complex and our understanding of the task was so vague that we could
not develop sufficient. knowledge for the system to turn over

Real distributed problem solving applications are difficult
to construct due to the large knowledge acquisition and en-
gineering effort, required, and once built, they are difficult
to instrument and modify for expcrimcntation. Thus, it, is
dificult and expensive to gain these experiences by develop-
ing a “real” distributed problem solving application in all its
detail.

Likewise, WC see the formal modelling route as not vi-
able. The research in distributed problem solving is still in
its infancy and formal analytic approaches are not yet avail-
able. Underlying, the development of analytical approaches
are intuitions gained from experiences with actual syst,cms.
Without sufficient intuitions for appropriately simplifying
and abstracting network problem solving, the development of
a model that is both mathematically t,ractahle and accuratr
is difficult.

Our hope is that the t&bed will provide the appropriat,e
environment for acquiring this experience and will evcn-
tually be useful in evaluating the accuracy of t,he analyti-
cal models2 Especially important are experiences with large
distributed problem solving networks of ten to hundreds of
nodes. It is with networks of this size the we expect to see
the problems of cooperation and coherence dominate and
where important intuitions about how to design distributed
problem solving networks will arise.

In summary, the empirical approach taken here repre-
sents a compromise between the reality of an actual system
and simplicity of an analytical model. We have abstracted
the task and simplified the knowledge but still are pcr-
forming a detailed simulation of network problem solv-
ing. It should be mentioned that even with significant,
simplifications the building of the testbed was a substa.ntial
implementation eflort. However, in contrast to the construc-
tion of a “real” application where considerable efiort must be
spent in knowledge engineering, our efforts have been spent in
parameterizing the problem-solving architecture and making
the testbed a useful experimental tool

Why Distributed Vehicle Monitoring?

Distributed vehicle monitoring has four characteristics
that make it an ideal problem domain for research on dis-
t,ributed problem solving.

First, distributed vehicle monitoring is a natural task fol
a dist,rihuted problem solving approach since the acoustic
sensors are located throughout a large geographical area.
The massive amount of sensory data that must. be reduced
to a highly abstract, dynamic map seems appropriate for a
distributed approach.

Second, distributed vehicle monitoring can be formu-
lated as an interpretation task in which information is in-
crementally aggregated to generate the answer map Nilsson

2The t,esthed is already beginning to he used in this manner See the
work by Pavlin (1983) on initial attempts at formulating a model fol
distributed intrepret,ation systems

20 THE AI MAGAZINE Fall 1983

has termed systems with this characteristic commutative
(Nilsson 1980).

Commutative systems have the following properties:

1. Actions that, are possible at a given time remain pos-
sible for all future times.

2. The system state that results from performing a se-
quence of actions that are possible at a given time is
invariant under permutations of that sequence.

Commutativity allows the distributed vehicle monitor-
ing network to be liberal in making tentative initial vehicle
identifications, since generation of incorrect information
never precludes the lat,er generation of a correct answer
map. Without commutativity, the basic problem solving
task would be much more difficult.

Although the generation of the answer map is commuta-
tive, controlling node activity is not. Here we enter the realm
of limited time and resources. If a crucial aspect of the
answer map is not, immediately undertaken by at least one
node in the network, the network can fail to generate the map
in the required time In the determination of node activities,
mistakes cause the loss of unrecoverable problem solving time
and can therefore clirninate the possibility of arriving at a
timely answer map. If the nodes and sensors are mobile,
their placement, adds another non-commutative aspect to t,he
distribut,ed vehicle monitoring task; a misplaced node or sen-
sor can require substantial time to be repositioned. (We are
currently limiting our investigations to stationary nodes and
sensors.)

Third, the complexity of the distributed vehicle monitor-
ing task can be easily varied. For example:

l Increasing the density of vehicle patterns in the
environment increases the computational and com-
mumcation load on the network.

l Increasing the similarity of the vehicles and patterns
known to the network increases the effort required t,o
distinguish them

l Increasing the amount, of error in the sensory data in-
creases the effort required to discriminate noise from
reality.

Fourth, the hierarchical task processing levels coupled
with the spatial and temporal dimensions of the distributed
vehicle monitoring task permit a wide range of spaCal, tem-
poral, and functional network decompositions. Node respon-
sibilities can be delineated along any combination of these
dimensions.

An important decision in the design of the testbed was
the level at which the network would be simulated. An
abstract modeling lcvcl, such as the one used by Fox (1979),
that represents the activities of nodes as average or prob-
abilistic values accumulated over time would not capture the
changing intermediate processing states of the nodes. It is
precisely those intermediate states that are so important in
both building and evaluating in a realistic way different net-

work coordination strategies. Instead, the testbed duplicates

(as closely as possible) the data that would be generated in
an actual distributed vehicle monitoring network as well as
the effect of knowledge and control strategies on that data
This approach also allows users of the t,estbed to receive
concrete feedback about how their algorithms are perform-
ing However, because the purpose of building tha testbcd
is to evaluate alternative distributed problem solving net-
work designs rather than to construct an actual distributed
vehicle monitoring network, a number of simplifications of
the vehicle monitoring task were made (Table 1). The goal of
these simplifications was to reduce the processing complexity
and knowledge engineering effort required iu the testbed

The major t,ask simplifications in the Distributed
Vehicle Monitoring Testbed include:

l The monitoring area is cxprcssed as a two-dimensional
square grid, with a maximum spatial resolution of one
unit square.

l The environment, is not sensed continuously Inst,rad,
it is sampled at, discrete time intervals called tame
frames

l E’requency is represented as a small number of fre-
quency classes

l Communicat,ion from sensor to node uses a different,
channel than internode communication.

l Int,ernode communication is subject to random loss,
but, if a message is received by a node it is received
without error

l Sensor to node communication errors are treated as
seusor errors.

0 Signal propagation times from source to sensor are
processed by the (simulated) low-level signal process-
ing hardware of the sensor;

l Sensors can make three types of errors: failure to
detect a signal; detection of a non-existent signal; and
incorrect determination of the location or frequency
of a signal.

l Sensors output signal events, which include the loca-
tion of the event (resolved to a unit square), time
frame, frequency (resolved to a single frequency class),
and belief (based on signal strength)

incompletely resolved location or frequency of a signal
is represented by the generation of mult,iple signal
events rather t,han a single event wit,11 a range of
values

Nodes, sensors, and iuternode communication chan-
nels can temporarily or permanently fail without,
warning

Table 1.
The Simplified Vehicle Monitoring Task

THE Al MAGAZINE Fall 1983 21

without significantly changing the basic character of the dis-
tributed interpretation task.

I

A second design decision was to instrument the testbed
fully. The testbed includes measures that indicate the
quality of the developing solution at each node in the net,-
work, the quality of the developing solution in the network as
a whole, and the potential effect of each transmitted message
on the solution of the receiving node. This is made possible
through the use of an oracle containing the structure of the
actual problem solution.

Resolver

-I I

I
Consistency
Blackboard

A third decision in the design of the testbed was to make
it parameterized. Experience with complex artificial intel-
ligence systems demonstrated the difficulty of experiment-
ing with alternative knowledge and control strategies. As
a result, potential experimentation with the system is often
not performed. Incorporated into the testbed are capabilities
for varying:

l The knowledge sources available at each node, per-
mitting the study of different problem solving decom-
positions; T

. The accuracy of individual knowledge sources, per-
mitting the study of how different control and com-
munication policies perform with different levels of
system expertise;3

. Vehicle and sensor characteristics, permitting control
of the spatial distribution of ambiguity and error in
the task input data;

Figure 2: Testbed Node Architecture.

. Node configurations and communication channel charac-
teristics, permitting experimentation with different
network architectures;

. Problem solving and communication responsibilities
of each node, permitting exploration of different
problem solving strategies;

. The authority relationships among nodes, permit-
ting experimentation with different organizational
relationships among nodes.

The result, is a highly flexible research tool which can be
used to explore empirically a large design space of possible
network and environmental combinations.

HEARSAY-II 4 system (Erman et al 1980), capable of solv-
ing the entire vehicle monitoring problem if it is given all of
the sensory data and makes use of all of its knowledge. This
permits any subset, of the knowledge sources to be used at a
node and allows the simulation of a single node (centralized)
system to provide a benchmark for various distributed net-
works monitoring the same environment.

Testbed Node Architecture

The Distributed Vehicle Monitoring Testbed simulates
a network of HEARSAY-II nodes working on the vehicle
monitoring task. Each node is an architecturally-complete

3The quality of the knowledge used by each node to distinguish be-
tween consistent and inconsistent data plays a major role in the suc-
ces~ of a functionally accurate, cooperative approach A network using
low quality knowledge is unable to detect subtle inconsistencies among
tentative partial results and may be unable to arrive at an acceptable
solution As the quality of knowledge used in the network is improved,
the network should generate an answer with greater accuracy in less
time.

The basic HEARSAY-II architecture has been extended in
each testbed node to include the capability of communicating
hypotheses and goals among nodes, more sophisticated local
control, and an interface to meta-level network coordination
components (Corkill 1981, 1982, 1983). In particular, com-
munication knowledge sources, a goal blackboard, a plan-
ning module, and a meta-level control blackboard have been
added (Figure 2). The testbed also has several components
that, are used to measure the performance of each node and
the overall network and to vary the “intelligence” of each
node’s knowledge sources and scheduler. These components
are the consistency blackboard and the knowledge source and
scheduler resolvers.

The Structure of the Data Blackboard

4 With knowledge sources appropriate for the t,ask of vehicle monitoring Hypothesized vehicle movements are represented on the

THE AI MAGAZINE Fall 1983 23

data blackboard. This blackboard is partitioned into four
task abstraction levels: signal, group, vehicle, and pattern
(Figure 3). Szgnals are at the lowest abstraction level and are
the output of low-level analysis of sensory data. Each signal
includes the frequency, approximate position, time frame of
detection, and belief (based partly on signal strength and
sensor quality) of the acoustic signal as well as the identity
of the detecting sensor. Signals are the basic input to the
problem solving network.

At the next level in the data hierarchy arc signal
groups. A group is a collection of harmonically related signals
(emanating from a common source). Each group includes
the fundamental frequency of the related signals and its ap-
proximate position, time frame, and belief (a function of the
beliefs and characteristics of the relat,ed signals).

Vehicles are the next level in the data hierarchy. A
vehzcle consists of a collection of groups associated with a
particular vehicle. Vehicles include the identity of the vehicle
and its time frame, approximate position, and belief.

At the highest level of processing a.re vehicle patterns.
A pattern is a collection of part,icular vehicle types with a
particular spatial relat,ionship among them. Patterns were
included in the testbed to investigate the effects of strong
const,raints between distant nodes. A pattern includes the

Vehicle Patterns

Vehicles

Signal Groups

Signals

Figure 3 Vehicle Monitoring Task Processing Levels
Forming a vehicle pattern from sensory signals involves com-
bining harmonically related signals into signal groups Various
signal groups can collectively indicate a part,icular type of
vehicle Specific vehicle types with a particular spatial
relationship among themselves form a vehicle pattern.

identity of the pattern and its time frame, approximate posi-
tion, and belief. A single vehicle can be a pattern.

The desired solution, or answer map, is produced from
the vehicle patterns based upon their beliefs and continuity
over time. There are two types of answer map distribution:
one where a complete map is to be located at one or more

answer sites within the monit,ored area and one where a par-
tial (spatially relevant) map is to be located at numerous sites
within the area In distributed vehicle monitoring tasks such
as air or ship trafic control, both distributions of the answer
map may be required. Each node might use its portion of the
distributed map to control nearby vehicles, while the com-
plete map might be produced for ext,ernal monitoring of the
network.

Each of these four abstraction levels is further divided
into two levels, one containing location hypotheses and one
containing track hypotheses. A location hypotheses rcprc-
sents a single event at a particular time frame A truck

hypothesis represents a connected sequence of events over a
number of contiguous time frames.

These orthogonal partitionings result in the eight black-
board levels shown in Figure 4. Location hypotheses arc
formed from location hypotheses at the next lower abstrac-
tion level. Track hypotheses can be formed from loca-
tion hypotheses at the same abstraction level or from track
hypotheses at, the next lower level. The task processing level
most appropriate for shifting from location hypotheses to
track hypotheses is dependent on the problem solving situa-
tion.

The relationships among the hypotheses at each level is
supplied to the testbcd as part of a testbcd gmmmnr. Chang-
ing the grammar automatically varies behavior throughout
the test,bed. By increasing the size and connectivity of the
grammar, the interpretation task can be made more difficult
Another aspect of a testbed grammar that specifies the
difficulty of the interpretation task involves tracking vehicle
movement. The tracking component, of a testbed gramma]
contains two values: the maximum velocity of a vehicle (and
implicitly, events a.t all levels) and the maximum acceleration
of a vehicle. These values are used in the creation and ex-
tension of track hypot,heses. By reducing the constraints on
vehicle movement, the tracking task becomes more difficult.

Knowledge Source Processing

An important consideration in developing the set of
knowledge sources for the testbed was t,o structure processing
so that information could be asynchronously transmitted and
received at any blackboard level. This permits exploration
of a wide range of different processing decompositions based
on partially configured nodes (nodes without all knowledge
sources) without, modifying the knowledge source modules
and local control structures.

There are six basic problem solving activities performed
by the processing knowledge sources in the testbed. They
are:

Location Syntheszs - Abstracting location hypotheses at
one level of the blackboard into a new location hypothesis
at the next, higher location level

Truck S@heszs - Abstracting track hypotheses at, one
lrvel of the blackboard into a new track hypothesis at
the next higher track level

24 TIlE AI MAGAZINE Fall 1983

Details of Goal Processing in a Node

answer
map

sensory
data

I?gure 4 Blackboard J,evcls in t,hc ‘I’estbcd
The eight blackboard levels in the testbed are: location

(SL) signal Crack (ST) group location (GL) group track
(CT) vehicle location (VL) vehicle t,rack (VT) patt,ern
location (PL) pat,t,ern tzack (PT) The arrows indicate
the four possible synthesis pat.hs from sensory data to
generation of the answer map

Track Formation Combining a location hypothesis in
one time frame with a “matching” location hypot,hesis
in ELII adjacent tirnc frsmc t,o form a one-segment t,rack
hypot,hesis

Track Ez~&sio?~ Ext,cnding a track hypothesis into an
adjacent t,imc frame hy colllbining it with a “matching”
locat>ion

Locatzon-to- Track Joinzng Taking a loca Lion hypothesis
and corltbining it with a “mxt,ching” track hypothesis
that begins or ends in an adjacent t.ime frame

Track Mergang Merging two overlapping or abutting
t,rack hypotheses into a single track hypothesis at t,he
same abst.racl.ion level

In order to permit, more sophisticated forms of cooper:~-
Con among nodes in the system, we have integrated goal-
directed cont,rol into t,he data-directed cont,rol struct,ure
of the basic HEARSAY-II architecture This has been ac-
complished through the addition of a goal blackboard and a
planner.

The goal blackboard mirrors the structure of the data
blackboard. Inst,ead of hypotheses, the basic data units are
goals, each representing an intention t)o crcat,c or cxtcnd a
hypothesis with particular at,t,ributes on the dat,a blackboard
For example, a simple goal would be a request, for the creation
of a vehicle location hypol,hesis above a given belief in a
specified area of the dat,a blackboard.”

Goals are created on the goal blackboard by t,hc black-
board monztor in rcsponsc to changes on the data black-
board These goals explicitJy represent, t,he node’s int,cntion
to abstract- or extend particular hypotheses. (:oals received
from another node may also be placed on the goal black-
board Placing a high-level goal onto the goal blackboard
of a node can elrectively bias the node toward developing a
solution in a particular way.

The planner responds to t,hc insertion of goals on the
goal blackboard by developing plans for their achievement8
and instantiating knowledge sources to carry out those plans
The sched?Ller uses the relationships between the knowledge
source instant,iatioris and the goals on the goal blackboard
as a basis for deciding how the limited processing and COJW
mrmication resources of the node should he allocated

Communication Knowledge Sources

Inl,ernode communication is added t,o the node archit,cc-
t,ure by the inclusion of conznmnzcataon knowledge sources
These knowledge sources allow the exchange of hypotheses
and goals among nodes in the same independent and asynch-
ronous style used by the other knowledge sources There are
six types of communication knowledge sources in t,he t,est,bcd:

Hypotheszs Send ~ Transmits hypotheses created on t,he
blackboard to other nodes based on the level, tirnc frame,
location, and belief of the hypothesis

Hypotheazs Receive ~ Places llypothcscs received from
otller nodes onto the node’s blackboard Incoming
hypotheses are filtered according t,o the char;tct.crist,ics
of t,he received hypothesis to ensure t,hat. t,he node is in-
terested in t,he information Hypot.hcsis Receive uses a
simple 111odel of the credibility of the sending node to
possibly lower the belief’ of’ t,he received hypothesis before
it, is placed on the blackboard

“An important aspect in t.he st~uct,ure of thp inte~rntrd control ar-
r:hit,ect,ul e is a COI responder~ce k)et.wcxm the blackboard al WI covered hy
t,he goal and the blackboard area of the desired hypothesis This CVX-
rcspondcnce allows t.he pIanne to relate goals and hypotheses quickly

TIIl? AT MAWUINE l~all 1983 25

Goal Send ~ TransmiLs goals created on the goal black-
board to other nodes based on the level, time frames,
regions, and rating of t,hc goal Coal Send t,ransmit,s
goals based on meta-level control information ~ whct,hel
or not the node is (,o attempt to achieve the goal locally

Gonl Help ~ Transmits goals that the node’s planner has
determined cannot l)e satisfied locally (possibly after ex-
ecuting a number of local problem solving knowledge
sources)

Gonl Recezve ~ Places goals received from other nodes
onto t,hc node’s goal blackboard. Incoming goals are
filtered according to the characteristics of the received
goal to ensure that the node is interested in receiving
goals of that type Goal Rcccive uses a simple model of
t,lle node’s authority relationship with the sending node
to possibly lower the rating of the received goal hcforc
it is placed on t,he l>lackboard

Goal Reply ~ Transmits hypot,heses created on the hlack-
board in response t,o a received goal requesting informa-
tion from the node

Experimentation with more complex versions of these
communication knowledge sourc:es is easily accomplished by
simulating a more sophisticated knowledgn source by:

. modifying its power (cf Modifying Knowledge
Source Power);

l modifying the code of t,he knowledge source to use
nlore sophisticated knowledge in its choices (this can
done hy adding codr that filters the input or output
of the knowledge source);

. completely replacing a knowledge source with an al-
ternative module

Measuring Node and Network Performance

An important aspect of our use of the test,bed is measur-
ing the relative performance of various distributed prob-
lcm solving configurations and strategies. For example, we
conjecture that in a network with accurate knowledge and
with input data that has low error, organizing the system
hierarchically and using an explicit control and communica-
tion slrategy would bc effective Likewise, we condecturc
that in systems wit,h weaker knowledge sources and with
more errorful input data, more cooperative and implicit,
cont,rol/communication strategies are desirable

In order t,o miderstand the reasons for differences in the
performance characteristics of alternative systems organiza-
tions, dynamic measures are needed that take into account
the intermediate state of system processing and thus permit
observations of performance over time. For example, one way
of measuring the effectiveness of diKerent comlnllIlication
strategies is to develop measures that evaluate the elrect of
each transmitted message on the current processing state of
t,he receiving node. The need for measuring the intermediate
stales of processing have led us to develop a semi-forma.1

model for analyzing how a IIEARSAY-II-like system cow

structs a11 accurate solution and resolves the uncertainty and
error in its input data (Lesser 1980) This measure increases
as the system becomes more certain of the consistency of
“correct” hypotheses and decreases as the syst,em becomes
more certain of the consistency of “incorrect” hypotheses
The “correctness” of hypotheses is obtained from a hidden
data struct,urc called the conszstency blnckboard, which is
prccomputed from the siInlllation input data. This black-
board holds what the interpretation would be at each infor-
mation level if the syst,em worked with perfect knowledge.
This blackhoard is not part of the basic problem solving ar-
chit,ect,ure of a node but, rather is used to measure problem
solving performance from the perspective of the sinlulation
input. data. The consistency blackboard is also used to mark
consistent and false hypotheses (and thr activities associated
with them) in system output,

Modifying Knowledge Source Power

One parameter that can have a significant effect on the
performance of the network is the problem solving exper-
tise of the nodes. The ability of a knowledge source to
detect, local consistencies and inconsistencies among it,s input.
hypotheses and to generate appropriate output hypot,hescs
is called the power of the knowledge source Knowledge
source power ranges from a perfect knowledge source ublr
to create output hypotheses with beliefs that reflect even the
most, subtle consistencies among its input hypotheses down
to a knowledge source that creat,es syntactically lcgitimatc
output hypotheses without regard to local consistency and
with beliefs generated at random. Note that a perfect
knowledge source is not the same as an omniscient one. A
perfect knowledge source can still generate an incorrect ollt-
put hypothesis if supplied with incorrect., but, completely
consistent, input hypotheses

The testbed can modify the power of a knowledge source
to be anywhere along this range. This is achieved by separat-
ing each knowledge source into two stages: a candidate
generator and a resolver. The candidate generator stage
produces plausible llypotheses for the output, of the know-
ledge source and assigns each hypothesis a tentative belief
value. The candidate generator stage for each knowledge
source in the test,bed incorporates relatively simple domain
knowlrdgc There are two types of knowledge used in the
candiate generator to form possihlc output hypotheses hascd
on patterns of input hypotheses. One type of knowledge
derives patterns from the particlllar testbed grammar and
knowledge of sensor error characteristics. The other type
of knowledge is used to compute a belief for each output
hypothesis using the belief’s of the input hypotheses and
knowledge about the relative consistency of the inpul, pat-
tern All of the knowledge used by the candidate generator is
easily varied through either parameter settings or pluggable
code modules

The next st,age, the resolver, uses information provided

26 TIE AI MA(:AZlNE Fall 1983

t,y the consist,enry blackboard to minimally alLer the initial
belief values of l~l~~sc plausible hypotheses to achicvc, ou
the avcrugc, a knowledge source of the desired power. The
hypot,heses with the highest alt,ercd brlicfs arc then used by
the resolver stage as the actual out,put, hypot,heses of the
knowledge source.

The alteration of hypothesis belief values by the resolver
stage can be used to simulalc the detection of more subtle
forms of local consistency than is provided by the candidat,e
generator’s knowledge (and t,hereby increase the apparent
power of the knowledge source). Hypot,hesis belief alt,eration
can also be used to degrade the performance of the candida.t,e
gcncrat,or (and l,hcrcby reduce the apparent. power of the
knowledge source) ’

Even with the flexibility and detail of our approach,
there arc limit,at,ions:

l Our simulation of’ knowledge source resolving power
is leased on a combination of simple knowledge about,
local consistency and rcfcrcnce t,o an oracle, while
real knowledge sources attempt to infer truth from
local consistency alone (and falsehood from local in-
collsisterlcy) 7

l The behavior of different simulated knowledge sources
sharing similar errors in knowledge will not, be cor-
related due to our statistical approach t,o knowledge
source sitrlulaLiotl

Given these liniit,ations, we do not expect a simulat,ed
knowledge source to behave exactly as a real knowledge
sotirce WC feel, howcvcr, that t,he essential behavior of
each knowledge source has been captured so t,hat, system
phenomrna are adcquwt.ely simulated.

Local Node Control in the Testbed

An important. capability of the t,esthed is l,he ease with
which ult,ernate control and communication stralegies can he
explored. This exploration has t,wo aspects. The first, is the
ahilil,y t,o perform experiments comparing the performance of

“The wo1 k by Paxi.on on t.he sI<l speech underst.anding system (Paxton
1978) comes closest to our approach He used ground consistency in-
formation Lo simlllat,e statistically the output of the low lcvcl acoustic
processor in Lhc SRI speech systcrn 0111 approach differs from 1%.
ion’s in that it dynamically relates charact,cristics of the inputs of a
knowledge soucc to the characteristics of its outputs, while Paxton’s
does not. The ouLpuL of his model depends on precomputcd behavioral
statistics which are independent of the belief values and consist,ency
values of it.s inputs Because of this difference, we ale able Lo simulate
any or all knowlcdgc ~~mces in om system, while Paxton’s model is
valid only for flont-end ploccssing of input data similar IO those used
t.o compute the stat.isLirs

71n older to capture more closely the notion of local consistency, WC
can include on t.hc consistency blackboard false hypothcscs t.haL would
appeal to t)e consistrnl, by even a pcrfcct knowledge source operating at
that blackhonl d level The resolves judges the consistency of these false
hypolheses (termed “co1 related-false” hypotheses) in the same way as
it does tlue hypotheses

different, contzol st,rat,egies (for example, t,he performance of
a hierarchical network versus a lat,erally organized network)
The second aspect is the ability to augment t,hc basic tcsthcd
node archit,cct,ure wit,h additional control components (for
example, adding a meta-level control component that, varies
t,he organizational relationships among nodes dynamica.lly).
l3otli types of experimentation are possible with the LesLbed.
This section discusses how the local node control archit.ecLlirc
has been structured to accomplish both types of cxperimcll-
t.atioii.

Interest Areas

A key aspect of the control framework implemented in
the tcsthcd is the nse of a nonprocedural and dynamically
variable specification of the behaviors of each local node’s
planner, its scheduler, and its communication knowledge
sources. Called znterest areas, these data structures reside on

the m&a-level control blackboard and are used to implement,
particular network configurations and coordination policies.

There are six s&s of int,erest areas for each node in the
testhed:

Local Processzny Interest Areas ~ InAucncr the local proh-
lern solving activities in t,hc node by modifying tllc
priority ratings of goals and knowledge source instan-
tiations and the behavior of the node’s planner and
scheduler

Hypotheszs Transrnisszon Interest Areus ~ Influence the bc-
llavior of IIYP-SEND knowledge so~~rccs in the node

IIypotheszs Reception Interest Areas Influence i,hr be-
havior of HYP-RECEIVE knowledge sources in the node

Goal Transnlzssion Interest Areas ~ Influence the behavior
of GOALSEND knowledge sources in t11e nodr

Goal Help Trnnsmasszon Interest Areas ~ Influenw 111~: lx-
havior of GOALHELP knowlcdgc sollrces in the node

Gonl Reception Interest Areas ~~ Influence t,he behavior of
COAL-KECEFVE knowledge sollrces in the node.

Each interest arca is a list of regions of the data or goal
blackboard.

t5ach local processing interest area has a single paramet,ei
associated with it,: a weight specifying t,hc imporl,ancc of per-
forming local processing within t,he interest area. Transmis-
sion int,erest, areas (hypothesis t,ransmission, goal t.ransmis-
sion, and goal help transmission) are specified for one or more
lists of nodes that are to receive information from the node.
Similarly, reception interest areas (hypothesis rcccption and
goal reception) are specified for lists of nodes t,hat, are LO
transmit information to t,he node Each tzansmission intcr-
est area has a weight, specifying t,he import,ance of t,ransmit-
ting hypotheses or goals from that, arca (to nodes specified
in t,he node-list,) and a threshold value specifying the min-

imum hypothesis belief or goal rating needed to transmit
from t,hat, area Each reception inter& area has a weight,
specifying the import,ance of receiving a hypothesis or goal in

‘I‘HE AI MAGWN15 Fall 1983 27

that area (from a node specified in the node-list), a minimum
hypothesis belief or goal rating needed for the hypothesis 01

goal to be accepted, and a credibility weight. The credibility
weight parameter is used to change the belief of received
hypot,heses or t,he rating of received goals. A node can reduce
t,hc effect of accepting messages from a no& by lowering t,he
belief or rating of messages received from that node Each
hypot,hesis reception interest area also has a focusing weight
parameter that is used t,o determine how heavily received
hypotheses are used in making local problem solving focusing
decisions.

Rating Goals and Subgoaling

Goal ratings specify the importance of creating hypo-
theses with particular attributes on the data blackboard.
They influence the behavior of the planner, the scheduler,
and the goal communication knowledge sources. The know-
ledge source inst,antiation rating calculation is basically
a weighted su111 of a data-directed and a goal-directed
component. The data-directed component captures the
expected belief of an output hypothesis (as specified in
the knowledge source instantiation’s output.-set, attribute)
The goal-directed component, measures the ratings of goals
that would be satisfied (at least, in part) by an output
hypothesis. The goal-weight,ing parameter can be adjusted to
change the importance given to producing strongly believed
hypotheses versus satisfying highly-rated goals. Gaussian
noise is added to the rating calculation to simulate knowledge
source precondition procedures with imperfect output hypo-
thesis estimation capabilities

In addition t,o instantiating knowledge sources to achieve
a goal, t,he planner can also create subgoals that reflect the
importance of lower-level data in achieving the original goal
and that, if satisfied, increase the likelihood of achieving
the original goal. Suhgoaling is an effective means of focus-
ing low-level synthesis activities based on high-level expccta-
tions.’

The knowledge needed 1.0 perform subgoaling is based
on the behavior of the t,cstbed knowledge sources and is
paramet,erized by the grammar. Hecause subgoaling requires
some effort,, its use needs to be controlled. In the testbed,
subgoaling is controlled in two ways: by restricting subgoal-
ing t,o particular levels and by a minimum rating threshold
for a goal to be subgoaled. The relative settings of these
parameters strongly influence the balance between local and
external direction ECxamplcs of how specific control and
communication relationships are spccitied in the testbed are
presented in a recent, paper (C:orkill R: Lesser 1983).

8Therc arc no prediction knowledge sources in the testbed Prodict,ive
knowledge is used by tho planner to genrrate predictive goals that, can
he subgoaled to ~WAIS activity on lower blackboard lrvrls

Knowledge Source Precondition Procedures

The overall performance of each notlc dcpc:~~ts on th

ability of its planner and scheduler to correct.ly estimntc
which of the potential knowledge source actions is nwst likely
to improve the current problem solving &ate as well as the
cost of performing that action. III “real” syst,c:ms, this es-
timation is based in part. on information provided by each
knowledge source to the scheduler about the output, the
knowledge source is likely to produce given particular in-
put hypotheses (the knowledge source respo~zse frame (JIayes-
Roth & Lesser 1977). This estimation is usually fast, and

approximate it is made without, a dctailetl analysis of the:
knowledge source’s input data. Increasing unccrtaint,y in t,his
estimation makes it less likely that the planner and schedulc~
will appropriately decide what knowledge source actions to
perform.

In order to investigate the elrects of this uncertainty the
testbed simulation preexecutes the entire knowledge source as
the precondition procedure. The knowledge sollrce dots not,
actually create any hypotheses or goals, but instead plarcs
an exact specificat,ion of t,hcir at,t,ributes in the output-sef at.-
tribute of the knowledge source inst,antiat,ion. The out,put-
set, provides a.n exact description of what the knowledge
source instantiation will do if executed (The output-set, is
updated if the input cont,ext of the knowledge source instan-
tiation is modified while it is awaiting execution) The ac:t,ual
hypotheses or goals are creat,ed when the knowlctlgc source
instant,iation executes.

The information contained in the olltpllt-set allows the
knowledge source instantiation rating to be made with pcr-
feet, knowledge of the knowledge source instantiation’s bc-
havior. Precondition procedures with less than pcrfcct cs-
timxtion luffi abilities are simulated by perturbing these per-
fect ratings. The details arc drscribctl in the next. section

Rating Knowledge Source Instantiations

The knowledge source instantiation rating calclllation
is basically a weighted sum of a data-directed and a goal-
dired,ed component The data-directed component capt,urcs
the expected belief of an output, hypothesis (as specified in
the knowledge source inst,alit,intiori’s output,-set attribute).
The goal-directed component measures t,he ratings of goals
that would be satisfied (at least in part) by each output
hypothesis. The goal-weight,ing parameter adjusts the irn-
portance given to satisfying highly-rated goals versus produ(:-
ing strongly believed hypotheses The weight,ed SUIII of these
two components is computed for each output hypot,hcsis in
the knowledge source instantiation’s output-set att,ribut,r and
the maximum value (multiplied by the knowledge sourer
efficiency estimate) is used as the lease rating for knowlcdgc
source instantiation

Since the tcstbed precondition procedures precompute
t,he actual output, hypotheses of the knowledge SOIIIW irl-
stantiation, the scheduler’s base rat,ing calculation uses the

THE AI MAGAZINE J’all 1983 29

exact beliefs of t,he out,put, hypotheses and t,he goals that,
they satisfy Gaussian noise can bc added to this base rat-
ing t,o simulate the cffcc’ects of knowledge source precondition
procedures that are imperfect, in their cst,imation of output
hypotheses’s beliefs and of goal satisfaction.

The knowledge sources’ precondition procedures USC in-
formation localized to A particular region of the data black-
board in cstimat,ing the belief values of output hypot,hcses.
On the ot.hcr hand, the scheduler is in a position t,o dct,cr-
miilr how a knowledge source instant,iat,ion’s cxpect,ed out,-
put. hypotheses fit. inLo the overall developing solution at, the
node. This difl’crcncc in viewpoint, leads t,o an inl,errst,ing
engineering issue. Should the scheduler rely solcly on the
myopic estimations of the prccondit,ion functions in rating R
ltnowledgc source inst,antiat.ion or should it hc given domain-
clcpcndcnt. knowledge of it,s own t,o dct,ermine consistcncics
between knowlcdgc source inst,antiat.ions? ‘lh experiment,
wit,h this issllc, an oracle wcight,ing in the data-dircct,ed con-
poncnt can be llsed t,o int,roduc:e t,hc consist,cncy of each out,-
put hypot,hcsis (as specified on the consistency blackboard)
int,o t,hc rat,ing calclllation As with t,he knowledge source in-
st,ant,iai,ions t,l~rn~sclvcs, t.his consist,ency information is used
t,o simulate i,hc cffeci,s of developing additional knowledge
which can bctt,Cr det,cct the consistencies among hypot.heses

Facilities for Experimentation

1’1~~ t,cstbed kernel is surrountlcd by :I number of othc1
silbs,yst,ems t.0 facilit,atc cxI)erimcrit,at,iolIi by making it. easy
to vary the parwmct,rrs of an experiment, and Lo analyze the
rcsu1t.s of an experiment (Figilrc 5)

I~l~ONTENI> knowledge sour(#e is the special, simulat,ion-
level knowlcdgc source used to initialize the tesfhetl network.
It, is always t.he first, knowledge sollrce executed in an cxperi-
merit,. The FRONTICNI> reads a cornplcte specification of t,hc
run from an input, file called t,he envzronmew! Jilt. The cn-
vironrrlent, file contains all t.he input, data for the tcstl)ed, and
consists of system, st,ructural, and environmental data Yys-
tenl dntn drnot.es basic paramct.ers of Olie simulat,cd vchiclc
monit,oring syst.em: a seed for random number generat,ion,
the minimum and maximum location and time ranges, and
t.hr n~~mbers of nodes and sensors. Strucfwal data denol,es
t,he spat,ial relationships arnoug nodes and the grammar nsed
by knowledge source candidate generators By varying this
grammar, the nunibcr of legal patterns of hypotheses can bc
varied. The most, const,raincd grammar would be one t,hat
only allowed t,lic particular scenario for the cxperirnent. in
question t,o bc recognized. Thus, the nat,ure and the scope 01
consistency constraints used by knowledge sources t.o resolve
errors can bc alt.crcd This abililv to modify (*he grammar
combined with the ability 1.0 vary the local resolving power
of knowledge source provides a powerful tool for varying t,lie
knowledge cxpert,isc in t.hc sim~~lat~rrl syst~em. E~Lwzronnmztnl
cl&n denot,es t,lie act.ual environment, for Olic vehicle monit,or-
ing syst cm: loc::~t~ioris of pat,Lerris and vehicles at, various Liriie

M --We Movements

Color Graphics

KSlslSchedullng
Measures Commands +

Kernel with Help System ~ Information
0

(LISP)
t

tz

-7-F-l Interactive
Execution

Event
Description

Trace
Files

Summary
Statistics

Behavioral
Absttactions-

Colot Graphics

frames, and inforniation concerning missing and falSC pat-
Lcrns, vehicles, groups, ant] signals at, various tirile friLlll(:S

EnvironmcrM data is used in caonjllnction with t.hc st,ruc:-
tural data by the FRONTENI) t.o crea1.e the consist,enc:y
blackboard.

The environment file has gone through several design
it,erations as we have recognized the irlt,erdel,erldcncics among
t,hc pararnet,ers that must, be spccificd for a t,est,bed ex-
perimcnt, and t.hc difficulties of correctly specifying t.hese
paramct,ers for networks of more than a few nodes. In its
present form, it allows the Spcc’ifiCi~t.iOIl of generic classes
of nodc types, local problem solving capabilities, aul,horiLy
relationships, c:oinmllnicat,ion policies, and sensor charac-
teristics. ‘l’hcsc classes are t,hen instantiated to individual
nodes and sensors in the network.

The JCRONTEND, in its gcnerat,ion of sensor dat,a, can
introduce controlled error (noise) to model imperfect, sensing
Noise is added t,o t,he location and signal class and the dis-
tance of the signal from the sensor I~RONTEND processing
is also paraructcrized so t,hat either t.hese signals can bc in-
t,rotluccd int,o t,hc nodes all at, once or at, the time t,hc:y arc
sensed The former provision allows exploration of systems
in which t,herc arc burst, recept,ions of sensor dat,a

‘1’0 facilit~atc t*lie inclusion of additional c*ont,rol, dis-
play, aiid measurement, rout,incs int,o :I p:irl,ic:ular cxperiIncnt.,
the tcstbcd has a number of programming “hooks” avail-
able to the CxperimenLei Each hook consist,s of a dummy
module t.hnt. can be easily redefined to inclutlr calls t,o t,hc
cxpcrinict~cr’s procedures. In t’hc t.cs~hcd, thcrc is a hook

at the beginning of the simulation, another hook follow-
ing the FRONTEND (when all sensory dat,a and the consis-
t,ency blackboard have been determined), one prior to each
knowledge source execution at each node, one when messages
are transmitted or received, and one when the simulation is
finished. Each hook has sufficient information available (such
as the current, node that is executing, the type of knowledge
source t,o be executed, the simulation time, etc.) to allow the
experimenter’s procedures to decide whether or not they are
interested in being executed. The experimenter’s procedures
have complete access to all information in the testbed.

In order to help in the analysis of the results of an ex-
periment, a number of t,ools have been developed: a selec-
tive trace facilit,y, a summary statistics facility, an interac-
t,ive, menu-driven debugging facility, an event monitoring
facility, and a color-graphics display fa.cility. Each of t,hese
tools 11s~ t,he information on the consistency blackboard to
highlight their presentations. For example, the trace facility
marks knowledge source inst,ant,iations based on the correct-
ness (consistency) of their input, and output hypotheses This
permits the experiment,er to quickly scan a large amount of
data for uncxpcctcd phenomena.

The trace facility presents a chronological trace of the
knowledge sources creation and execution and the associated
creation of hypotheses and goals and a run The user can
vary t,he lcvcl of details of the internal operations of the
systems that are to be traced.

The summary statistics facility is used at the end of a run
to gcnrratc a set of measures that indicate the performance
of various aspects of the systems. These statistics arc both
on a node and system basis

In addition to these fairly common analysis tools, we feel
that there is riced for tools that, permit a more dynamic and
high-level view of the distributed and asynchronious activity
of the simulated nodes. An event monitoring facility, which
has not yet been fully implemented, will permit a user to
define and gather statistics on such user-defined events as
the average time it takes for a node to receive a. hypothesis
and incorporate the received information into a message to
be transmitted to another node (Rat,es & Wiledcn, 1982).

Another facility which is currently operational in a
limited form is a color-graphics output facility. The current
out,put display provides dynamic visual representations of
the distribution of hypotheses in the x-y space of the Dis-
tribut,ed Sensor Network during a simulation Location and
track hypotheses are displayed as symbols and paths con-
nccting symbols, respectively, in the physical x-y space The
level, node, belief, and type of event, of each hypothesis is
encoded in its representation. Through this display, it is
possible t,o get a high-level view of the relationship a.mong
the nodes’ current interpretations and their relationship to
the a&la1 monit,ored tracks. The hypotheses displa,yed can
be selected according to the characteristics of any of their
attrihut,es For example, it is possible to display only those
hypotheses above some belief value or those on a. certain
level, etc. In acldit,ion, an ordering function exists to rank

the hypotheses to be displayed according to several at,tribut,es
(node, lcvcl, type of event, and end-time) allowing less impor-
tant hypotheses to be replaced (painted over) by more impor-
tant ones. We are also working on ot,hcr display formats that
show more abstract, measures of syst,em performance such as
the t,ransmission rate among nodes, the current reliability of
nodes, etc.

Testbed Status, Uses, and Future Directions

The testbed, which has been operational since .January
of 1982, has been a much larger system building effort, than
was originally anticipa.tetl at the onset, of the project. The
current size of the tcstbcd, which is written in U,ISP (Corkill
1980) rumling under VMS, including support facilities is ap-
proximately 500K bytes of compiled lisp code Over the three
year development period, between fifteen and twenty man-
years of effort have gone into the const,ruction of the t&bed

This extensive construction effort has come in part from
the large number of major design iterations. The basic con-
cept of the test,bed has stayed i&act through thcsc iterations
but significant modifications to all aspects of the testbed
have been required as we came to understand how to bcttcr
paramctcrize the various components.

It should also bc mentioned that, even though thr task
knowledge was simplified, considcrablc efrort was still rc-
quired to get the planner and knowlrdgc sources to work
effectively together The testbed uses a very general mech-
anism for knowledge source interaction, and a numbor of
interact,ion patterns t,hat would not occur in a centralized
system do occur in distributed networks.

The saving grace of all t,hese redesign efforts was that it
lead us to a bett,er understanding of how knowledge-based AT
systems and, more specifically, knowledge-based distributed
problem solving systems opera.te In short, designing s
knowledge-based AI system remains an art and requires con-
siderable iteration.

A key concern that, WC still havt about t,hc tcstbed
design, which cannot be answered without extensive use of
t,he testbed, is the range of issues that can be effectively
explored in the testbed. So f ar, only one extensive set, of
experiments have been run in the testbed. These experi-
mcnts emphasized the use of the testbed to explore the effect,s
of different network problem solving strategies (Corkill 81
Lesser, 1983b). Characteristics that wcrc varied included:

l whether communication is voluntary (a node trans-
mit,s hyl)otlleses at its pleasure), requested (a node
transmits hypotheses only when that informatiorl is
requested by another node), or n mzzed initiatzve cw111-
hination of voluntary and recll~est,c4 hypothcscs (a
node volunteers only its highest raLed hypotheses
and awaits requests before t,ransmitting any othcl
hypoi,heses);

l whet,her a nodr is self-directed or externa&darected in
its act,ivities (or a corribinat,iorl of bot,li);

THE AI MAGAZINE Fall 19X3 31

ORGANIZATION COMMlJNICATION/CONTROL

Voluntary
* Ptovidc misstng data
l Ptovide direction

Requested
l Ptovide data only

on request
l Use request for

ditection

Mixed
l Send high belief

hyps or low belief
hyps that satisfy
goals

Figure 6 Alternative Distrihuted Problem Solvirlg Stratcgics

l whether hypotheses, goals, or l~oth hypotheses and
goals are used for internode coordination

The organizational strategies were evaluated using two
different network architectures: a laterally-organized, foiir-
node network with broadcast communication ammg nodes

and a hierarchica.lly-organized, five-node network in which
the fifth node acts as an integrating node (Figure 8). In
both architectures, thr network is st,ruct,ured so that the
nodes cooperate by exchanging partial and tentative high-
level l~~ypothcscs.

Although these experiments did not explore all the
parameters in the testbed, they do provide evidence of
the utility and Mcxibility of the testbed as a research tool
The different, network problem solving strategies and en-
vironmental configurations were easily expressed, and inter-
esting empirical results indicating the performance of the
different strategies were obtained. The most interesting
of these results wcrc how different organizational and con-
t,rol strategies performed in a noisy input environment that
created the potential for the exchange of distracting infor-
mation among the nodes.

As part, of these initial experiments, we had planned
to explore larger node configurations (with IO to 20 nodes).
However, only a few of these larger test cases were run Re-
tween 3 and 5 hours of CPU time wrrc required to simulate
one of these larger experiments The efficiency of the simula-
tion is crucial to exploring large node configurations. We arc

now beginning the process of selectively t,uning t,hc testbed
but, do not have a feel for the potential spcctlup WC arc also
beginning work on modifying the t.est,l)cd to ruri as a parallel
simulation syskm on a local area network of VAX 11/75Os 9

III setting up, larger and more complex configurations,
a large number of intcrrclated parameters needed to he
specified. This specification process was both time consun-
ing and error-prone. To remedy this problem, we are now
building additional graphical support tools to allow an cx-

periment,er to design and view the net,work configuration
Additionally, we are developing tools allowing complex ~lotle

topologies to be specified in a generic way, inclepcndcnt of
any specific number of nodes (Corkill 82 Pattison, 1983~)

We now firmly bclievc that no matter how flexible and
gcncral a research tool is, if it is not convenient to use, ot

if the empirical results arc not easy to understand, only a
small subset of its capabilities will be exploited.

Conclusion

In t,his article we have described the area of tlistributcd
problrm solving and discussed some of the important, issues
that must be addressed. We also introduced the Functionally
Accurat)e, Cooperative approach with its emphasis on dealing
with uncertain data and control information as an integral
part of network problem solving

The IN& for an empirical investigation of distributed
problem solving was discussed, nspccially with regard 60
network coordination. Such an investigation requires a
flexible experimental tool. The Distributed Vehicle Monitor-
ing Testbed was presented as an example of such a tool.

The testbed facilitates the exploration of the following
factors in distributed problem solving:

node-node and node-sensor configurat,ions;
mixes of data- and goal-dir~ct,erl control in t,hc sys-
tem;
distril)utions of Imcertainty and error in the input
data;
distributions ot’ problc~u solving capability in t.hc sys-
tem;

types of communication politics used;

commnnicat,ion channel characterist,ics;
the problem solving and communication responsibil-
ities of each node; and

the authority relationships among nodes
The multiple dimensions of independent control and the

det,ailed level of simulation in the I,estbed provide what we
fe’Fc1 is a very useful environment for experimentation.

“We had initially hoped to solve the effw.isncy problem t.hrough t.he USC
of’ two different testbeds, one witt,en in I,IsP as t,he devrlopmcnt sys-
tem and the other in PASCAT, RS the production systenl Linfa tunately,
with the cxtensivr design itorations that occrlrrcd during the building
of’ the test.hed, it was impossible to keep the PASCAL inlplrmrntatiorl
cun ent and cvcnt,ually it was dropped

There is a need for more extensive experimentation with

AI systems All too often getting a large knowledge-based
AT system to work at all is the major goal. Extensive ex-
perimentation with the system over a range of conditions is
rarely done. The tcstbed is one of the few exceptions In this
presentation we have emphasized what makes the testbed a
flexible experimental tool Many of t,hese techniques are ap-
propriate for any large knowledge-based AI system.

References

Bates, P. C & Wileden J C! (1982) EDL: A Basis for drstrzbuted
system debugging tools. Proceedings of the Fifteenth Hawaii In-
ternational Conference on System Science, pages 86-93

Chandrasekaran B (1981) Natural and social system metaphors
for distrzbuted problem solvzng: Introduction to the issue IEEE
Transactions on Systems, Man, & Cybernetics, SM<:-1 l(l):]-5.

Corkill, D D (1980) CLisp reference manual (an interactive help
facility) Department of Computer and Informat,ion Scicncc,
Ilniversity of Massachusett,s, Amherst, Massachusetts

Corkill, D D & I,esser, V R (1981) A goal-directed HEARSAY-
II architecture: Unifying data and goal directed control. Tcch-
nical Report 81-15, Department of Comput,cr and Information
Scicncr, IJniversity of Massachusetts, Amherst,, Massachusetts

CJorkill, D I>., Lesser, V R., Rr Hudlicka. E (1982) Unifying data-
directed and goal-directed control An example and experaments In
Proceedings of t,he Second National Conference on Artificial
Intelligence, Pit,tsburgh, PA, 143-147

Corkill, 1). D (1983) A Framework for Organizational Self-Design
in Distributed Prol)lem Solving N&works PhD Thesis, Depart-
ment of Computer and Information Science, [Jniversity of Mas-
sachusetts, Amherst, Massachusetts (Available as Techni-
cal Report 82-33, Department of Computer and Information
Science, Iinivcrsity of Massachusetts, Amherst, Massachusetts,
1982)

Corkill, D D & Lesser, V R (1983) The use of meta-level cont,rol
for coordination in a distributed problem solving network In
Proceedings of the Ezghth International Joznt Conference on Artijiczal
Intelligence, Washingt,on, D.C., in press.

Corkill, D D & Pattison E. Specifing organizat,ional relationships
Technical report, Department, of Compllt,er and information
Sciencr, Iinivcrsity of Massachusetts, Amherst, Massachusetts,
in preparation

Davis, R (1980) Report OJJ the workshop on distributed art,ificial
intelligence SIGART Newsletter, (73):43-52

Davis, R lL: Smith R. G (1981) Negotiation as a metaphor for dis-
trihut,etl problem solving AI Memo 624, Artificial Int,elligcnce
Laboratory, MassaclluseLts Institute of Technology, Cambridge,
Massachusetts

Davis, R. (1982) Report, on the second workshop on dist,ribut,ed
artificial intelligence. SIGART Newsletter, (80):13-23

Erman, L I)., Hayes-Roth, F , Lcssrr, V R , 81 Rcddy, D.R. (1980)
The IIEARSAY-II speech underst,allding syst,ern: integrating
knowledge to resolve uncertaint,y C’omputing Surveys 12(2):213-
253.

Fehling, M & Erman L (1983) Report. on the third annual
workshop on distribut,cd artificial intelligence SIGAIcr Newslel.
ter (84):3-12

Fox, M S. (1979) Organization structuring: Designing large coni-
plex software Technical Report CMU-CS-79-155, 1)epartment
of Computer Science, Carnegie-Mellon ITniversity, Pittsburgh,
Pennsylvania

IIayes-Roth, F. 8c Lesser, V R (1977) Focus of attention in the
HEARSAY-II speech understanding system In IJCAI-77, 27-
35 t I

Hewit,t, C (1977) Viewing control structures as patterns of pass-
ing messages. Artificial Intelligence 8(3):323-364

Kahn, R E , S A. Gronemeyer, J Burchfiel, & R. cl ~~LJllZdJn~~Jl

(1978) Advances in packet radio technology Proceedzngs of the
IEEE 66(11):1468-1496

Kornfeld, W A (1979) ETHER: A parallel problem solving sys-
tem In LJCAI-79, 490-492

Lacoss, R., 8r Walton, R (1978) Strawman design of a l>SN to
detect and track low flying aircraft. Proceedings of the Distributed
Sensor Nets Workshop 41-52 Copies may be available from
the Computer Science Department, (jarnegic-Mellon Iinivcr-
sity, Pittsburgh, Pennsylvania, 15213

I,enat, D. R (1975) Beings: Knowledge as int,eracting experts. In
IJCAI-75, 126-133

Lesser, V. R. & C:orkill, D D (1978) Cooperative distributed
problem solving: A new approach for structuring distributed
systems Technical Report 78-7, Department, of Computer and
Information Science, [iniversity of Massachusetts, Amherst,
Massachusetts.

Lrsser, V R , Pavlin, .J , & Reed, S (1980) Quant,ifying and
simulating the behavior of knowledge-based interpretation sys-
tems In Proceedings of the I’zrst National conference on Artzficial
Intelligence. Stanford, CA, 11 l-l 15.

Lesser, V. R (1980) Cooperative dist,ributed problem solving and
organizational self-design In “Reports on the MIT Distributed
AI Workshop”, SIGART Newsletter (73):46 Also in the san~c

issue: “Models of problem-solving,” page 51.
Lesser, V R. & Erman, I,. D. (1980) Distributed intcrprctation:

A model and experiment IEEE TrcLnsactzons on Computers, c-
29(12):1144-1163

Lesser, V. R & Corkill, I) D. (1981) Functionally-accurate,
cooperative distributed systems IEEE Transactrons on Systems,
Man, and Cybernetzcs, SMC-11(1):81-96

Nilsson, N J (1980) Two heads arc bct,tcr than one SIGART
Newsletter (73):43.

Pavlin, J (1983) Task allocation in distribut,ed problem solv-
ing systems. In Proceedings of the Third Natzonal Conference on

Artzficial Intelligence Washington, D Cl., iI1 press

Paxton, W H (1978) The cxccutive system In D E Walker,
(Ed) Understandzng spoken language Elsevier, North Holland

Smith, R G. (1978) A Framework for Prohlem Solving in a
Distributed Processing Environment, PhD t,hesis, Stanford
IIniversity Availxblc as Technical Report STAN-CS-78-800,
Computer Science Department, Stanford University, Stanford,
CJalifornia

Smith, R. G & Davis R (1981) Frameworks for cooperation in
distributed problem solving IEEE Transactrons on Systems,
Man, and cybernetics SMC!-11(1):61-70

Zisman, M D (1978) lise of product,ion syst,ems Ihr modeling
asynchronous, concurrent processes In D A Wat,crman 81

Frederick Hayes-Roth, (eds) Pattern-Dzrecbed Inference Systems.
53-68 AmdeJJJic l’r?ss

