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Abstract 

In 1980, Digital Equipment Corporation began to use a rule-based 
system called Rl by some and XCON by others to configure VAX- 
11 computer systems In the intervening years, Rl’s knowledge has 
increased substantially and its usefulness to Digital continues to grow. 
This article describes what is involved in extending Rl’s knowledge base 
and evaluates Rl’s performance during the four year period. 

IN THE SUMMER 198 1 ISSUE of the AI Magazine, an 
article entitled “Rl: the formative years” described how a 
rule-based configurer of computer systems had been devel- 
oped and put to work (McDermott, 1981). At the time that 
article was written, RI had been used for only a little over 
a year and no one had much perspective on its use or use- 
fulness. RI has now been configuring computer systems for 
over four years. This experience has provided some insight 
into the ease and difficulty of continuing to grow an expert 
system in a production environment and into the kind of per- 
formance expectations it might be reasonable to have about 
a current generation rule-based system. 

The approach Rl takes to the configuration task and the 

A large number of people have played critical roles in Rl’s development. 
Among those who deserve special mention are John Barnwell, Dick 
Caruso, Ken Gilbert, Keith Jensen, Allan Kent, Dave Kiernan, Arnold 
K&t, Dennis O’Connor, and Ed Orciuch. We want to thank Allen 
Newell, Dennis O’Connor, and Ed Orciuch for their helpful comments 
on earlier drafts of this article 

way its knowledge is represented have been described else- 
where (McDermott, 1980) and (McDermott, 1982). Briefly, 
given a customer’s purchase order, Rl determines what, if 
any, substitutions and additions have to be made to the or- 
der to make it consistent, complete, and produce a num- 
ber of diagrams showing the spatial and logical relationships 
among the 50 to 150 components that typically constitute a 
system. The program has been used on a regular basis by 
Digital Equipment Corporation’s manufacturing organiza- 
tion since January, 1980. Rl has sufficient knowledge of the 
configuration domain and of the peculiarities of the various 
configuration constraints that at each step in a configuration 
task it is usually able to recognize just what to do; thus it 
ordinarily does not need to backtrack when configuring a 
computer system. 

At the beginning of Rl’s development, no clear expecta- 
tions existed about how long it would take to collect enough 
knowledge to make Rl an expert. We did expect that at some 
point the rate at which Rl would acquire new knowledge 
would at least slow, if not stop. We even thought that 
Rl would be done eventually (that is, Rl would enter a 
maintenance mode of well-defined and minor additions, in- 
terspersed with occasional bug fixes.) It is difficult now 
to believe Rl will ever be done; we expect it to continue 
to grow and evolve for as long as there is a configuration 
task. It may be that if Rl’s domain were less volatile, 
Rl would not require perpetual development. But it is 
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probably also true that if the domain were less volatile, the 
task would not require a knowledge-based system. 

The early expectations about Rl’s performance were 
likewise vague, except just as Rl was beginning to be used, 
a Digital employee responsible for the configuration process 
predicted that for Rl to be useful, 90% to 95% of its 
configurations would have to be perfectly correct. This per- 
formance goal is interesting, not so much because RI took 
three years to reach it, but because it turned out to be com- 
pletely wrong. Rl’s task is just one small part of a process 
designed to ensure that high quality computer systems are 
built. Significant redundancy exists in the process precisely 
because historically no individual has both known enough 
about configuration and been able to pay close enough at- 
tention to each order to be entrusted with the total respon- 
sibility. Rl was able to provide significant assistance even 
when it knew relatively little because the people who used Rl 
did not demand more of it than of its human predecessors. 
The one definite performance expectation almost everyone 
had about Rl in its early days was that it would always 
configure the same set of components in the same way. It 
is obvious now and should have been obvious then that this 
expectation could have been satisfied only if Rl had been 
discouraged from becoming more expert. 

These expectations about Rl’s developmental and per- 

formance histories introduce the two parts of the article. In 
the next section, the focus will be on the kind of involvement 
required to extend Rl’s knowledge base. The final section’s 
focus will be on the kinds of erroneous behavior Rl has ex- 
hibited. 

Rl’s Developmental History 

This section provides a somewhat anecdotal trip through 
Rl’s past. Although it mentions the first year, when most of 
the activity was at Carnegie-Mellon University [CMU], the 
primary focus is on the four following years, after Rl began 
to be used at Digital. When CMU handed over the initial 
version of Rl to Digital in January 1980, Digital scrambled 
to put an organization in place that could continue its de- 
velopment. This organization, currently known as the Intel- 
ligent Systems Technologies group, began with only five in- 
dividuals, none of whom had any background in AI. Over the 
past four years, the group has grown to 77 people responsible 
for eight different knowledge-based systems, one of which is 
Rl. As Rl was developed, an attempt was made to effect 
a division of labor between those people responsible for rep- 
resenting Rl’s knowledge and those responsible for collect- 
ing and validating that knowledge. Of the initial technical 
people, one was an engineer who played the roles of both 
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a domain expert and of an interface to other domain ex- 
perts outside the group; the other three people took the 
knowledge collected by the engineer and formulated it so it 
was compatible with Rl’s other knowledge. When the or- 
ganization was a little over two years old the technical group 
had grown to eight people, five of whom were responsible for 
encoding the knowledge collected and validated by the other 
three. The size of the Rl technical group is still about eight. 
Now, however, less of a distinction exists between the people 
responsible for knowledge encoding and those responsible for 
knowledge collection. 

The Knowledge Rl Acquired 

Over the past four years, the amount of effort devoted 
to adding knowledge to RI has remained relatively constant 
at about four worker-years per year. And Rl’s knowledge 
has grown at a relatively constant rate, though the focus has 
shifted around. At times the task of eliminating inadequacies 
in Rl’s configuration knowledge has received the most atten- 
tion; at other times, the group’s energies have been directed 
primarily at broadening Rl’s abilities in various ways. Figure 
1 shows the rate at which Rl’s knowledge has grown; the 
points in time at which Rl became able to configure new sys- 
tem types are marked. Figure 1 does not show the amount 
of product information to which Rl has access. This infor- 
mation, which is stored in a data base, is a critical part 
of the body of information needed to configure a computer 
system correctly. Rl retrieves the description of each com- 
ponent ordered before it begins configuring a system; while 
configuring the system, if it determines some piece of re- 
quired functionality is missing, it searches the data base for 
components that will provide that functionality. Rl currently 
has access to almost 5500 component descriptions. We do 
not have good data on the rate at which the data base has 
grown, but what data we have suggest the growth rate is 
quite irregular. 

In this article, Rl’s growth is measured in number of 
rules. The following values hint at the amount of knowledge 
an Rl rule contains. The average conditional part of one 
of Rl’s rules has 6.1 elements (the minimum number is 1 
and the maximum 17). Each element is a pattern that can 
be instantiated by an object defined by as many as 150 at- 
tributes. On the average, a pattern will mention 4.7 of those 
attributes (the minimum is 1 and the maximum 11) and 
restrict the values which will satisfy the pattern in various 
ways. The tests are mostly simple binary functions that 
determine whether some value in the object has the specified 
relationship to some constant or to some other value in that 
or another object. The action part of an average rule has 2.9 
elements (the minimum is 1 and the maximum 10). Each 
element either creates a new object or modifies or deletes 
an existing object. A rule can be applied when all of its 
condition elements are instantiated.’ 

‘For additional information about the nature of Rl’s rules as well as 
those of other systems written in 0ps5, see (Gupta, 1983) 

Work on RI began in December 1978. During the first 
four months, most of the effort was on developing an ini- 
tial set of central capabilities. The initial version of Rl was 
implemented in OP%, a general-purpose rule-based language 
(Forgy, 1979). By April, Rl had 250 rules. During the same 
period, a small amount of effort was devoted to generating 
descriptions of the most common components supported on 
the VAX-111780. After this demonstration version of Rl had 
been developed, most of the effort during the next six months 
was divided between refining those initial capabilities and 
adding component descriptions to the data base; in October 
1979, Rl had 750 rules and a data base consisting of 450 com- 
ponent descriptions. During the following six months, little 
development work was done on Rl either at Digital or CMU 
because the main focus was on defining a career path for Rl 
within Digital. But beginning in April 1980, three months 
were spent at CMU in rewriting the OPS4 version of RI in 
OPS5 (Forgy, 1981). Given that the knowledge was already 
laid out in the OPS4 version, a variety of generalizations 
emerged and the resulting system, though more capable, had 
only 500 rules. 

By the end of 1980, Rl had 850 rules, most of which 
were added by people at CMU to provide Rl with additional 
functionality; the primary focus at Digital during the second 
half of 1980 was on adding component descriptions to the 
data base and providing a group of people with the skills 
to take over the continued development of Rl. Most of the 
work on Rl since early in 1981 has been done by people at 
Digital. By March 1981, the group at Digital had extended 
RI so it could configure VAX-11/750 systems. During the 
remainder of 1981, most of the group’s effort was focused 
on refining Rl’s knowledge of how to configure VAX-111780 

and VAX-11/750 systems. In 1982, the focus changed to ex- 
tending Rl to cover more systems. While some effort was 
spent in improving Rl’s performance, substantial effort was 
spent in extending its scope. By March, a few months be- 
fore the VAX-111730 was announced, Rl was able to configure 
VAX-11/730 systems, and by July, Rl was able to configure 
PDP-11/23+ systems. At that point, Rl’s knowledge base 
consisted of about 2000 rules. The remainder of 1982 and the 
first few months of 1983 were devoted primarily to refining 
that knowledge. At that point, a concerted effort was made 
to extend Rl’s capabilities so it could configure all the sys- 
tems sold by Digital in significant volume. When that task 
was finished in November 1983, Rl had about 3300 rules 
and its data base contained about 5500 component descrip- 
tions. While a significant amount of time will continue to be 
devoted to extending Rl’s capabilities to cover new systems 
as they are announced, effort will also be spent in continuing 
to deepen Rl’s expertise in the configuration domain. 

As Digital has become more dependent on Rl, it has be- 
come increasingly important that Rl be highly reliable. Thus 
substantial attention has been paid to the question of how to 
combine the demands of reliability with those of continuous 
development. Early on, little attention was paid to formaliz- 
ing the developmental process; as problems were reported, 
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individuals would collect the needed knowledge, add it to the 
system, and depending on the press of other problems, do 
more or less testing to determine that the overall capability 
of the system had not worsened. As time passed, the de- 
velopmental process acquired substantially more structure. 
Planned release dates are now preceded by extensive testing 
of the system. 

The article describing the initial version of Rl (McDer- 
mott, 1982) provides some insight into the nature of Rl’s 
knowledge by presenting a variety of measurements. Figure 
2 compares the measurements from the initial version of Rl 
with corresponding measurements from the current version. 
Since a significant amount of the knowledge in the current 
version is specific to just a subset of the system types it can 
configure, Figure 2 provides the measurements for system- 
specific configurers as well as for the union of those config- 
urers. Until recently, instead of a single version of Rl that 
could configure all system types, there was a version of Rl for 
each system type. Each of these versions consisted of a set of 
from 50 to 100 rules specific to a system type and two much 
larger sets of rules; it shared one of these rule sets with all of 
the other system types and the other with the system types 
having the same primary bus. About 300 of the shared rules 
were themselves specific to just one of the system types; each 
of these rules was included with the shared rules because it 
was relevant to a shared subtask. 

Rl’s rules are grouped together on the basis of the 
subtask to which they are relevant; the “number of rules” 
column displays the total number of rules available to Rl 
in performing the configuration task, and the “average num- 
ber of rules per subtask” column displays the mean number 
of rules in a group. The 3303 rules the current Rl has is 
the union of the rules of each system-specific configurer; the 
10.3 rules per subtask is the union of the groups of rules the 
system-specific configurers bring to bear on a particular task. 
The “average number of parts ordered” column displays the 
number of components Rl has to configure. This number 

is significantly larger than the number of components listed 
on a purchase order since those line items actually refer to 
bundles of configurable components. 

The numbers in the “average rule firings” and “percent 
of knowledge frequently used” columns are based on small 
sets of runs. For the initial Rl, the numbers came from run- 
ning Rl on 20 typical orders. For the current Rl, the num- 
bers came from running each system-specific version of Rl 
on about 20 orders of comparable complexity. The “average 
rule firings” column shows that substantially more is done 
in configuring a VAX-111780 order now than was done ini- 
tially; almost twice as many rules are applied. Two factors 
contribute to this increase. The configuration task has been 
enlarged by definition (i.e. there is now more to do), and 
second, there has been an increase in the average number of 
components per order.2 

The “percent of knowledge frequently used” column 
shows what percentage of the rules are used at least once 
in at least one of the sample runs. Thus for the initial Rl, 
44% of the 777 rules were applied at least once over the 20 
sample runs, and for the current Rl, 47% of the 3303 rules 
were applied at least once over the approximately 200 sample 
runs. The fact that a substantial fraction of Rl’s knowledge 
is used only rarely is, of course, just what we would expect 
of a knowledge-based system. But the percentages for the 
system-specific versions are somewhat misleading. We would 
expect the percentage for each version to be lower than the 
overall percentage because each was run on only about 20 
orders. However, because each version has knowledge that 
is not relevant to its tasks, the percentages for the versions 
are lower than they otherwise would be. The percentages for 
the VAX-111780, the VAX-111750, and the VAX-111730 are 
the most accurate, but even they are too low by several per- 
centage points. Since the nature of the knowledge used by 

20n the average, 1.67 VAX-11/780 cpu minutes are required to 
configure an order. 
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each version is quite similar, it is likely that the percentage 
of the knowledge frequently used by each is pretty much the 
same-somewhere between 35% and 40% . 

About 65% of the 2526 rules added to Rl since 1980 
extend Rl’s general configuration capabilities; only about 
35% of the rules are specific to a single system type. Of the 
65% at least 15% were added to correct or refine knowledge of 
how to perform some subtask. This lower bound is suggested 
by the fact that the “average number of rules per subtask” 
increased by 30% during the past four years (i.e., about 230 
rules were added to the groups of rules applicable to the 
subtasks the initial Rl knew how to perform); adding a rule 
to the group applicable to some subtask is almost invariably 
done to correct or refine the knowledge of how to perform 
that subtask. The 15% is a lower bound because as the 
knowledge required to perform some subtask grows, it may 
become evident that what was viewed as a single subtask 
can be viewed as two or more simpler subtasks; what we 
do not know is how much the average number of rules per 
subtask would have grown if this subtask splitting had never 
occurred. 

The Kinds of Changes Rl Has Undergone 

As it turned out, the task of developing Rl had just 
begun when it was first put into use. In this section, we 
attempt to give a flavor of the kinds of changes that have 
been made to Rl over the past four years by examining a few 
examples in some detail. Our primary purpose in examining 
the growth of Rl’s knowledge is to better understand what 
is involved in adding knowledge to such a system. We can 
identify four reasons why knowledge was added to Rl: 

l To make minor refinements (adding knowledge to 
improve Rl’s performance on an existing subtask); 

l To make major refinements (adding the knowledge 
required for Rl to perform a new subtask); 

l To extend the definition of the configuration task in 
significant ways. 

Ordinarily when people talk about why knowledge is 
added to an expert system, they seem to have the first reason 
in mind. As we have seen, of the more than 2500 rules 
added to Rl during the past four years, the data in Figure 
2 suggest that more than 10% have been added to make 
minor refinements, fewer than 40% have been added to make 
major refinements, at least 35% have been added to provide 
functionality needed to deal with new system types, and 
perhaps as many as 15% have been added to extend the 
definition of the task in significant ways. 

Minor Refinements. A knowledge addition of the first 
type is required when Rl cannot perform some subtask that 
it was thought to be able to perform. For example, over the 
years RI has made several errors involving the placement 
of backplanes in boxes. One instance of such an error has 
to do with a backplane’s location. In one variety of a 24 
slot box, because of power considerations, a backplane is 

not permitted to cover slot 10. Rl knew that if it covered 
slot 10 when placing a backplane, it needed to move that 
backplane toward the back of the box so the backplane’s front 
edge would be in slot 11. Rl’s knowledge was incomplete 
because it did not know it had to move any previously placed 
backplane from the front of the box toward the middle so 
that its back edge would be in slot 9. This backplane has to 
be moved toward the middle because leaving a larger space 
between the two backplanes would mean the standard cable 
used to connect backplanes could not be used (since it is not 
long enough). Fixing Rl was a straightforward task, but it 
required a certain amount of creativity (i.e., it was not just 
a matter of “adding some more domain knowledge.“) What 
Rl lacked was any notion of “deliberately vacant space.” 
In order to provide rules that could recognize situations in 
which blank space was inappropriately positioned, Rl had 
to have the concept of blank space and an understanding of 
how to make a note that a particular space had been left 
blank on purpose. Given this, it was straightforward to add 
a few rules that recognized when some piece of blank space 
was inappropriately located and swap it with a backplane. 

Major Refinements. A knowledge addition that results 
in a major refinement to Rl can be made in two kinds of 
situations: when Rl does not have any knowledge about how 
to perform some subtask, and when its knowledge of how to 
perform some subtask becomes so tangled that ways need 
to be found of representing the knowledge more generally. 
Brief examples of both situations are presented below; in the 
following section we provide a more lengthy analysis of one 
attempt to rewrite a set of rules, initiated almost purely to 
increase generality and understandability. 

Most of the modules Rl configures on a UNIBUS consist 
of one or more boards that plug into backplanes which go 
in boxes. If multiple boards are required, they are usually 
placed next to each other in the same backplane. A situation 
unfamiliar to Rl arose when a module was designed with 
boards on two buses. Its first board was to be configured 
in an SPC backplane while the three remaining boards were 
to be configured in a special backplane that had to be lo- 
cated in the same box as the first board, but not in the same 
backplane. One way of extending Rl to handle this new 
component would have been to use a look-ahead strategy; 
Rl would have checked for space, power, and cabling con- 
straints on the special backplane before configuring the first 
board. An alternative would have been a simple backtrack- 
ing strategy. The approach Rl actually took involved a com- 
bination of both look-ahead and backtracking. RI applies 
the same rules it uses for other modules to configure the 
first board; a few special rules then try to foresee abstract 
constraint violations involving the rest of the boards. If a 
problem is found, the first board is unconfigured. If no con- 
straints are violated, power and space are reserved for the 
remaining boards. 

Early in Rl’s history, only two types of panels needed to 
be considered. A few rules were sufficient to guard against 
the possibility of trying to configure two panels in the same 
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space in a cabinet. Templates were used to describe panel 
placement possibilities; the rules recognized when some par- 
ticular space was already occupied and avoided that space. 
As Digital introduced new products the situation became 
increasingly complicated until five different types of panels 
as well as disk drives and boxes could potentially occupy 
the same space with differing degrees of overlap. Because 
the original approach required all possible conflicts to be 
enumerated, it became increasingly unwieldy as the prob- 
lem grew in complexity. The new solution involved redesign- 
ing the templates so the information they contained could 
be manipulated by a small number of more general rules 
and by making minor changes to the action parts of about 
60 already existing rules that dealt with cabinet space deci- 
sions. This strategy worked well for about a year until Digital 
redesigned its cabinets to comply with new FCC regulations. 
At that point, the templates became too unwieldy because of 
the sheer number of possible individual locations; since the 
redesign also eliminated most of the irregularities of the pre- 
vious problem, it became possible to simplify the templates 
and keep track of potential conflicts with a few very general 
rules. 

New System Types. Providing Rl with the functionality 
it needed to deal with new system types has constituted a 
significant portion of the development effort. Since major 
configuration differences exist among the various buses sup- 
ported by different CPU types, it was not clear initially 
how much configuration knowledge is common across sys- 
tem types. When a VAX-111750 configurer was developed, 
the VAX-111780 configurer was used as a model, but the 
knowledge bases were initially completely separate. Once 
the VAX-111750 configurer had enough knowledge to be use- 
ful, it was merged with the VAX-111780 configurer. On the 
other hand, the VAX-II/730 configurer was integrated, from 
the beginning of its development, with the older Rl; the new 
version was developed by creating a small knowledge base 
(consisting of about 100 rules) specific to the VAX-11/730, 
adding some rules specific to the VAX-11/730 to the common 
knowledge base, and generalizing several of the rules in that 
common knowledge base. This approach worked well for the 
VAX-111730, but when we turned our attention to the PDP- 
11/23+, we reverted to the approach we had used for the 
VAX-11/750. Several factors were involved in this decision. 
Rl, up to this point, knew only of VAX-11 systems, which 
are UNIBUS and MASSBUS based, while the PDP-11/23+ is 
based on the LSI22 bus. The rules for configuring these buses 
have little in common. Moreover, the PDP-11/23+ supports 
a variety of operating systems, requires a completely different 
paneling structure, and assumes different power and capacity 
characteristics for its boxes and backplanes. Since the PDP- 
11/23+ is quite dissimilar to the VAX-11 systems, a separate 
version of Rl was developed for this task. Each of the sub- 
sequent system configurers was integrated with either the 
VAX-11 or the PDP-11/23+ system (depending on whether 
it had a UNIBUS or a LS122 bus). Recently, it was decided 
that in a production environment, it would be advantageous 

to have one single system; by April 1984, all of the system 
configurers had been merged. Future system type additions 
will be part of this single version of Rl from the beginning 
of their development. 

Adding the knowledge required to deal with new system 
types is non-trivial even when the new type is quite similar to 
types Rl already knows how to configure. Part of the effort of 
extending Rl’s configuration capabilities to cover a new type 
is due simply to the added amount of knowledge. For each 
of the types, we have had to add a great deal of data to the 
data base as well as make extensive rule changes and addi- 
tions. Many of the decisions involve how to represent the new 
knowledge in the rules, but new data base representations 
are sometimes also required. The full extent of the effort 
varies, depending on the degree of similarity between the 
added system type and the types Rl can already configure. 
When there is a high degree of similarity, the form in which 
the existing knowledge is represented provides substantial 
guidance for how to represent the new knowledge. When the 
new system is quite dissimilar, substantial amounts of design 
are required. 

Extending the Task Definition. As Rl’s role in Digi- 
tal’s manufacturing process has evolved, knowledge has been 
added to Rl that extends the definition of its task. For 
example, Rl was extended in January of 1983 to handle 
“multiple-CPU” orders. Rl was originally designed to deal 
with orders containing a single CPU. But multiple-CPU or- 
ders have become increasingly common, especially with the 
advent of smaller system types where multiple identical sys- 
tems and/or several different systems on the same order are 
the norm. Part of the challenge of extending the definition 
of Rl’s task involves finding a way to realize some new 
capability that does not require extensive modifications to 
Rl. In this case, we avoided the temptation of trying to 
modify Rl to configure multiple, loosely coupled systems 
simultaneously. Instead, a few new rules (originally about 
10) were written to group the components into individual 
systems; each system was then configured in turn. Changes 
had to be made to 5 existing rules that determine what to 
configure and what order information to save; a few external 
initialization and output routines also had to be modified. 
The hard part was determining how Rl’s task definition 
could be extended most simply. 

A substantial change to RI in July of 1982 modified it to 
deal with a different categorization scheme for components. 
The component descriptions had been developed exclusively 
for Rl and were tailored to the configuration task. As Digital 
developed other knowledge-based systems for other purposes, 
it became desirable to have a common data base, where 
the components were categorized in a less ad hoc fashion. 
Before Rl could use the new descriptions, nearly all of its 
rules (about 2000 at the time) had to be changed, and for 
several hundred of these rules, the task of reformulation took 
considerable thought. 

While the difficulty of making changes of any of the four 
types we have just described is highly dependent on the na- 
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ture and scope of the knowledge that needs to be added, it 
also appears to be dependent on the amount of knowledge the 
system already has. In the early days, when’R1 was small, 
people who joined the project were able, reasonably quickly, 
to acquire enough of an understanding of the configuration 
task and of Rl’s approach to it to become competent devel- 
opers. But now that Rl has grown substantially, its sheer 
magnitude seems to serve as a barrier to the would-be devel- 
oper. It takes much longer now for someone who joins the 
group to gain an adequate understanding of how Rl does 
configuration. 

A Change over the Years 

To provide another view of Rl’s development, we have 
analyzed the changes in Rl’s knowledge for two closely re- 
lated tasks. One of the tasks involves deciding what back- 
plane should hold the next set of modules. The other is a 
subtask that may or may not be performed depending on 
what the backplane selection possibilities are. The decision 
of what backplane to configure next is constrained by the 
pinning type of the modules, the space and power available 
for them, the current length of the bus and its loading, and 
the number and mix of backplanes that have been ordered. 
A good backplane choice is one that minimizes the number 
of additional components that have to be added, while satis- 
fying all the constraints. The subtask is performed if the 
pinning type of the next module to be configured is SPC. In 
this case, two different sized backplanes could be used, so Rl 
must do some analysis of the implications of selecting each. 
Figure 3 shows how Rl’s knowledge of these tasks has devel- 
oped; the development can be viewed as a series of minor 
refinements, followed by a major refinement. 

In December 1980, Rl’s knowledge of how to perform 
the two tasks consisted of 36 rules, 23 rules for the selection 
task and 13 rules for the subtask. In October 1983, Rl’s 
knowledge consisted of 73 rules, 54 for the selection task and 
19 for the subtask. During the intervening three years, 40 
rules were added, 3 rules were eliminated, and 11 rules were 
changed. This alteration is consistent with the knowledge- 
based approach, where the initial instinct is to solve a prob- 
lem by adding more knowledge. It suggests that the rules 
eventually formulated are for the most part adequate, but 
that it takes a long time to collect the relevant knowledge. 
The fact that only 11 rules were changed may be a little 
misleading since 27 of the added rules were special cases of 
existing rules, implying that the conditional part of many of 
the unchanged rules were inadequately discriminating. Of 
the rules that were changed, the changes were almost all in 
the conditional part and were in the direction of making the 
rules increasingly discriminating. 

In October 1983, one of the people working on Rl ob- 
served that if Rl were given more knowledge of how to assess 
the likely implications of various decisions, it would need to 
backtrack even less often. In the course of reworking this 
capability, the number of rules remained constant, but the 

12/15/m N/15/80 12/15/80 

TOTAL RULES 36 73 73 

Rules Added 40 31 
Rules Deleted 3 31 
Rules Changed 11 32 
Condition Elements Added 11 8 
Condition Elements Deleted 1 72 
Condition Elements Changed 15 40 
Action Elements Added 1 5 
Action Elements Deleted 0 8 
Action Elements Changed 1 13 

Two sample subtasks 

Figure 3. 

level of expertise improved dramatically. Of the rules in 
the October version, 31 were eliminated and, coincidentally, 
31 were added; of the remaining 42 rules, 32 were changed. 
Again, this alteration is what we might expect of a situation 
in which a capability is being substantially extended. When 
the knowledge is all laid out and it is clearer what other 
pieces of knowledge are relevant to the task, it becomes more 
obvious how to represent the knowledge cleanly. In this case, 
the biggest change was the elimination of condition elements. 
This happened because it became clear that the rules were 
too constraining; that is, the rules had typically been added 
to deal with a particular error, and so the October version 
had a small set of overly general rules (from the initial ver- 
sion) and several more overly specific rules. Seeing all the 
knowledge laid out made it possible to hit the right level of 
specificity. 

Conclusions about Growth 

The following conclusions purport to provide guidance to 
the developers of any knowledge-based application system. 
We are of course not at all sure what aspects, if any, of the 
experience with Rl at Digital will turn out to be typical. 
It seems reasonable to believe, however, since Rl’s task is 
knowledge-intensive, that the experience with Rl relating to 
the rate at which it has acquired knowledge and the difficulty 
of adding that knowledge will at least have relevance to other 
attempts to put knowledge-based systems to work on real 
tasks. 

Even though the experts claimed in 1979 that Rl had 
most of the knowledge it needed, a great deal of knowledge 
has been added to Rl over the past four years. There is no 
more reason to believe now than there was then that Rl has 
all of the knowledge relevant to its configuration task. This, 
coupled with that fact that Rl deals with an ever-changing 
domain, implies its development will never be finished. Thus 
users of systems like Rl will have to be emotionally prepared 
to interact with a less than perfect program. They will have 
to be as forgiving of ignorance in these expert systems as 
they are of ignorance in humans who are ever becoming more 
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expert. 
Though much of Rl’s knowledge was added to correct 

or complement existing knowledge, a significant ‘part of the 
additions came as a result of Rl having to have the knowledge 
to perform new tasks. Some of these were the result of Digital 
introducing new computer system types and the rest resulted 
from the users’ observations that things would be better if Rl 
could do one more thing. We believe all expert systems will 
be hounded to continue to grow for both of these reasons. 
Tasks that expert systems are good for are just those whose 
objects change significantly over time. Moreover, in such 
tasks no clear boundaries delimit what should and should 
not be within the province of the expert. Thus, whenever an 
expert system finds itself on a boundry, its public encourages 
it to extend the boundary. 

Situations arise in which the task of adding a piece 
of knowledge is extremely straightforward because the new 
knowledge needs to be represented and used in virtually the 
same way as the system’s existing knowledge. But, for the 
most part, adding a piece of knowledge involves some amount 
of creativity. In domains other than configuration (or at 
least in diagnostic as opposed to constructive tasks) domain 
knowledge appears to be substantially more regular and can 
be added routinely. Significant, but as yet undiscovered, 
regularities in configuration knowledge may exist that will 
someday allow it to be added more easily. But for now, it 
is important to at least be open to the possibility that a 
knowledge-based system will forever have to be surrounded 
by people who know how to do development. They will be 
called upon to be innovative and adaptable. Although it may 
be the case that adding knowledge incrementally is easier 
than rewriting or modifying a traditional program, by no 
means can this task be done without substantial amounts of 
problem solving. 

It was clear before Rl was a year old that the incremental 
addition of knowledge resulted in a system with a significant 
amount of redundancy and a penchant for ad hocery. To the 
extent that adding knowledge to the system involves human 
intervention, this general lack of cleanliness and conciseness 
provides an obstacle to the system’s further development. 
Few expert systems are likely to be redeveloped (as Rl was 
in 1980, but not since). However, we suspect that from time 
to time, some part of every expert system’s knowledge will 
become so convoluted that its developers will take the time 
to re-represent that knowledge. 

Rl’s Performance 

Before Rl began to be used, each system Digital received 
an order for was configured by a technical editor, typi- 
cally on the day before the system was to be assembled 
and tested. The technical editor examined each order to 
determine whether configuration constraints required addi- 
tional or different components and then specified some of the 
relationships among the components on the order. Though 
the task was performed at a fairly high level of abstraction, it 

seldom took fewer than 5 or 10 minutes to configure an order, 
and complex orders took substantially more time. When Rl 
began to be used, it essentially became a technical editor. 
But since it was not clear initially how well Rl was going to 
do as a technical editor, some of the people who had been 
technical editors stayed to watch over Rl. In effect, they be- 
came Rl’s mentors. Every order configured by Rl has been 
examined, more or less closely, by a mentor and if the mentor 
believed the configuration was lacking in any respect, he or 
she reported the problem to the Rl development group. 

Although Rl is an expert system in the sense that the 
body of knowledge it uses to perform the configuration task is 
acquired by human experts over a period of years, its task is 
different from the task that used to be performed by the tech- 
nical editors because Rl configures systems at a significantly 
greater level of detail than they did. Because its task is 
more extensive, it is hard to answer the question: Does Rl 
do as well at the technical editing task as human experts do? 
The task Rl actually performs is the old technical editing 
task plus part of the task performed by the technician who 
physically assembles the system (since the technician has to 
descend to Rl’s level of detail to do his job). But the tech- 
nician’s situation is different from Rl’s in that the technician 
has the physical components that need to be assembled and 
tested in front of him and can discover when components 
are missing or misconfigured in more direct ways than are 
available to Rl. Thus we have not tried, in this article, to 
compare Rl’s performance with that of the human experts. 
The closest we come to examining that relationship is with 
the bogus problems category. A bogus problem is one that 
a human expert reports as an Rl error, but that on further 
examination turns out to have been a failure on the part of 
the expert to appreciate correctness. 

The data presented in this part of the article leave some- 
thing to be desired; part of the problem is that it was not 
clear, at any point during the past four years, how frequently 
Rl’s performance needed to be sampled. Since knowledge- 
based systems continue to be developed incrementally as 
they are used, it was obvious that collecting performance 
data would be an integral part of using the system. It was 
also clear that the more data that were collected, the better 
we would understand the extent to which Rl’s knowledge was 
incomplete. But all that is really required to drive the devel- 
opmental process is enough data to give the people collecting 
and encoding Rl’s knowiedge plenty to do. Since finding in- 
adequacies in Rl’s knowledge has never been very hard, more 
attention was given to the task of extending and refining Rl 
than to the data collection task. As a result, there are a 
few periods, in two cases extending for months, in which the 
data we have are incomplete. For the most part, however, 
we have some information about how well Rl performed on 
each order it configured. 

Even if we had information about each order Rl config- 
ured, our data would still be unsatisfactory because our un- 
derstanding of how to collect the relevant data has grown 
slowly. Since people who have the responsibility of review- 
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ing each of Rl’s configurations have little understanding of 
how Rl does what it does and where and how it can err, 
they can only report error manifestations. Devising a process 
that makes it fairly straightforward to link manifestations to 
causes (so, for example, the number of instances of each er- 
ror type can be determined) took some time. Initially the 
process used paper and pencil. A second issue, then, was 
how to design a program that could assist with the data 
collection task. Because it took time to devise such a pro- 
gram (a lot of time since it had low priority), a significant 
part of our task has been to reconstruct, from incomplete 
descriptions of error manifestations, what the actual errors 
were. We feel relatively confident in the overall results, but 
are sure a number of minor inaccuracies exist. 

Before presenting the performance data, we need to 
discuss briefly how “percentage of totally correct orders” 
came to be accepted early as the metric for measuring Rl’s 
performance. The problem with this metric, of course, is 
that it does not discriminate between terrible performance 
(gargantuan errors) and near perfect performance (tiny, al- 
most insignificant errors). In retrospect, it is clear that hav- 
ing some idea of the seriousness of each error would be help- 
ful in evaluating Rl. But when RI first started to be used, it 
was with the expectation that there were only a few things 
it did not yet know, and the only question in people’s minds 
was how many weeks it was going to take before Rl knew 
everything. Within that context, it is not at all surprising 
that the all or nothing metric was selected; anything else 
would have seemed too fine-grained. 

Some Performance Data 

Figure 4 provides a detailed account of Rl’s performance 
over the past four years. The information is presented by 
quarter, beginning in January 1980 and ending in Decem- 
ber 1983. Three major problem categories exist: rule prob- 
lems, data base problems, and other problems. For rule and 
for data base problems, as well as for total problems, the 
percentage of orders containing that type of error is given. 
Within each category, information is provided about one or 
more subcategories. For each subcategory, the number of 
problem instances as well as the number of distinct prob- 
lems is reported. The total problem instances percent gives 
a sense of Rl’s usefulness. However, since most errors Rl now 
makes are minor, its output, even if there are problems, can 
usually be used, though sometimes only after a bit of editing. 
The distinct problems percent in the parts and rules subto- 
tal gives a sense of Rl’s competence; this measure shows the 
number of distinct errors Rl has made due either to missing 
or incorrect configuration knowledge or to missing or incor- 
rect component descriptions. Few, we think, would want to 
claim that RI was a competent configurer during its first year 
of use; but for the past two years, its lack of knowledge has 
been well within the bounds of respectability. The number 
of problem instances divided by number of distinct problems 

gives an indication of how many times a problem occurs be- 
fore it is fixed. 

The most significant improvement in Rl has come in 
the percent of problems attributable to missing or incor- 
rect rules. While missing or incorrect domain knowledge 
has never been the most significant source of problems, it 
is now the case that fewer than one in a thousand orders 
is misconfigured because of rule problems. One might ask 
(though we hope only in jest) how after four years Rl can 
have any missing or incorrect domain knowledge. There are 
at least two answers. First, even though Rl has configured 
more than 80,000 orders, it has seen only a small fraction 
of the situations it could possibly encounter. Second, new 
products are sometimes announced before Rl acquires all 
the knowledge it needs to be able to configure those new 
products correctly. 

Problems with parts have been much more troublesome. 
Incorrect part descriptions have never been much of a prob- 
lem, but missing part descriptions have been a significant 
problem during all four years. During the first two years 
Rl was used, the reason it was sometimes given systems to 
configure containing components not described in its data 
base had mostly to do with the fact that the people respon- 
sible for adding part descriptions to the data base were not 
the right people. It was assumed initially that the component 
descriptions could be created by people who knew a lot about 
the components, but knew little about how Rl would use the 
descriptions. As it turned out, creating useful descriptions 
is not all that straightforward. It often is not clear what 
“configuration level” means, not clear what attributes are 
required, and not clear what knowledge to put in the rules 
and what in the data base. In order to know what informa- 
tion a description should contain, it is necessary to know 
how the information is going to be used. In order to know 
how the information is going to be used, it is necessary to 
know something about the component. After trying various 
strategies for making the middle-men more productive, the 
responsibility for creating descriptions was taken over by the 
people who encode the configuration knowledge in rules. 

This change would have solved the missing part descrip- 
tions problem were it not that at about that time, the 
number of orders Ri was configuring per quarter began 
to increase substantially. As a consequence, the number 
of different parts ordered grew significantly. Since Rl has 
descriptions of only 5,500 of the more than 100,000 parts 
that could appear on an order, and since the rate at which 
the as yet undescribed parts appear on orders is very low, 
the development group adopted the strategy, for low volume 
parts, of waiting until the part shows up on an order before 
adding its description to the data base. This policy is less 
cavalier than it may seem since when one of these low volume 
parts does show up on an order, it usually turns out to be 
a part that is not itself configured (e.g., software or an ac- 
cessory). Thus although any configuration mentioning a part 
Rl does not know about is counted as a problem, most of the 
time those configurations can be used without modification. 
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The problems not really under the control of Rl’s 
developers-operational problems, controversial issues, desired 
enhancements, and bogus problems-have always been a 
significant part of the problems reported. During the first 
year and a half, a very large fraction of the problems were 
operational; a number of factors, each by itself not very 
significant, conspired to separate Rl from its user com- 
munity. During 1983, the number of bogus problem reports 
grew to become a highly encouraging (from Rl’s point 
of view) fraction of the total problem reports; from July 
through September, the number of bogus problem reports 
was actually double the number of rule problem instances, 
and during the other three quarters the number of bogus 
problem reports was about half the number of rule problem 
instances. 

Figure 5 presents some of the information from Figure 4 
in graphical form. The relationships among “total orders”, 
“total problem instances”, “total distinct problems” and 
“rule problem instances” are depicted. The “total orders” 
measure provides a context within which the error measures 
can be understood. The “total problem instances” measure 
provides a lower bound on Rl’s usefulness. The area under 
that curve indicates the number of orders for which Rl’s 
output was possibly not useful; however, as we have seen, in 
most cases the output could be used, though sometimes only 
after being modified. The “total distinct problems” measure 
provides a lower bound on Rl’s competence. The area under 
that curve indicates the number of different kinds of situa- 
tions Rl did not deal effectively with. The “rule problem in- 
stances” measure indicates the extent to which Rl’s failures 
were due to its ignorance of the domain. 

Conclusions about Performance 

As in the previous section where some conclusions about 
growth were presented, the following conclusions purport to 
provide guidance to the developers of any knowledge-based 
application system. Since the conclusions we offer here are 
not very startling, it is quite likely that they have some 
general validity. All they really contain is the notion that 
when AI tools confront real tasks, the world is not going to 
obediently conform to all of the hopes of the tool maker. The 
real world treats AI tools with the same disrespect with which 
it treats all other tools and thus a great deal of the effort of 
bringing AI systems into regular use on real tasks involves 
doing things that do not have any special relationship to 
AI. What undoubtedly makes matters worse for AI tools is 
that the problems they are used to solve are ordinarily more 
open than the problems traditional software tools typically 
address. 

In the previous section we argued that an expert system 
will never have all the knowledge it needs. Thus it will al- 
ways make mistakes, and it is important for both the devel- 
opers and the users to expect them. Rl’s performance data 
suggest something even stronger: To expect anything close 
to perfection during the first few years a system is being 
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Figure 5. 

used (especially if the task is significantly more than toy) is 
probably a very serious mistake. We believe the data also 
suggest that to keep an expert system from regular use un- 
til its knowledge is complete would be a poor idea. It has 
taken 80,000 orders to uncover some of the inadequacies in 
Rl’s configuration knowledge, and the configuration task is 
continually redefined as new products are introduced. These 
facts suggest that even if someone had the time and energy 
to try to create a near perfect system before introducing it 
into production, many inadequacies would become evident 
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with regular use. 
It would be a mistake to believe the major or even a 

primary source of error in the performance of an expert sys- 
tem will be due to incorrect or missing domain knowledge. 
Depending on the number and type of objects the system 
is intended to deal with, large amounts of effort may be 
needed to collect and maintain the information about these 
objects. But even if the nature of the task makes data col- 
lection and maintenance relatively unproblematic, a variety 
of other sources of error may spring up as the system begins 
to be used. As we just mentioned, there is nothing magic 
about knowledge-based systems that allows them to avoid 
the problems other software systems have to face. Indeed, 
the fact that they continue to be developed while they are 
being used undoubtedly intensifies those problems. The rela- 
tive seriousness of the various problems that confronted Rl 
would surely have been better appreciated if Rl had had a 
sophisticated problem reporting mechanism from the begin- 
ning. 

If one looks at Rl’s performance over the first two years 
of its use and tries to imagine Rl being used in a situation 
where it was being asked to configure thousands of orders a 
month, it seems clear that its use would have been discon- 
tinued. This judgment is perhaps overly harsh since, as men- 
tioned above, a significant portion of the configurations with 
errors could be used with only minor modifications. In any 
event, using Rl in a high volume environment would have 
made its initial nuturing substantially more difficult. Rl was 
used instead in an environment in which the initial demands 
on it were of the order of a few tens of orders per week for 
the first year. This small volume made it possible for people 
to jump in whenever Rl failed and to avoid depending too 
much on a system that at the time was far from being an 
expert in the domain. 

Conclusion 

One of our purposes in giving these glimpses of Rl’s de- 
velopmental and performance histories is to provide some 
evidence for evaluating the claims that have been made about 
expert systems. Expert systems supposedly are easy to de- 
velop incrementally and, at some point, become as good as 
human experts. Rl lends some credence to both of these 
claims. While substantial effort has been required to de- 
velop Rl, the approach taken has made it possible over a 
four year period to increase Rl’s knowledge substantially 
without starting over; this lends support to the first claim. 
The fact that human experts erroneously conclude that Rl 
has misconfigured systems about as frequently as Rl actually 
misconfigures systems lends some support to the second 
claim. 
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