
Tom Bylander b Sanjay Mittal

CRSL: A Language for Classificatory Problem Solving
and Uncertainty Handling

The ability to map the state of an object into a category languages is transforming AI theories into symbolic struc-
in a classification hierarchy has long been an important tures. This pattern can be seen in knowledge representa-
part of many fields, for example, biology and medicine. tion (for example, semantic nets and KL-ONE [Brachman
Recently, AI research has focused increasing attention on and Schmolze, 19851) and in knowledge-based program-
classification (Gomez & Chandrasekaran, 1981; Weiss & ming (for example, knowledge sources and OPM [Hayes-
Kulikowski, 1984; Clancey, 1985; Cohen et al. 1985; and Roth, 19851).
Gordon and Shortliffe, 1985), and has been especially con-
cerned with applying classification to diagnostic problems.
One of the problems in classification is that the relation-
ship between observable evidence and categories is often
ambiguous. A piece of evidence can be associated with
several categories or can occur with a category in an irreg-
ular fashion. As a consequence, uncertainty handling is an
important facet of classificatory problem solving. In this
article, we present and explain a programming language
called CSRL, which is intended to facilitate the construc-
tion of knowledge-based systems that combine classifica-
tory reasoning with uncertainty handling.

Motivations. Why develop “yet another language”?
Our desire to transform a particular theory into a language
is motivated by the following needs:

Although nearly all programming languages are ade-
quate at the symbol level (being equivalent to Turing ma-
chines), the interpretation of their symbols is relatively un-
constrained. Although the constructs of these languages
can be used to enforce internal consistency of symbols and
symbol structures, there is little restriction on the exter-
nal meanings of symbols. The differences between the lan-
guage and the real world must be covered by software en-
gineering and programming ability.

The Need for Special Languages
Languages developed within computer science often em-
body theories and assumptions about how programs and
data should be organized. AI theories, however, are not
concerned with programs and data per se, but with the or-
ganization of knowledge and its use. The problem for AI

Tom Bylander is at the Laboratory for Artificial Intelligence Re-
search, Department of Computer and Information Science, The Ohio
State University, Columbus, Ohio 43210 Sanjay Mittal is a mem-
ber of the research staff at Xerox Palo Alto Research Center, 3333
Coyote Hill Road, Palo Alto, California, 94304.

We thank B. Chandrasekaran for his direction and support of the
CSRL project. We would also like to acknowledge Jack Smith and
Jon Sticklen for many fruitful discussions concerning the design of
CSRL. Many improvements in the language are due to Mike Tan-
ner and John Josephson, who, along with many other people, im-
plemented the CSRL specialists in the Auto-Mech and Red expert
systems. MDX, the diagnostic system that led to the development of
CSRL, and the original theoretical ideas behind MDX resulted from
a collaboration between B Chandrasekaran, Fernando Gomea, San-
jay Mittal, and Jack Smith. The language development is funded by
a grant from Battelle Memorial Institute’s University Distribution
Program, and experimentation and application in different domains
is supported by AFOSR grant 82-0255 and NSF grant MCS83-05032.

Many AI languages do not provide constructs that
make the organization of the problem solving explicit. For
example, Rl (McDermott, 1982), which is implemented in
OPS5 (Forgy, 1981), performs a sequence of design sub-
tasks, each of which is implemented as a set of production
rules. However, OPS5 has no organizing construct larger
than a single rule, so the grouping of rules and the se-
quencing from one set of rules to another are achieved by

Abstract
In this article, we present a programming language for express-
ing classificatory problem solvers. CSRL (Conceptual Struc-
tures Representation Language) provides structures for repre-
senting classification trees, for navigating within those trees,
and for encoding uncertainty judgments about the presence
of hypotheses. We discuss the motivations, theory, and as-
sumptions that underlie CSRL. Also, some expert systems con-
structed with CSRL are briefly described.

66 THE AI MAGAZINE August, 1986

AI Magazine Volume 7 Number 3 (1986) (© AAAI)

programming techniques. The point is not that it was
difficult or unnatural to use OPS5 for Rl, but that Rl’s
method of design problem solving and OPSS’s production-
rule mechanism are at different levels of organization and
problem solving. If the explanation of Rl’s problem solv-
ing were to be automated, knowledge about OPS5 would
not be enough. Clancey (1981) noted a similar problem
with MYCIN and its rules when he developed a program
for explaining MYCIN’s knowledge.

Both the generality and the mismatch of organization
make it difficult to judge the sorts of problems that these
languages can naturally solve. The gap between the lan-
guages and the problems is simply too large.

CSRL for Classification The AI community needs to
develop languages that are specific to particular ways of or-
ganizing knowledge and problem solving. Such languages
will be powerful when the problems of a domain match the
capabilities of the languages. CSRL is intended to be such
a language for developing classificatory problem solvers.
Although CSRL doesn’t eliminate the need for significant
amounts of knowledge engineering, it does provide con-
structs that encode classificatory knowledge in a variety
of ways-from the hypotheses in the classification tree to
rules that match on the situation being classified.

Because it is not a general programming language,
CSRL should not be viewed as a total solution for de-
veloping expert systems but as one of the building blocks
for constructing any single expert system. For illustration,
we discuss CSRL’s role in some expert systems, as well as
its general role in diagnostic problem solving, looking at
its relationship to other strategies that are diagnostically
useful.

Generic Tasks

CSRL’s theoretical base comes from Chandrasekaran
(1983, 1985), who proposes that expert problem solv-
ing relies on a number of elementary organizational and
information-processing strategies, which are called generic
tasks. Each generic task has a particular kind of concep-
tual organization and a set of problem-solving strategies
which take advantage of that organization. The idea is
to model an expert as several problem-solving structures,
where each structure performs a generic task, and all the
structures cooperate to solve the problems presented to
them.

The word “task” might be misleading here. The defi-
nition of a problem does not directly specify what generic
task is appropriate for it, rather a generic task is a strategy
that can be adopted for organizing domain knowledge for
a specific type of problem solving. More than one generic
task might be appropriate for a problem if the domain
knowledge can be adapted to the requirements of each
generic task.

Classificatory Problem Solving
CSRL is intended to express problem solvers of one generic
task, called classijkation, which is finding the categories
or hypotheses within a classification hierarchy that apply
to the situation being ana1yzed.l CSRL generalizes the
diagnostic problem solving of MDX, an expert system in
the medical domain of cholestasis (the lack of bile flow
from liver to intestine)(Chandrasekaran et al. 1979; Mittal,
1980; Gomez and Chandrasekaran, 1981; Chandrasekaran
and Mittal, 1983).

MDX explicitly organizes and uses knowledge in a way
that applies to classification in general. Recently, Clancey
(1984, 1985) pointed out that a number of AI systems, di-
agnostic and nondiagnostic, can be described as perform-
ing classification. The work on MDX and CSRL lends
more weight to Clancey’s historical observation but pro-
vides a somewhat different framework for analyzing clas-
sificatory problem solving. These differences are discussed
in a later section.

MDX has a number of interesting features that, not
surprisingly, define the design goals of CSRL:

Explicit Classification Hierarchy. Disease hypotheses
are organized as a classification tree in which the children
of a node represent subhypotheses of the parent. Figure 1
illustrates a fragment of the MDX tree.

Cholestasis

Extra-Hepatic tntra-Hepatic
Chotestasis Cholestasis

I /---A
WC due to E!kdue to

Bite Duct. Stone Bile Duct Cancer

Fragment of MIX’s Clas&cation Tree
Figge 3

Local Decision Criteria. The responsibility for cal-
culating the uncertainty of hypotheses and for directing
“attention” to and from hypotheses is distributed over the
nodes. For example, the procedure for calculating the de-
gree of certainty in cholestasis would be located in the
cholestasis node. In addition, the procedure(s) for direct-
ing attention away from cholestasis to related hypothe-
ses would also be located there. For this reason and also
to make an analogy with the organization of the medi-
cal community, these nodes are called specialists. In this

lThis is not to say that all classification is hierarchical but that
classification hierarchies are associated with strategies that do not
apply to other forms of knowledge organization

THE AI MAGAZINE August, 1986 67

metaphor, “directing attention” is realized as transfer of i Fuel System Problems
control between specialists.

/ \

Establish, Refine. Transfer of control is primarily ac-
complished through a type of hypothesis refinement called
establish-refine. Simply put, a specialist that confirms its
hypothesis (the establish part) invokes its subspecialists
(the refine part). A specialist that rules out or rejects
its hypothesis also rules out all of the subhypotheses. At
other levels of certainty, the specialist relies on domain
knowledge and the context of the problem solving to de-
termine what to do next. For systematic search, it is nat-
ural to initially give control to the root specialist. The
MDX specialists also contain suggestion rules that allow
the specialists to perform a data-directed search.

Symbolic Uncertainty Calculation. Calculation of
uncertainty is not done by a numerically based calculus
but by directly encoding the symbolic judgment of domain
experts. We have more to say about this later.

MDX represents a general approach to the classifi-
cation problem by organizing domain knowledge along
t.he classification hierarchy and integrating it with the
establish-refine strategy. In contrast to approaches that
make a strict separation between domain knowledge and
strategic knowledge, the architecture of MDX permits do-
main knowledge to directly influence strategic decisions.
This approach explicitly recognizes the need for domain
knowledge to guide the problem solving as well as the
need for domain knowledge to be adapted to the problem-
solving strategy.

CSRL

J \
Bab Fuel Problems Fuel Mixture Problems

/I \
Low Octane Water in FL;el Dirt In Fuel

Fragment of Auto-Mech’s Classification Tree

Figtxe 2

Encoding of Classification Trees
In CSRL a classification system is implemented by indi-
vidually defining each specialist. The superspecialists and
subspecialists of the specialist are declared within the def-
inition. Figure 3 is a skeleton of a specialist definition for
the bad fuel problems node from Figure 2. The declare
section specifies its relationships to other specialists. The
other sections of the snecialist are examined later.

(Specialist Bzc%eL
(declare (superspecialist FuelSystem)

(sxbspecialists LouOctace biaterInFuel
DirtIxSuel~ >

(kgs . ..I
(messages . . .> >

Skeleton Specialist for BadFuel

F&m? 3

Because CSRL is designed to use only a simple clas-
sification tree, many choices concerning the composition
of the hierarchy must be made. This is a pragmatic de-
cision rather than a search for the “perfect” classification
tree. The main criterion for evaluating a classification is
whether enough evidence is normally available to make
confident decisions. To decompose a specialist into its sub-
specialists, the simplest method is to ask the domain ex-
pert what subhypotheses should be considered next. The
subhypotheses should be subtypes of the specialist’s hy-
pothesis and usually differ from one another based on a
single attribute (for example, location, cause). For further
discussion on the design of classification trees, see Mittal
(1980) and Bylander and Smith (1985).

CSRL is a language for representing the specialists of a
classification hierarchy and the knowledge within them.
Classificatory knowledge is encoded at various levels of
abstraction in addition to the nodes in the hierarchy. Mes-
sage procedures describe a specialist’s behavior in response
to messages from other specialists. These contain the
knowledge about how to establish or refine a specialist.
Knowledge groups arc primarily used for uncertainty han-
dling. Knowledge groups are composed of rule-like knowl-
edge that matches the data against specific patterns and,
when successful, determines the vahre of the knowledge
group. In the following discussion, we use the classifica-
tion tree displayed in Figure 2, which is taken from the
Auto-Mech expert system (Tanner and Bylander, 1985).

Encoding of Local Decision Criteria
The messages section of a specialist contains a list of
message procedures, that specify how the specialist will
respond to different messages from its superspecialist.

2A specialist is not allowed to send messages to its superspecial-
ist However, other message-passing routes are allowed Specifically,
a specialist can send a message to itself, across the hierarchy, and
to indirect subspecialists In the latter case, each interconnecting
specialist is sent a suggest message and decides within its suggest
message procedure whether to pass the original message downward

68 THE AI MAGAZINE August, 1986

Establish-refine (combines establish and refine),
and suggest are predefined messages in CSRL; additional
messages can be defined by the user. Later we exam-
ine how establish and refine proccdurcs are typically con-
structed.

Message procedures are the highest level of abstrac-
tion for classificatory knowledge within specialists. Just as
in general message-passing languages, messages provide a
way to invoke a particular kind of response without having
to know what procedure to invoke and allow the receiver of
the message (the specialist in this case) to call upon local
knowledge to make its decisions. However, the important
thing about message passing in CSRL is not that it’s useful
as a general programming style but that the organization
of problem solving can be modeled by identifying certain
kinds of messages with specific meaning.

Encoding of the Establish-Refine Protocol

The establish message procedure of a specialist determines
the confidence value in the specialist’s hypothesis. Figure 4
illustrates the establish message procedure of the BadFuel
specialist. relevant and summary are names of knowl-
edge groups of BadFuel. self is a keyword that refers to
the name of the specialist. This procedure first tests the
value of the relevant knowledge group. (If this knowledge
group has not already been evaluated, it is automatically
evaluated at this point.) If it is greater than or equal to
0, then BadFuel’s confidence value is set to the value of
the summary knowledge group; if not, it is set to the value
of the relevant knowledge group. In CSRL a confidence
value scale of -3 to +3 is used (integers only). A value
of +2 or $3 indicates that the specialist is established.
In this case, the procedure corresponds to the following
classificatory knowledge:

First perform a preliminary check to make sure
that BadFuel is a relevant hypothesis to hold. If it
is not (the relevant knowledge group is less than
0), then set BadFuel’s confidence value to the de-
gree of relevancy. Otherwise, perform more com-
plicated reasoning (the summary knowledge group
combines the values of other knowledge groups) to
determine BadFuel’s confidence value.

(Estzblish (if (GE relevant 0)
then (SetCo-fidence self sunmary)

else (SetConfidence self relevant>>>

Estabiish Procedure of BadFuel
Figure 4

The refine message procedure determines what sub-
specialists should be invoked and the messages they
are sent. Figure 5 shows a refine procedure which
is a simplified version of the one that BadFuel uses.
subspecialists is a keyword that refers to the subspe-
cialists of the current specialist. The procedure calls each

subspecialist with an establish message.3 If the subspe-
cialist establishes itself (+? tests if the confidence value
is +2 or t-3). Then the subspecialist it is sent a refine
message.

(Refine (for specialist in subspecialists
do (Call specialist with Establish:

(if (+? specialist)
then (Call specialist nitb Refine))))

Example Retie Procedure
Figure 6

CSRL also has a facility for specifying suggestion rules
in specialists. This is done by implementing “suggestion”
knowledge groups, which are elements of the kgs section
of the specialist definition. Figure 6 is a suggestion knowl-
edge group that might be part of the FuelMixture special-
ist (Auto-Mech itself does not use any suggestion rules).
The then part of each rule indicates the specialist(s) that
the rule’s condition suggests. The value of the knowledge
group is the list of specialists that arc associated with the
rules whose conditions are true. The knowledge group cor-
responds to the following knowledge:

A fuel mixture problem should be initially con-
sidered if the car’s problem occurs only when the
engine is hot or cold. Knocking or pinging sounds
suggest that the fuel is had.

1 (Pue~roblemSuggestiocs Suggestion
(if <Cr (Ask-W? “Does the proble?n occur only

Fhen the engine is cold”)
(Ask-YNU? “Does the problea occur only

uhen the engine is hot”))
then FuelXixture)

(if (Ask-m? “DO you hear knocking or pinging
sounds”)

tben BadFuel))

Exarnpic Suggestion Knowledge Group
Figure 6

To use suggestion rules, the default refine procedure
(Figure 5) must be modified. Figure 7 illustrates how
this can be done. The modification is the addition of an-
other loop that invokes the suggested specialists with an
establish message, conditionally followed by a refine
message. The second loop is nearly the same as the de-
fault procedure except that it avoids reinvoking any of the
suggested specialists.

3Fol convenience, many of the CSRL control constructs mimic those
of INTERLISP; however, these constructs ale executed by the CSRL
interpreter, not by LISP. LISP code is allowed within message pro-
cedures, but only within a construct called DoLisp This is intended
to allow interaction with other LISP-implemented systems

THE AI MAGAZINE August, 1986 69

CSRL has a variety of other kinds of statements and
expressions so that more complicated strategies can be im-
plemented. For example, a Reset statement deletes the
confidence value and the knowledge group values of a spe-
cialist. This might be used when additional tests are per-
formed, making it necessary to recalculate the confidence
value. Also, messages can be parameterized, and message
procedures can declare local variables.

(Be.f iae
(for specialist in faelProblemSuggestioxs

do (Call specialist with Establish)
(if (+? specidlist)

then (Call specialist with Refine)))
(for specialist in subspecialists

do (if (Not (Member? specialist
fueJ.F'roblemSugestions))

then (Call specialist with Bs%blish)
(if (+? specidlist)

then (Call specialist vitk Befiae)))))

Refine Procedure that Uses Suggestion Rirles
Figure ?

Encoding of Symbolic Uncertainty
The other knowledge groups in the kgs section are used
to implement uncertainty handling. Each of these CSRL
knowledge groups is intended to correspond to an eviden-
tial abstraction underlying the hypothesis. A knowledge
group can be thought of as a cluster of production rules
that map the values of a list of expressions (boolean and
arithmetic operations on data, values of other knowledge
groups) to some conclusion on a discrete, symbolic scale.

As an example, Figure 8 is the relevant knowledge
group of the BadFuel specialist mentioned earlier. It de-
termines whether the symptoms of the automobile are con-
sistent with bad fuel problems. The expressions query the
user (who is the database for Auto-Mech) about whether
the car is slow to respond, starts hard, has knocking or
pinging sounds, or has the problem when accelerating.
AskYNU? is a LISP function that asks the user for a Y,
N, or U (unknown) answer from the user and translates
the answer into T, F, or U, the values of CSRL’s three-
valued logic. Each set of tests in the with part of the
knowledge group is evaluated until one matches. The value
corresponding to the rule that matches becomes the value
of the knowledge group. For example, the first rule in
the figure tests whether the first expression is true (the ?
means doesn’t matter). If so, then -3 becomes the value
of the knowledge group. Otherwise, subsequent rules are
evaluated.

The value of the knowledge group will be 1 if no rule
matches. This knowledge group encodes the following
matching knowledge:

70 THE AI MAGAZINE August, 1986

If the car is slow to respond or if the car starts
hard, then BadFuel is not relevant in this case.
Otherwise, if there are knocking or pinging sounds
and if the problem occurs while accelerating, then
BadFuel is highly relevant. In all other cases,
BadFuel is only mildly relevant.

1 (relevant Table
(match

(AskYiw? "Is the car slov to respond")
(Askmu? "Does the car start hard")
(And (AskYNU? "Do you hear knocking

or piwing sounds”)
(AskYNu? “Does the problem occur

while accelerating”) >
vith (if T ? ?

then -3
elseif ? T ?

then -3
elseif ? ? T

then 3
else 1)))

relevant Knowledge Group of BadFuel
Figure 8

1

Figure 9 is the summary knowledge group of BadFuel.
Its expressions are the values of the relevant and gas
knowledge groups (the latter queries the user about the
temporal relationship between the onset of the problem
and the date when gas was last bought). In this case,
if the value of the relevant knowledge group is 3 and
the value of the gas knowledge group is greater than or
equal to 0, then the value of the summary knowledge group
(and consequently the confidence value of BadFuel) is 3,
indicating that a bad fuel problem is very likely.

1 (summary Table

~

(match relevant gas
. .

This method of evidence combination allows the cal-
culation of uncertainty to be hierarchically organized. In
this instance, the hierarchy (illustrated in Figure 10) is
very simple. For a more complex evaluation, additional
knowledge groups, hierarchy layers, and pattern combina-
tions can be defined as needed.

the fuel system is to deliver a mixture of fuel and air to the
air cylinders of the engine. It can be divided into major
subsystems (fuel delivery, air intake, carburetor, vacuum

I

w

E?ierarchy of Knowledge Groups

Figue 10

manifold) that correspond to initial hypotheses about fuel
system faults.

Auto-Mech consists of 34 CSRL specialists in a hierar-
chy whose depth varies from four to six levels. Its problem
solving closely follows the establish-refine strategy. Before
this strategy is invoked, Auto-Mech collects some initial

_ data from the user. This includes the major symptom
that the user notices (such as stalling) and the situation

Implementation when this occurs (for example, accelerating and cold en-
The current version of CSRL is implemented in INTERLISP- gine temperature)* Any additional questions are asked
D (Xerox, 1985) and LOOPS (Bobrow and Stefik, 1982; while Auto-Mech’s specialists are running. The diagnosis
Stefik et al. 1983), an object-oriented programming tool. then starts and continues until the user is satisfied that the
Each specialist is implemented as a LOOPS class, which diagnosis is complete. The user must make this decision
is instantiated for each case that is run. The BOOPS class because the data that Auto-Mech uses are very weak at in-
hierarchy is used to specify default message procedures dicating specific problems and, more importantly, because
and shared knowledge groups, making it easy to encode a Auto-Mech is unable to make the repair and determine
default establish-refine strategy and letting the user incre- whether the problem has been fixed.
mentally modify this strategy. A graphic interface displays A major part of Auto-Mech’s development was deter-
the specialist hierarchy and through the use of a mouse al- mining the assumptions that would be made about the
lows the user to easily access, modify, and run any part design of the automobile engine and the data the program
of the hierarchy. (We would like to note that this ver- would be using. Different automobile engine designs have
sion of CSRL is an unsupported public domain program a significant effect on the hypotheses that are considered.
and is available for a nominal cost from Ohio State’s AI A carbureted engine, for example, will have a different set
Laboratory.) of problems than a fuel-injected engine (the former can

Future versions of CSRL will be substantially differ- have a broken carburetor). The data were assumed to
ent in order to integrate it into a more unified framework come from commonly available resources. The variety of
of a language specification for each generic task. Because computer analysis information that is available to mechan-
we recently recognized that CSRL’s uncertainty-handling its today was not considered in order to simplify building
capability corresponds to a separate generic task (called Auto-Mech.
hypothesis matching), CSRL will be split into two lan-
guages, one for classification and the other for hypothesis
matching. The way that classificatory specialists will de-

Red

termine their confidence is to invoke problem solvers which Red is an expert system whose domain is red blood cell
perform hypothesis matching. Languages for other generic antibody identification (Smith et al. 1985). An everyday
tasks are currently being implemented as well as display, problem that a blood bank contends with is the selection
explanation, and debugging facilities that will be uniform of units of blood for transfusion during major surgery. The
across all of these languages. This work is being performed primary difficulty is that antibodies in the patient’s blood
at Ohio State’s AI Laboratory. can attack the foreign blood, rendering the new blood use-

less as well as presenting additional danger to the patient.

Expert Systems that Use CSRL

In this section, we briefly discuss a few expert systems that
use CSRL.

Auto-Mech
Auto-Mech is an expert system that diagnoses fuel prob-
lems in automobile engines (Tanner and Bylander, 1985).
This domain was chosen to demonstrate the viability of
the MDX approach to nonmedical domains as well as to
gain experience and feedback on CSRL.4 The purpose of

4Auto-Mech was developed using an early version of the language.

Thus, identifying the patient’s antibodies and selecting
blood that will not react with them is a critical task for
nearly all red blood transfusions.

The Red expert system is composed of three major
subsystems, one of which is implemented in CSRL. The
non-CSRL subsystems are a database that maintains and
answers questions about reaction records (reactions of the
patient’s blood in selected blood samples under a variety
of conditions) and an overview system which assembles a
composite hypothesis of the antibodies that would best ex-
plain the reaction record (Josephson et al. 1984). CSRL is
used to implement specialists corresponding to each anti-
body that Red knows about (about 30 of the most common

THE AI MAGAZINE August, 1986 71

ones) and to each antibody subtype (different ways that
the antibody can react).

The major function of the specialists is to rule out an-
tibodies and their subtypes whenever possible, thus sim-
plifying the job of the overview subsystem, and to assign
confidence values, informing the overview subsystem of
the plausibility of each antibody. The specialists query
the database for information about the test reactions and
other patient information and also tell the database to
perform certain operations on reaction records.

An interesting feature of Red is how it handles the
problem of interacting hypotheses. It is possible for the
patient’s blood to have practically any number or com-
bination of antibodies, making it very hard for a single
specialist to determine how well it will fit with other spe-
cialists in a composite hypothesis. In Red each specialist is
encoded to assume that it might only partially account for
the data; it doesn’t reduce its confidence value if there is
extra data to account for. The knowledge of how the spe-
cialists can interact is left to the overview subsystem. This
would be problematic if few specialists could rule them-
selves out, but it turns out that it is rare to have more
than a few antibodies that cannot be independently ruled
out. Thus, Red’s CSRL subsystem makes the overview’s
problem solving more manageable because it considerably
reduces the amount of search that would otherwise be nec-
essary.

Real-World Use of CSRL
CSRL is being used to develop two commercial sys-
tems by the Knowledge-Based Systems group at the Bat-
telle Columbus Institute. WELDEX (Mahalingam and
Sharma, 1985) and ROMAD (Mahalingam et nl. 1985)
are diagnostic systems for detecting welding defects and
evaluating machinery, respectively. A brief description of
WELDEX follows.

WELDEX identifies possible defects in a weld from ra-
diographic data on the weld. Industry standards and reg-
ulations require careful inspection of the entire weld and a
very high level of quality control. Thus, for industries that
rely on welding technology, such as the gas pipeline indus-
try, radiographic inspection is a tedious, time-consuming,
and expensive part of their operation.

This problem can be decomposed into two tasks: vi-
sual processing of the radiograph to extract relevant fea-
tures of the weld and mapping these visual features to the
welding defects that give rise to them. WELDEX is in-
tended to perform the second task. The current prototype
consists of 25 CSRL specialists that are organized around
different regions of the weld, taking advantage of the fact
that each class of defects tends to occur in a particular
region. The knowledge groups in these specialists concen-
trate on optical contrast, shape, size, and location of the
radiographic features. A customer version of WELDEX is
currently being developed. Future work is anticipated on

developing a visual-processing system whose output would
be processed by WELDEX, thus automating both parts of
the radiographic inspection problem.

Weaknesses of CSRL

CSRL lacks a good set of classification control primitives
for refine message procedures, relying instead on general
programming constructs. The result is that it is hard to
encode refine procedures in CSRL that combine differ-
ent priorities, such as invoking suggested specialists be-
fore those not suggested, invoking more common special-
ists before more rare specialists, and refining specialists
with higher confidence values before those with lower confi-
dence values. These procedures should also respond to pri-
orities that the supcrspecialist requests. Additional work
is needed to create a set of constructs that more closely
match the kinds of operations that are needed for refine-
ment and for coopcrativc action.

Another problem is the ambiguity of the -3 to +3 con-
fidcnce scale.4 For example, +3 was used to mean near cer-
tainty in MDX, highly relevant to consider in Auto-Mech,
and highly plausible in Red. Future versions of CSRL
will adopt more meaningful symbols for confidence values,
such as certain, likely, plausible, problematic, and
ruled-out.

A major missing piece in CSRL is that there is no
strategy that determines when classification should stop.
Currently, the default procedures simply ask the user if the
current solution is satisfactory. From work on Auto-Mech
and Red, it appears that this decision depends strongly
on the goals of whoever uses the CSRL system. In Auto-
Mech, the classification should stop when a repair is suc-
cessful; in Red it should stop when a “best explanation”
is reached. The work on Red’s overview system is a step
in this direction for diagnostic systems, but there needs
to be more cooperation between the overview subsystem
and CSRL (currently the overview subsystem starts after
the specialists are finished) and a better understanding of
what kinds of interactions can occur between two hypothe-
ses. Progress in this area would also help increase the focus
of the diagnosis; that is, the diagnosis could concentrate
on accounting for the most important manifestation(s).

Issues of Classification

In this section, we further explain our positions on a few
issues that influence the design of CSRL.

The Relationship of Classification to Diagnosis
The work on MDX demonstrated that classification is an
irnportant strategy in medical diagnosis. Because of this,
we speculated that classificatory problem solving was the

4The use of numbers also created the false impression that these
confidence values could be added and subtracted.

72 THE AI MAGAZINE August, 1986

primary component of diagnosis in general, and conse-
quently, what we now call the classificatory task had been
called the diagnostic task. However, we have come to real-
ize that diagnosis is a more complex phenomenon in which
other problem solvers have major roles, and, depending on
the domain, classification can play a minor role.

A useful companion to the classification hierarchy
is a problem solver that performs the generic task of
knowledge-directed data retrieval (Mittal et al. 1984). This
problem solver can be thought of as an intelligent database
that organizes the case description, answers queries from
the classification specialists, and makes simple inferences
from the data. For example, an intelligent database should
be able to infer exposure to anesthetics if the patient has
had major surgery or has been exposed to halothane (a
type of anesthetic). The classificatory specialists are then
relieved from knowing how one datum could be inferred
based on its conceptual relationships to other data.

In some applications, such as diagnosing devices that
are heavily instrumented with sensors (for example, nu-
clear power plants), there is almost a direct match be-
tween data and malfunctions. In these cases, the intelli-
gent database performs the work of interpreting raw data,
and the classificatory problem solving mainly consists of
simply associating the processed data with hypotheses.

Another important part of diagnosis is accounting for
abnormal findings and producing composite hypotheses
when one malfunction cannot account for all of them. Al-
though these capabilities have not been needed in some
systems (such as MDX and MYCIN), they appear to be
necessary in other systems and domains (for example,
INTERNIST-I whose domain is internal medicine [Pople,
19771 and ABEL whose domain is acid-base disorders
[Patil et al. 19811). Josephson et al. (1984) have pro-
posed a generic task called hypothesis assembly to perform
these actions in coordination with a classificatory prob-
lem solver. Roughly, the classifier generates plausible hy-
potheses and determines the data they can account for.
The hypothesis assembler builds and critiques composite
hypotheses, taking into account interactions between hy-
potheses. The Red system discussed earlier implements
this combination of problem solvers.

There are several other issues relevant to diagnostic
problem solving that need to be considered, such as test
ordering, causal explanation of findings, and therapeutic
action. Fully resolving all of these issues and integrating
their solutions into this diagnostic framework are problems
for future research.

Tangled Hierarchies
CSRL, as previously noted, does not allow the represen-
tation of tangled hierarchies (hierarchies in which some
nodes have more than one parent) and, consequently, is
restricted to representing classification trees. Although
tangled hierarchies are completely general, trees represent

a simpler and cleaner solution for classification. In our ex-
perience, tangled hierarchies can often be untangled by a
judicious mix of eliminating nodes that provide little clas-
sificatory power and carefully analyzing the domain.

For example, consider the tangled hierarchy in Figure
11. Although infection and viral infection are concepts
that physicians use, they are not very useful for classifica-
tory problem solving because there is little evidence that
distinguishes infections and viral infections from other pos-
sibilities. Also, one might make hepatitis (liver inflamma-
tion) a subspecialist of cholestasis because hepatitis often
causes cholestasis. However, hepatitis is not a subtype
of cholestasis, and, furthermore, hepatitis often does not
cause cholestasis; thus hepatitis should not be ruled out if
cholestasis is ruled out. Figure 12 illustrates an untangled
version of this hierarchy. The infection nodes are elimi-
nated because of their weaknesses. A new node, “cholesta-
sis caused by hepatitis,” is added to distinguish this cause
of cholestasis from other causes. This new node is one kind
of composite hypothesis that can be embedded in a clas-
sificatory structure. The problem-solving issues of how
this hypothesis can take advantage of decisions concern-
ing the hepatitis hypothesis are discussed in Gomez and
Chandrasekaran (1981).

I

I infection Liver Disease

\
Vira4 lnfectisn

\

\
Viral

Hepaiitis

/
/

Hepatitis

A Tangled Hierarchy
Figure 11

Another advantage of trees over tangled hierarchies is
that the knowledge of a specialist can be biased to the con-
text of its superspecialist. Because of the establish-refine
strategy, the specialist’s knowledge can assume that the
superspecialist has been established. This simplifies the
amount of knowledge that needs to be encoded because
decisions can be made in a single context, eliminating the
caveats needed to encode other contexts. Also, the spe-
cialist can take advantage of knowledge that distinguishes

THE AI MAGAZINE August, 1986 73

Liver Disease

A
Hectatitis Cholestasis

/ \
Viral Hepatitis Chdiestasis

cacsed by Hepatitis

Figure 11 Untar@d

Figure 12

the specialist from its siblings. However, there is a danger
involved-if the superspecialist produces overconfident de-
cisions, the biasing of knowledge can cause the specialist
to also be overconfident.

This should not be taken as an argument that tangled
hierarchies are never necessary but that they can often be
simplified without loss of problem-solving power. There is
a need to discover and investigate those situations in which
the complexities of tangled hierarchies pay off in increased
problem-solving ability.

Uncertainty in Classification

Uncertainty handling in CSRL is an outgrowth of the tech-
nique used in MDX (Chandrasekaran et al. 1982). This
technique is based on a number of assumptions:

Uncertainty is not a unitary phenomenon. Much of
the debate within AI treats uncertainty as if it were a sin-
gle phenomenon. However, a clear distinction needs to be
made between uncertainty as degree of chance versus un-
certainty as degree of fit. Rather than assessing the proba-
bilities of hypotheses, the method of uncertainty handling
incorporated within CSRL measures the qualitative de-
gree of fit between hypotheses and data. It is interesting
to note that this viewpoint has recently been supported by
Cohen et al. (1985), who cogently argue that degree of fit
(called representativeness in their paper) is an appropriate
measure of uncertainty in classification.

Uncertainty introduced by the problem solver should be
kept to a minimum. In AI uncertainty-handling techniques
can introduce uncertainty by making assumptions that are
not true of the domain and by requiring knowledge that
cannot be obtained, forcing implementors to make guesses.
In the case of expert systems, it is important that the
expert’s reasoning is accurately modeled.

Symbolic uncertainties should be used for expert sys-
tem reasoning. This and the previous paragraph seem to
be contradictory because symbolic uncertainties appear to
introduce uncertainty from the start. However, we need

to remember that these judgments are coming from pea-
ple, who simply don’t have specific fractions in their heads.
Typically, knowledge engineers translate the expert’s sym-
bolic judgments into some numeric uncertainty calculus,
assume that the methods of inference combination will
correspond to the expert’s reasoning, and then translate
the numbers back into the symbolic scale. Each of these
steps introduces uncertainty because they move from the
expert’s reasoning methods to an artificial system that the
expert doesn’t use. It would make more sense to use the
expert’s judgment not only for the “single” inferences, but
for the combination of inferences as well.

Our methodology, which we call hypothesis matching,
allows for a hierarchical evidence structure in which the ex-
pert provides symbolic judgments on combinations of data
as well as on how these judgments should be combined to
determine the confidence in the hypothesis. The following
scenario illustrates how the hierarchical organization can
be naturally formed from the data.

Suppose that we want to measure the evidence for a
particular bacterial infection called X. It is likely that a
large amount of data is potentially useful as evidence for
or against X. It would be a combinatorial nightmare to
match all combinations of data to a judgment on X’s pres-
ence. However, these data are not evidentially unrelated
to one another, but subsets of them are evidence about
particular parts of the infection process. One thing we
probably want to know is whether the patient has been
exposed to the bacteria that causes X. Usually, exposure
to bacteria is not a datum given to the system; instead,
there are several data that give indications about expo-
sure. For example, open wounds, places the patient has
been, what the patient has been eating or drinking, and
other activities of the patient are all factors that need to
be taken into account. Now we can ask the expert how
these data are evidence for exposure to X bacteria. The
left half of Figure 13 illustrates this part of the evidence
combination. For other data, we ask how they relate to
susceptibility, incubation, various effects of the infection,
and so forth. After a judgment is made on each of these
features of X, we can then ask how combinations of these
abstractions (at various levels of uncertainty) relate to X
itself. This is illustrated in the right half of Figure 13.

As this scenario indicates, the methodology of hypoth-
esis matching is very simple-data are combined into judg-
ments on evidential abstractions underlying the hypoth-
esis, and these judgments are combined, using as many
levels as needed, into a judgment on the hypothesis itself.
Here are some other points to keep in mind:

l Because any number of levels of abstractions is per-
mitted, a large body of evidence can be decomposed and
combined in a combinatorially manageable fashion.

l These abstractions are not arbitrarily chosen but
come from the expert’s understanding of the hypothesis.

l Because the expert is providing symbolic judgments

74 THE AI MAGAZINE August, 1986

open wounds
\

ha
places visited * exposure

food &drink

AjB= A is evidence to consider when Waluating 6

Combination of Evidence for Infection

Figure 13

at each level of abstraction, there is no need for an uncer-
tainty calculus, and there is no reason to translate into
and out of a continuous probability system.

It turns out that hypothesis matching is useful for
more than classification. Both MDX’s database (Mittal,
1980; Mittal et al. 1984) and AIR-CYL (Brown and Chan-
drasekaran, 1984), a design expert system, used forms of
hypothesis matching to map from situations to decisions.
Based on these examples and some further analysis, hy-
pothesis matching is now considered to be a generic task.

This method of evidence combination closely matches
the signature table strategy used by Samuel’s checker-
playing program (Samuel, 1967). Just as Samuel used lay-
ers of signature tables to reduce the complexity of decision
making in his program, the layers of evidential abstraction
eliminate the need to provide one rule for each combination
of data and also make the decision making comprehensi-
ble to both the knowledge engineer and the domain expert
(Chandrasekaran, 1985).

Hypothesis matching allows a simple but powerful de-
bugging technique (see Sticklen et al. [1985b] for more ex-
planation and for another application of hypothesis match-
ing). If the expert system determines the wrong level of
uncertainty for a hypothesis, the bug can be traced to the
abstractions that produced incorrect answers, which can
then be appropriately modified.5 After many debugging
sessions, the system becomes tuned to the domain within
the conceptual framework of the domain expert.

5This can be as simple as adding another “rule” to the abstraction
or as difficult as completely reorganizing the abstractions

To make our position clear, we do not mean to ad-
vocate hypothesis matching for every classification sys-
tem. Bayesian probabilities, for instance, should be used if
quantitative data on probabilities are available and if the
assumptions apply. However, when the idealized condi-
tions of uncertainty calculi are not applicable, which they
often aren’t for expert systems, they become knowledge en-
gineering obstacles instead of knowledge engineering tools.
It makes much more sense to use the expert’s judgments
and conceptual structures whenever possible and to test
and refine them by using real cases.

Comparison to Heuristic Classification
Clancey (1984, 1985) has proposed a description of classifi-
cation, called “heuristic classification,” that is “an attempt
to specify what many heuristic programs known as ‘expert
systems do.” Heuristic classification has three parts:

Data Abstraction: This relation maps observations
into data classes or characterizations based on categori-
cal inferences. Clancey gives the examples of inferring low
white blood count from a specific white blood count and
immunosuppression from the low white blood count (low
white blood count is a form of immunosuppression).

Heuristic Match: This relation maps data or data
abstractions to hypotheses in the classification hierarchy.
This mapping is based on heuristic, but not certain, knowl-
edge.

Refinement: This relation indicates what hypotheses
are subhypotheses of other hypotheses.

The processes of heuristic classification then use these
relations to find a solution in the hierarchy.

We agree with Clancey that heuristic classification
characterizes the problem solving of a considerable num-
ber of AI programs and that it is a useful strategy to solve
many problems. However, from our perspective, heuris-
tic classification corresponds to a combination of generic
tasks rather than being a primitive strategy. This point
has practical consequences. Instead of developing a sin-
gle “knowledge engineering tool designed specifically to
perform heuristic classification,” our approach leads us to
develop separate tools for each generic task and to provide
mechanisms that not only allow heuristic classification to
be constructed out of several problem solvers but also al-
low those generic tasks to be used in other ways.

Clancey’s data abstraction relation, for example, cor-
responds to the capability of the intelligent database
described previously. This capability, however, is not
just useful for classification but for other problem-solving
methods as well. We can imagine a designer, that is, an
agent who constructs a design plan from specifications,
needing to know if some material is metallic or if the tem-
perature of the operating environment will be below freez-
ing. Because simple data inference is a useful function for
many tasks, and because it requires knowledge organiza-
tion and problem-solving strategies different from classifi-

THE AI MAGAZINE August, 1986 75

cation, it is natural to think of it as a separate reasoning general explanation facilities that can take advantage of
strategy. the organization.

This separation is more clearly seen in programs that
do classification but not data abstraction. For example,
the DART diagnostic program (Genesereth, 1984) uses
classification to find circuit faults, but instead of using
data abstraction it generates tests to confirm or reject
faults. Although DART’s problem solving does not fit
into the heuristic classification mold, it can be analyzed
as a combination of classification problem solving and test
generation based on functional knowledge.

We believe that CSRL provides a good match to a siz-
able portion of human expertise. Whenever the solution
set of a problem (or subproblem) can be characterized by a
classification tree and whenever an expert can provide the
judgments that map data to confidence in classificatory
hypotheses and the evidential abstractions that underlie
them, the classification tree and the judgments can be di-
rectly represented in CSRL.

The heuristic match relation in heuristic classification
is intended to account for two types of behavior: sug-
gesting hypotheses and confirming or rejecting hypothe-
ses. Our approach accounts for the first type by embed-
ding suggestion rules in individual specialists. This has the
advantage of tailoring suggestion knowledge to the classi-
ficatory context. Also, the suggestion rules can operate on
patterns of data rather than on just a single datum or data
abstraction. The apparent disadvantage of efficiency by
not executing the rules when the data are entered can be
allayed by implementing the suggestion rules as demons.
Confirming and rejecting hypotheses within CSRL is done
by hypothesis matching, a generic task that we have al-
ready covered in some detail.

Finally, we wish to emphasize that classification is use-
ful for more than selecting a single solution from a hierar-
chy. We have already mentioned one architecture in which
classification and hypothesis assembly can be integrated
to produce composite hypotheses. Even without hypothe-
sis assembly, some forms of hypotheses interaction can be
reasoned about by a classification problem solver (Sticklen
et al. 1985a).

From the perspective of the generic task framework,
CSRL handles only two (classification and hypothesis
matching) of the many types of problem solving that ex-
perts use. Besides improving CSRL, special-purpose lan-
guages need to be developed for the other generic tasks
that have been identified, and these languages need to
be integrated for cooperative problem solving. Currently,
languages for knowledge-directed data retrieval (IDABLE
[Intelligent DAta Base LanguagEI) and another generic
task called “plan selection and refinement” (PSRL [Plan
Selection and Refinement Language]) (Brown and Chan-
drasekaran, 1984) have been implemented. In addition, a
language for hypothesis assembly is also being developed.
This family of languages should be a powerful tool because
it will allow implementors to encode different types of
problem-solving knowledge, such as that used for diagno-
sis, in the appropriate form and to integrate the resulting
problem solvers into complex knowledge-based systems.
For example, note that CSRL together with IDABLE will
provide the function of Clancey’s heuristic classification
while making IDABLE’s function available for other situ-
ations where a data abstraction capability is called for.

Conclusion

How does CSRL meet the needs that we listed in the intro-
duction? Currently, CSRL makes some small steps toward
constraining the meaning of symbols. Because ruling out
a specialist results in ruling out its subspecialists, CSRL’s
classification tree is more than a simple way to associate
hypotheses with one another. The children of a hypothesis
must be subhypotheses. The current CSRL implementa-
tion does not enforce the meaning of its messages, but
given a better analysis of the operations that are needed
for each type of message, a message procedure could be
appropriately restricted.

CSRL makes the organization of classificatory problem
solvers explicit by providing appropriate abstractions for
classificatory knowledge: specialists, message procedures,
knowledge groups, and rules. The expert system imple-
mentor is then relieved from the burden of implementing
one level of organization in a language at a different level
and is free to concentrate on the conceptual structure of
the domain. Also, there is a greater potential to embed

References

Bobrow, D., & M. Stefik. 1982. The LOOPS Manual. Tech. Rep
KB-VLSI-81-13, Palo Alto, California: Xerox Palo Alto Research
Center

Brachman, R J., & J. G. Schmolze 1985 “An Overview of the
KL-ONE Knowledge Representation System ” Cognitive Science
g(2): 171-216

Brown, D. C , & B Chandrasekaran 1984. “Expert Systems for
a Class of Mechanical Design Activity” In Proceedings of the
IFIP WG5 2 Worlcing Conference on Knowledge Engineering in
Computer Aided Design, Budapest, Hungary New York: IEEE
Computer Society

Bylander, T., & J W. Smith. 1985. “Mapping Medical Knowledge
into Conceptual Structures ” In Proceedings of Expert System in
Government Symposium, McLean, Virginia. New York: IEEE
Computer Society, 503-511

Chandrasekaran, B 1983 “Towards a Taxonomy of Problem Solving
Types ” AI Magazine 4(l): 9-17

Chandrasekaran, B 1985. “Generic Tasks in Knowledge-Based Rea-
soning: Characterizing and Designing Expert Systems at the
‘Right’ Level of Abstraction” In Proceedings of the Second
Conference on Artijkial Intelligence Applications, Miami Beach,
Florida. New York: IEEE Computer Society, 294-300.

Chandrasekaran, B. 1986 “From Numbers to Symbols to Knowl-
edge Structures: Pattern Recognition and Artificial Intelligence
Perspectives on the Classification Task.” In Pattern Recognition
in Practice-II. Amsterdam: North-Holland

76 THE AI MAGAZINE August, 1986

Chandrasekaran, B., F Gomez, S Mittal, &J. W. Smith 1979 “An
Approach to Medical Diagnosis Based on Conceptual Structures.”
In IJCAI-6. Los Altos, California: William Kaufmann, Inc , 134-
142.

Chandrasekaran, B., & S Mittal 1983 “Conceptual Representation
of Medical Knowledge for Diagnosis by Computer: MDX and
Related Systems ” In M Yovits ed , Advances in Computers.
New York: Academic Press, 217-293.

Chandrasekaran, B , S. Mittal, & J W. Smith 1982 “Reasoning
with Uncertain Knowledge: The MDX Approach.” In Proceed-
ings of the Congress of American Medical Informatics Associa-
tion, AMIA, San Francisco, 335-339.

Clancey, W J 1981. “NEOMYCIN: Reconfiguring a Rule-Based
Expert System for Application to Teaching” In IJCAI-7 Los
Altos, California: William Kaufmann, Inc.,, 829-836

Clancey, W J 1984 “Classification Problem Solving.” In AAAI-
84. Menlo Park, California: American Association for Artificial
Intelligence, 49-55.

Clancey, W J 1985 “Heuristic Classification.” Artificial Intelli-
gence 27(3): 289-350

Cohen, P., A. Davis, D. Day, M. Greenburg, R Kjeldsen, S Lander,
& C. Loiselle 1986 “Representativeness and Uncertainty in
Classification Systems.” AI Magazine 6(3): 136-149.

Forgy, C. L. 1981. OPS5 Users Manual. Tech Rep CMU-CS-81-
135. Pittsburgh, Pennsylvania: Carnegie-Mellon University.

Genesereth, M R 1984 “The Use of Design Descriptions in Auto-
mated Diagnosis.” Artificial Intelligence 24: 411-436

Gomez, F., & B. Chandlasekaran. 1981 “Knowledge Organization
and Distribution for Medical Diagnosis ” In IEEE Trans. Sys-
tems, Man and Cybernetics SMC-11(l): 34-42

Gordon, J., & E. H. Shortliffe. 1985 “A Method for Managing Evi-
dential Reasoning in a Hierarchical Hypothesis Space ” Artificial
Intelligence 26(3): 323-357.

Hayes-Roth, B. 1985 “A Blackboard Architecture fot Control ” Ar-
tificial Intelligence 26(3): 251-321

Josephson, J R , B Chandrasekaran, & J. W. Smith. 1984. “AS-
sembling the Best Explanation ” In Proceedings of the IEEE
Workshop on Principles of Knowledge-Based Systems, Denver,
Colorado. New York: IEEE Computer Society, 185-190

Mahalingam, S , & D D. Sharma 1985 “WELDEX-An Expert
System for Nondestructive Testing of Welds ” In Proceedings
of the Second Conference on Artificial Intelligence Applications,
Miami Beach, Florida. New York: IEEE Computer Society, 572-
576

Mahalingam, S., D D Sharma, B. Ellis, & B Morrow 1985 “RO-
MAD: An Expert System for Vibration Analysis ” In Proceedings
of the Control West Conference, Long Beach

McDermott, J 1982 “Rl: A Rule-based Configurer of Computer
Systems ” Art$cial Intelligence 19(l): 39-88.

Mittal, S , B Chandrasekaran, & J. Sticklen. 1984. “PATREC: A
Knowledge-Directed Database for a Diagnostic Expert System ”
Computer 17(g): 51-58

Mittal, S 1980 “Design of a Distributed Medical Diagnosis and
Database System.” Ph D. diss , Department of Computer and
Information Science, The Ohio State University

Patil, R. S., P. Szolovits, & W. B Schwartz 1981 “Causal Under-
standing of Patient Illness in Medical Diagnosis ” In IJCAI-7
Los Altos, California: William Kaufmann, Inc., 893-899

Pople, H 1977. “The Formation of Composite Hypotheses in Diag-
nostic Problem Solving: An Exercise in Synthetic Reasoning ” In
IJCAI-5. Los Altos, California, William Kaufmann, Inc , 1030-
1037.

Samuel, A. 1967. “Some Studies in Machine Learning Using the
Game of Checkers ” IBM Journal of Research and Development
ll(6): 601-617.

Smith, J. W., J R. Svirbely, C. A Evans, P Straum, J R Josephson,
& M C Tanner 1985 “Red: A Red-Cell Antibody Identification

Expert Module ” Journal of Medical Systems g(3): 121-138
Stefik, M , D G Bobrow, S Mittal, & L Conway 1983 “Knowledge

Programming in LOOPS.” AI Magazine 4(3): 3-13

Sticklen, J , B Chandrasekaran, & J. Josephson 1985 “Control
Issues in Classificatory Diagnosis ” In IJCAI-9. Los Altos, Cali-
fornia: William Kaufmann, Inc , 300-306

Sticklen, J , B Chandlasekaran, & J W Smith. 1985. “MDX-
MYCIN: The MDX Paradigm Applied to the MYCIN Domain.”
Computers and Mathematics with Applications ll(5): 527-539.

Tanner, M. C., & T. Bylander 1985 “Application of the CSRL
Language to the Design of Expert Diagnosis Systems: The Auto-
Mech Experience.” In J. Richardson ed , Artificial Intelligence
in Maintenance, Park Ridge, New Jersey: Noyes, 149-169.

Weiss, S M , & C A Kulikowski. 1984. A Practical Guide to
Designing Expert Systems Totowa, New Jersey: Rowman and
Allanheld

Xerox 1983 Interlisp Reference Manual Pasadena, California: Xe-
rox Artificial Intelligence Group.

I Love My Work. . .
My name is Esther Dyson My lie is Release 1.0, the newsletter I’ve bxn writing since
1982 I spend my weekdays attending meetings, wing PIG&C& and talking to industly
players, an<i my weekend5 sorting it all out I examine the computer indusby and its most
exciting aspect-artificial intelligence

Some people call AI a myth; others say it’s a highly lucmtlve market Either way, it’s
gew%ing a profusion of facls, press relea%a, prcduct announcements, conferences, de-
velopment tools, applications “f dubious value, hrwhunx. learned p+ers, periodical.+~~
wealth of dudant, questionable, cantextless, unordered information You could dedicate
y”ur life to figuring out what’s going on I have

‘lix end result is Release 1.0. Readers tell me it’s the m”st amusing, insightful,
broad-visioned publicahon in commecial AI today Release 1.0 dwxn’t reprint press
reltzwz It doesn’t cover every product announcement (What can you ~dy abut the 37th
PC-based tlhnuaru-like tool’!) It U~C”VC~S the meaning of what’s mewingful and Ignorer the
rest

In recent issues of Release 1.0 you could have Ead about Composition Syhtem’s expelt
publishing system, the psitioning of Symbolic? new applications engine, Doug Lenat’s
ambitious CYC project at MCC in Austin, and why Loh~s’s HAIL is different from (and mostly
tmer than) any other seallled ““Z,tUEd-bJlbUi~C interface ”

I love what I do; you’re probably too busy to have a much fun So let me do your &work
and your gaItMgedetection for you while you mn your business or do your research
For atria1 copy, call SylviaFranklin at (212) 758.3434, orsubscribeby sending thecoupon If
you don’t love my work (almost) as much as I do, I’ll glildly refund you money

P S I welcome questions or suggestions of what I might want to write about--pEss releases
discoumged!

Subscription Form/Trial Issue Request
0 Plea% enter my subscription for a year of Release 1.0. Enclo%l i.\ $395 ($475 “V~IXXLS)

0 Pleaw send B trial issue

NFillle Title ~

company Phone

Ad&L%

City State Zip

Send to: Sylvia Franklin
Edventure Holdings
375 park Avenue
New Yak, NY 10152
Phone (212) 7x-3434

Pleuse make check puvuble to Release 1.0

THE AI MAGAZINE August, 1986 77

