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CRSL: A Language for Classificatory Problem Solving 
and Uncertainty Handling 

The ability to map the state of an object into a category languages is transforming AI theories into symbolic struc- 
in a classification hierarchy has long been an important tures. This pattern can be seen in knowledge representa- 
part of many fields, for example, biology and medicine. tion (for example, semantic nets and KL-ONE [Brachman 
Recently, AI research has focused increasing attention on and Schmolze, 19851) and in knowledge-based program- 
classification (Gomez & Chandrasekaran, 1981; Weiss & ming (for example, knowledge sources and OPM [Hayes- 
Kulikowski, 1984; Clancey, 1985; Cohen et al. 1985; and Roth, 19851). 
Gordon and Shortliffe, 1985), and has been especially con- 
cerned with applying classification to diagnostic problems. 
One of the problems in classification is that the relation- 
ship between observable evidence and categories is often 
ambiguous. A piece of evidence can be associated with 
several categories or can occur with a category in an irreg- 
ular fashion. As a consequence, uncertainty handling is an 
important facet of classificatory problem solving. In this 
article, we present and explain a programming language 
called CSRL, which is intended to facilitate the construc- 
tion of knowledge-based systems that combine classifica- 
tory reasoning with uncertainty handling. 

Motivations. Why develop “yet another language”? 
Our desire to transform a particular theory into a language 
is motivated by the following needs: 

Although nearly all programming languages are ade- 
quate at the symbol level (being equivalent to Turing ma- 
chines), the interpretation of their symbols is relatively un- 
constrained. Although the constructs of these languages 
can be used to enforce internal consistency of symbols and 
symbol structures, there is little restriction on the exter- 
nal meanings of symbols. The differences between the lan- 
guage and the real world must be covered by software en- 
gineering and programming ability. 

The Need for Special Languages 
Languages developed within computer science often em- 
body theories and assumptions about how programs and 
data should be organized. AI theories, however, are not 
concerned with programs and data per se, but with the or- 
ganization of knowledge and its use. The problem for AI 
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Many AI languages do not provide constructs that 
make the organization of the problem solving explicit. For 
example, Rl (McDermott, 1982), which is implemented in 
OPS5 (Forgy, 1981), performs a sequence of design sub- 
tasks, each of which is implemented as a set of production 
rules. However, OPS5 has no organizing construct larger 
than a single rule, so the grouping of rules and the se- 
quencing from one set of rules to another are achieved by 

Abstract 
In this article, we present a programming language for express- 
ing classificatory problem solvers. CSRL (Conceptual Struc- 
tures Representation Language) provides structures for repre- 
senting classification trees, for navigating within those trees, 
and for encoding uncertainty judgments about the presence 
of hypotheses. We discuss the motivations, theory, and as- 
sumptions that underlie CSRL. Also, some expert systems con- 
structed with CSRL are briefly described. 
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programming techniques. The point is not that it was 
difficult or unnatural to use OPS5 for Rl, but that Rl’s 
method of design problem solving and OPSS’s production- 
rule mechanism are at different levels of organization and 
problem solving. If the explanation of Rl’s problem solv- 
ing were to be automated, knowledge about OPS5 would 
not be enough. Clancey (1981) noted a similar problem 
with MYCIN and its rules when he developed a program 
for explaining MYCIN’s knowledge. 

Both the generality and the mismatch of organization 
make it difficult to judge the sorts of problems that these 
languages can naturally solve. The gap between the lan- 
guages and the problems is simply too large. 

CSRL for Classification The AI community needs to 
develop languages that are specific to particular ways of or- 
ganizing knowledge and problem solving. Such languages 
will be powerful when the problems of a domain match the 
capabilities of the languages. CSRL is intended to be such 
a language for developing classificatory problem solvers. 
Although CSRL doesn’t eliminate the need for significant 
amounts of knowledge engineering, it does provide con- 
structs that encode classificatory knowledge in a variety 
of ways-from the hypotheses in the classification tree to 
rules that match on the situation being classified. 

Because it is not a general programming language, 
CSRL should not be viewed as a total solution for de- 
veloping expert systems but as one of the building blocks 
for constructing any single expert system. For illustration, 
we discuss CSRL’s role in some expert systems, as well as 
its general role in diagnostic problem solving, looking at 
its relationship to other strategies that are diagnostically 
useful. 

Generic Tasks 

CSRL’s theoretical base comes from Chandrasekaran 
(1983, 1985), who proposes that expert problem solv- 
ing relies on a number of elementary organizational and 
information-processing strategies, which are called generic 
tasks. Each generic task has a particular kind of concep- 
tual organization and a set of problem-solving strategies 
which take advantage of that organization. The idea is 
to model an expert as several problem-solving structures, 
where each structure performs a generic task, and all the 
structures cooperate to solve the problems presented to 
them. 

The word “task” might be misleading here. The defi- 
nition of a problem does not directly specify what generic 
task is appropriate for it, rather a generic task is a strategy 
that can be adopted for organizing domain knowledge for 
a specific type of problem solving. More than one generic 
task might be appropriate for a problem if the domain 
knowledge can be adapted to the requirements of each 
generic task. 

Classificatory Problem Solving 
CSRL is intended to express problem solvers of one generic 
task, called classijkation, which is finding the categories 
or hypotheses within a classification hierarchy that apply 
to the situation being ana1yzed.l CSRL generalizes the 
diagnostic problem solving of MDX, an expert system in 
the medical domain of cholestasis (the lack of bile flow 
from liver to intestine)(Chandrasekaran et al. 1979; Mittal, 
1980; Gomez and Chandrasekaran, 1981; Chandrasekaran 
and Mittal, 1983). 

MDX explicitly organizes and uses knowledge in a way 
that applies to classification in general. Recently, Clancey 
(1984, 1985) pointed out that a number of AI systems, di- 
agnostic and nondiagnostic, can be described as perform- 
ing classification. The work on MDX and CSRL lends 
more weight to Clancey’s historical observation but pro- 
vides a somewhat different framework for analyzing clas- 
sificatory problem solving. These differences are discussed 
in a later section. 

MDX has a number of interesting features that, not 
surprisingly, define the design goals of CSRL: 

Explicit Classification Hierarchy. Disease hypotheses 
are organized as a classification tree in which the children 
of a node represent subhypotheses of the parent. Figure 1 
illustrates a fragment of the MDX tree. 

Cholestasis 

Extra-Hepatic tntra-Hepatic 
Chotestasis Cholestasis 

I /---A 
WC due to E!kdue to 

Bite Duct. Stone Bile Duct Cancer 

Fragment of MIX’s Clas&cation Tree 
Figge 3 

Local Decision Criteria. The responsibility for cal- 
culating the uncertainty of hypotheses and for directing 
“attention” to and from hypotheses is distributed over the 
nodes. For example, the procedure for calculating the de- 
gree of certainty in cholestasis would be located in the 
cholestasis node. In addition, the procedure(s) for direct- 
ing attention away from cholestasis to related hypothe- 
ses would also be located there. For this reason and also 
to make an analogy with the organization of the medi- 
cal community, these nodes are called specialists. In this 

lThis is not to say that all classification is hierarchical but that 
classification hierarchies are associated with strategies that do not 
apply to other forms of knowledge organization 
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metaphor, “directing attention” is realized as transfer of i Fuel System Problems 
control between specialists. 

/ \ 

Establish, Refine. Transfer of control is primarily ac- 
complished through a type of hypothesis refinement called 
establish-refine. Simply put, a specialist that confirms its 
hypothesis (the establish part) invokes its subspecialists 
(the refine part). A specialist that rules out or rejects 
its hypothesis also rules out all of the subhypotheses. At 
other levels of certainty, the specialist relies on domain 
knowledge and the context of the problem solving to de- 
termine what to do next. For systematic search, it is nat- 
ural to initially give control to the root specialist. The 
MDX specialists also contain suggestion rules that allow 
the specialists to perform a data-directed search. 

Symbolic Uncertainty Calculation. Calculation of 
uncertainty is not done by a numerically based calculus 
but by directly encoding the symbolic judgment of domain 
experts. We have more to say about this later. 

MDX represents a general approach to the classifi- 
cation problem by organizing domain knowledge along 
t.he classification hierarchy and integrating it with the 
establish-refine strategy. In contrast to approaches that 
make a strict separation between domain knowledge and 
strategic knowledge, the architecture of MDX permits do- 
main knowledge to directly influence strategic decisions. 
This approach explicitly recognizes the need for domain 
knowledge to guide the problem solving as well as the 
need for domain knowledge to be adapted to the problem- 
solving strategy. 

CSRL 

J \ 
Bab Fuel Problems Fuel Mixture Problems 

/I \ 
Low Octane Water in FL;el Dirt In Fuel 

Fragment of Auto-Mech’s Classification Tree 

Figtxe 2 

Encoding of Classification Trees 
In CSRL a classification system is implemented by indi- 
vidually defining each specialist. The superspecialists and 
subspecialists of the specialist are declared within the def- 
inition. Figure 3 is a skeleton of a specialist definition for 
the bad fuel problems node from Figure 2. The declare 
section specifies its relationships to other specialists. The 
other sections of the snecialist are examined later. 

(Specialist Bzc%eL 
(declare (superspecialist FuelSystem) 

(sxbspecialists LouOctace biaterInFuel 
DirtIxSuel~ > 

(kgs . ..I 
(messages . . .> > 

Skeleton Specialist for BadFuel 

F&m? 3 

Because CSRL is designed to use only a simple clas- 
sification tree, many choices concerning the composition 
of the hierarchy must be made. This is a pragmatic de- 
cision rather than a search for the “perfect” classification 
tree. The main criterion for evaluating a classification is 
whether enough evidence is normally available to make 
confident decisions. To decompose a specialist into its sub- 
specialists, the simplest method is to ask the domain ex- 
pert what subhypotheses should be considered next. The 
subhypotheses should be subtypes of the specialist’s hy- 
pothesis and usually differ from one another based on a 
single attribute (for example, location, cause). For further 
discussion on the design of classification trees, see Mittal 
(1980) and Bylander and Smith (1985). 

CSRL is a language for representing the specialists of a 
classification hierarchy and the knowledge within them. 
Classificatory knowledge is encoded at various levels of 
abstraction in addition to the nodes in the hierarchy. Mes- 
sage procedures describe a specialist’s behavior in response 
to messages from other specialists. These contain the 
knowledge about how to establish or refine a specialist. 
Knowledge groups arc primarily used for uncertainty han- 
dling. Knowledge groups are composed of rule-like knowl- 
edge that matches the data against specific patterns and, 
when successful, determines the vahre of the knowledge 
group. In the following discussion, we use the classifica- 
tion tree displayed in Figure 2, which is taken from the 
Auto-Mech expert system (Tanner and Bylander, 1985). 

Encoding of Local Decision Criteria 
The messages section of a specialist contains a list of 
message procedures, that specify how the specialist will 
respond to different messages from its superspecialist. 

2A specialist is not allowed to send messages to its superspecial- 
ist However, other message-passing routes are allowed Specifically, 
a specialist can send a message to itself, across the hierarchy, and 
to indirect subspecialists In the latter case, each interconnecting 
specialist is sent a suggest message and decides within its suggest 
message procedure whether to pass the original message downward 
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Establish-refine (combines establish and refine), 
and suggest are predefined messages in CSRL; additional 
messages can be defined by the user. Later we exam- 
ine how establish and refine proccdurcs are typically con- 
structed. 

Message procedures are the highest level of abstrac- 
tion for classificatory knowledge within specialists. Just as 
in general message-passing languages, messages provide a 
way to invoke a particular kind of response without having 
to know what procedure to invoke and allow the receiver of 
the message (the specialist in this case) to call upon local 
knowledge to make its decisions. However, the important 
thing about message passing in CSRL is not that it’s useful 
as a general programming style but that the organization 
of problem solving can be modeled by identifying certain 
kinds of messages with specific meaning. 

Encoding of the Establish-Refine Protocol 

The establish message procedure of a specialist determines 
the confidence value in the specialist’s hypothesis. Figure 4 
illustrates the establish message procedure of the BadFuel 
specialist. relevant and summary are names of knowl- 
edge groups of BadFuel. self is a keyword that refers to 
the name of the specialist. This procedure first tests the 
value of the relevant knowledge group. (If this knowledge 
group has not already been evaluated, it is automatically 
evaluated at this point.) If it is greater than or equal to 
0, then BadFuel’s confidence value is set to the value of 
the summary knowledge group; if not, it is set to the value 
of the relevant knowledge group. In CSRL a confidence 
value scale of -3 to +3 is used (integers only). A value 
of +2 or $3 indicates that the specialist is established. 
In this case, the procedure corresponds to the following 
classificatory knowledge: 

First perform a preliminary check to make sure 
that BadFuel is a relevant hypothesis to hold. If it 
is not (the relevant knowledge group is less than 
0), then set BadFuel’s confidence value to the de- 
gree of relevancy. Otherwise, perform more com- 
plicated reasoning (the summary knowledge group 
combines the values of other knowledge groups) to 
determine BadFuel’s confidence value. 

(Estzblish (if (GE relevant 0) 
then (SetCo-fidence self sunmary) 

else (SetConfidence self relevant>>> 

Estabiish Procedure of BadFuel 
Figure 4 

The refine message procedure determines what sub- 
specialists should be invoked and the messages they 
are sent. Figure 5 shows a refine procedure which 
is a simplified version of the one that BadFuel uses. 
subspecialists is a keyword that refers to the subspe- 
cialists of the current specialist. The procedure calls each 

subspecialist with an establish message.3 If the subspe- 
cialist establishes itself (+? tests if the confidence value 
is +2 or t-3). Then the subspecialist it is sent a refine 
message. 

(Refine (for specialist in subspecialists 
do (Call specialist with Establish: 

(if (+? specialist) 
then (Call specialist nitb Refine)))) 

Example Retie Procedure 
Figure 6 

CSRL also has a facility for specifying suggestion rules 
in specialists. This is done by implementing “suggestion” 
knowledge groups, which are elements of the kgs section 
of the specialist definition. Figure 6 is a suggestion knowl- 
edge group that might be part of the FuelMixture special- 
ist (Auto-Mech itself does not use any suggestion rules). 
The then part of each rule indicates the specialist(s) that 
the rule’s condition suggests. The value of the knowledge 
group is the list of specialists that arc associated with the 
rules whose conditions are true. The knowledge group cor- 
responds to the following knowledge: 

A fuel mixture problem should be initially con- 
sidered if the car’s problem occurs only when the 
engine is hot or cold. Knocking or pinging sounds 
suggest that the fuel is had. 

1 (Pue~roblemSuggestiocs Suggestion 
(if <Cr (Ask-W? “Does the proble?n occur only 

Fhen the engine is cold”) 
(Ask-YNU? “Does the problea occur only 

uhen the engine is hot”)) 
then FuelXixture) 

(if (Ask-m? “DO you hear knocking or pinging 
sounds”) 

tben BadFuel)) 

Exarnpic Suggestion Knowledge Group 
Figure 6 

To use suggestion rules, the default refine procedure 
(Figure 5) must be modified. Figure 7 illustrates how 
this can be done. The modification is the addition of an- 
other loop that invokes the suggested specialists with an 
establish message, conditionally followed by a refine 
message. The second loop is nearly the same as the de- 
fault procedure except that it avoids reinvoking any of the 
suggested specialists. 

3Fol convenience, many of the CSRL control constructs mimic those 
of INTERLISP; however, these constructs ale executed by the CSRL 
interpreter, not by LISP. LISP code is allowed within message pro- 
cedures, but only within a construct called DoLisp This is intended 
to allow interaction with other LISP-implemented systems 
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CSRL has a variety of other kinds of statements and 
expressions so that more complicated strategies can be im- 
plemented. For example, a Reset statement deletes the 
confidence value and the knowledge group values of a spe- 
cialist. This might be used when additional tests are per- 
formed, making it necessary to recalculate the confidence 
value. Also, messages can be parameterized, and message 
procedures can declare local variables. 

(Be.f iae 
(for specialist in faelProblemSuggestioxs 

do (Call specialist with Establish) 
(if (+? specidlist) 

then (Call specialist with Refine))) 
(for specialist in subspecialists 

do (if (Not (Member? specialist 
fueJ.F'roblemSugestions)) 

then (Call specialist with Bs%blish) 
(if (+? specidlist) 

then (Call specialist vitk Befiae))))) 

Refine Procedure that Uses Suggestion Rirles 
Figure ? 

Encoding of Symbolic Uncertainty 
The other knowledge groups in the kgs section are used 
to implement uncertainty handling. Each of these CSRL 
knowledge groups is intended to correspond to an eviden- 
tial abstraction underlying the hypothesis. A knowledge 
group can be thought of as a cluster of production rules 
that map the values of a list of expressions (boolean and 
arithmetic operations on data, values of other knowledge 
groups) to some conclusion on a discrete, symbolic scale. 

As an example, Figure 8 is the relevant knowledge 
group of the BadFuel specialist mentioned earlier. It de- 
termines whether the symptoms of the automobile are con- 
sistent with bad fuel problems. The expressions query the 
user (who is the database for Auto-Mech) about whether 
the car is slow to respond, starts hard, has knocking or 
pinging sounds, or has the problem when accelerating. 
AskYNU? is a LISP function that asks the user for a Y, 
N, or U (unknown) answer from the user and translates 
the answer into T, F, or U, the values of CSRL’s three- 
valued logic. Each set of tests in the with part of the 
knowledge group is evaluated until one matches. The value 
corresponding to the rule that matches becomes the value 
of the knowledge group. For example, the first rule in 
the figure tests whether the first expression is true (the ? 
means doesn’t matter). If so, then -3 becomes the value 
of the knowledge group. Otherwise, subsequent rules are 
evaluated. 

The value of the knowledge group will be 1 if no rule 
matches. This knowledge group encodes the following 
matching knowledge: 

70 THE AI MAGAZINE August, 1986 

If the car is slow to respond or if the car starts 
hard, then BadFuel is not relevant in this case. 
Otherwise, if there are knocking or pinging sounds 
and if the problem occurs while accelerating, then 
BadFuel is highly relevant. In all other cases, 
BadFuel is only mildly relevant. 

1 (relevant Table 
(match 

(AskYiw? "Is the car slov to respond") 
(Askmu? "Does the car start hard") 
(And (AskYNU? "Do you hear knocking 

or piwing sounds”) 
(AskYNu? “Does the problem occur 

while accelerating”) > 
vith (if T ? ? 

then -3 
elseif ? T ? 

then -3 
elseif ? ? T 

then 3 
else 1))) 

relevant Knowledge Group of BadFuel 
Figure 8 

1 

Figure 9 is the summary knowledge group of BadFuel. 
Its expressions are the values of the relevant and gas 
knowledge groups (the latter queries the user about the 
temporal relationship between the onset of the problem 
and the date when gas was last bought). In this case, 
if the value of the relevant knowledge group is 3 and 
the value of the gas knowledge group is greater than or 
equal to 0, then the value of the summary knowledge group 
(and consequently the confidence value of BadFuel) is 3, 
indicating that a bad fuel problem is very likely. 

1 (summary Table 

~ 

(match relevant gas 
. . 

This method of evidence combination allows the cal- 
culation of uncertainty to be hierarchically organized. In 
this instance, the hierarchy (illustrated in Figure 10) is 
very simple. For a more complex evaluation, additional 
knowledge groups, hierarchy layers, and pattern combina- 
tions can be defined as needed. 



the fuel system is to deliver a mixture of fuel and air to the 
air cylinders of the engine. It can be divided into major 
subsystems (fuel delivery, air intake, carburetor, vacuum 

I 

w 

E?ierarchy of Knowledge Groups 

Figue 10 

manifold) that correspond to initial hypotheses about fuel 
system faults. 

Auto-Mech consists of 34 CSRL specialists in a hierar- 
chy whose depth varies from four to six levels. Its problem 
solving closely follows the establish-refine strategy. Before 
this strategy is invoked, Auto-Mech collects some initial 

_ data from the user. This includes the major symptom 
that the user notices (such as stalling) and the situation 

Implementation when this occurs (for example, accelerating and cold en- 
The current version of CSRL is implemented in INTERLISP- gine temperature)* Any additional questions are asked 
D (Xerox, 1985) and LOOPS (Bobrow and Stefik, 1982; while Auto-Mech’s specialists are running. The diagnosis 
Stefik et al. 1983), an object-oriented programming tool. then starts and continues until the user is satisfied that the 
Each specialist is implemented as a LOOPS class, which diagnosis is complete. The user must make this decision 
is instantiated for each case that is run. The BOOPS class because the data that Auto-Mech uses are very weak at in- 
hierarchy is used to specify default message procedures dicating specific problems and, more importantly, because 
and shared knowledge groups, making it easy to encode a Auto-Mech is unable to make the repair and determine 
default establish-refine strategy and letting the user incre- whether the problem has been fixed. 
mentally modify this strategy. A graphic interface displays A major part of Auto-Mech’s development was deter- 
the specialist hierarchy and through the use of a mouse al- mining the assumptions that would be made about the 
lows the user to easily access, modify, and run any part design of the automobile engine and the data the program 
of the hierarchy. (We would like to note that this ver- would be using. Different automobile engine designs have 
sion of CSRL is an unsupported public domain program a significant effect on the hypotheses that are considered. 
and is available for a nominal cost from Ohio State’s AI A carbureted engine, for example, will have a different set 
Laboratory.) of problems than a fuel-injected engine (the former can 

Future versions of CSRL will be substantially differ- have a broken carburetor). The data were assumed to 
ent in order to integrate it into a more unified framework come from commonly available resources. The variety of 
of a language specification for each generic task. Because computer analysis information that is available to mechan- 
we recently recognized that CSRL’s uncertainty-handling its today was not considered in order to simplify building 
capability corresponds to a separate generic task (called Auto-Mech. 
hypothesis matching), CSRL will be split into two lan- 
guages, one for classification and the other for hypothesis 
matching. The way that classificatory specialists will de- 

Red 

termine their confidence is to invoke problem solvers which Red is an expert system whose domain is red blood cell 
perform hypothesis matching. Languages for other generic antibody identification (Smith et al. 1985). An everyday 
tasks are currently being implemented as well as display, problem that a blood bank contends with is the selection 
explanation, and debugging facilities that will be uniform of units of blood for transfusion during major surgery. The 
across all of these languages. This work is being performed primary difficulty is that antibodies in the patient’s blood 
at Ohio State’s AI Laboratory. can attack the foreign blood, rendering the new blood use- 

less as well as presenting additional danger to the patient. 

Expert Systems that Use CSRL 

In this section, we briefly discuss a few expert systems that 
use CSRL. 

Auto-Mech 
Auto-Mech is an expert system that diagnoses fuel prob- 
lems in automobile engines (Tanner and Bylander, 1985). 
This domain was chosen to demonstrate the viability of 
the MDX approach to nonmedical domains as well as to 
gain experience and feedback on CSRL.4 The purpose of 

4Auto-Mech was developed using an early version of the language. 

Thus, identifying the patient’s antibodies and selecting 
blood that will not react with them is a critical task for 
nearly all red blood transfusions. 

The Red expert system is composed of three major 
subsystems, one of which is implemented in CSRL. The 
non-CSRL subsystems are a database that maintains and 
answers questions about reaction records (reactions of the 
patient’s blood in selected blood samples under a variety 
of conditions) and an overview system which assembles a 
composite hypothesis of the antibodies that would best ex- 
plain the reaction record (Josephson et al. 1984). CSRL is 
used to implement specialists corresponding to each anti- 
body that Red knows about (about 30 of the most common 
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ones) and to each antibody subtype (different ways that 
the antibody can react). 

The major function of the specialists is to rule out an- 
tibodies and their subtypes whenever possible, thus sim- 
plifying the job of the overview subsystem, and to assign 
confidence values, informing the overview subsystem of 
the plausibility of each antibody. The specialists query 
the database for information about the test reactions and 
other patient information and also tell the database to 
perform certain operations on reaction records. 

An interesting feature of Red is how it handles the 
problem of interacting hypotheses. It is possible for the 
patient’s blood to have practically any number or com- 
bination of antibodies, making it very hard for a single 
specialist to determine how well it will fit with other spe- 
cialists in a composite hypothesis. In Red each specialist is 
encoded to assume that it might only partially account for 
the data; it doesn’t reduce its confidence value if there is 
extra data to account for. The knowledge of how the spe- 
cialists can interact is left to the overview subsystem. This 
would be problematic if few specialists could rule them- 
selves out, but it turns out that it is rare to have more 
than a few antibodies that cannot be independently ruled 
out. Thus, Red’s CSRL subsystem makes the overview’s 
problem solving more manageable because it considerably 
reduces the amount of search that would otherwise be nec- 
essary. 

Real-World Use of CSRL 
CSRL is being used to develop two commercial sys- 
tems by the Knowledge-Based Systems group at the Bat- 
telle Columbus Institute. WELDEX (Mahalingam and 
Sharma, 1985) and ROMAD (Mahalingam et nl. 1985) 
are diagnostic systems for detecting welding defects and 
evaluating machinery, respectively. A brief description of 
WELDEX follows. 

WELDEX identifies possible defects in a weld from ra- 
diographic data on the weld. Industry standards and reg- 
ulations require careful inspection of the entire weld and a 
very high level of quality control. Thus, for industries that 
rely on welding technology, such as the gas pipeline indus- 
try, radiographic inspection is a tedious, time-consuming, 
and expensive part of their operation. 

This problem can be decomposed into two tasks: vi- 
sual processing of the radiograph to extract relevant fea- 
tures of the weld and mapping these visual features to the 
welding defects that give rise to them. WELDEX is in- 
tended to perform the second task. The current prototype 
consists of 25 CSRL specialists that are organized around 
different regions of the weld, taking advantage of the fact 
that each class of defects tends to occur in a particular 
region. The knowledge groups in these specialists concen- 
trate on optical contrast, shape, size, and location of the 
radiographic features. A customer version of WELDEX is 
currently being developed. Future work is anticipated on 

developing a visual-processing system whose output would 
be processed by WELDEX, thus automating both parts of 
the radiographic inspection problem. 

Weaknesses of CSRL 

CSRL lacks a good set of classification control primitives 
for refine message procedures, relying instead on general 
programming constructs. The result is that it is hard to 
encode refine procedures in CSRL that combine differ- 
ent priorities, such as invoking suggested specialists be- 
fore those not suggested, invoking more common special- 
ists before more rare specialists, and refining specialists 
with higher confidence values before those with lower confi- 
dence values. These procedures should also respond to pri- 
orities that the supcrspecialist requests. Additional work 
is needed to create a set of constructs that more closely 
match the kinds of operations that are needed for refine- 
ment and for coopcrativc action. 

Another problem is the ambiguity of the -3 to +3 con- 
fidcnce scale.4 For example, +3 was used to mean near cer- 
tainty in MDX, highly relevant to consider in Auto-Mech, 
and highly plausible in Red. Future versions of CSRL 
will adopt more meaningful symbols for confidence values, 
such as certain, likely, plausible, problematic, and 
ruled-out. 

A major missing piece in CSRL is that there is no 
strategy that determines when classification should stop. 
Currently, the default procedures simply ask the user if the 
current solution is satisfactory. From work on Auto-Mech 
and Red, it appears that this decision depends strongly 
on the goals of whoever uses the CSRL system. In Auto- 
Mech, the classification should stop when a repair is suc- 
cessful; in Red it should stop when a “best explanation” 
is reached. The work on Red’s overview system is a step 
in this direction for diagnostic systems, but there needs 
to be more cooperation between the overview subsystem 
and CSRL (currently the overview subsystem starts after 
the specialists are finished) and a better understanding of 
what kinds of interactions can occur between two hypothe- 
ses. Progress in this area would also help increase the focus 
of the diagnosis; that is, the diagnosis could concentrate 
on accounting for the most important manifestation(s). 

Issues of Classification 

In this section, we further explain our positions on a few 
issues that influence the design of CSRL. 

The Relationship of Classification to Diagnosis 
The work on MDX demonstrated that classification is an 
irnportant strategy in medical diagnosis. Because of this, 
we speculated that classificatory problem solving was the 

4The use of numbers also created the false impression that these 
confidence values could be added and subtracted. 
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primary component of diagnosis in general, and conse- 
quently, what we now call the classificatory task had been 
called the diagnostic task. However, we have come to real- 
ize that diagnosis is a more complex phenomenon in which 
other problem solvers have major roles, and, depending on 
the domain, classification can play a minor role. 

A useful companion to the classification hierarchy 
is a problem solver that performs the generic task of 
knowledge-directed data retrieval (Mittal et al. 1984). This 
problem solver can be thought of as an intelligent database 
that organizes the case description, answers queries from 
the classification specialists, and makes simple inferences 
from the data. For example, an intelligent database should 
be able to infer exposure to anesthetics if the patient has 
had major surgery or has been exposed to halothane (a 
type of anesthetic). The classificatory specialists are then 
relieved from knowing how one datum could be inferred 
based on its conceptual relationships to other data. 

In some applications, such as diagnosing devices that 
are heavily instrumented with sensors (for example, nu- 
clear power plants), there is almost a direct match be- 
tween data and malfunctions. In these cases, the intelli- 
gent database performs the work of interpreting raw data, 
and the classificatory problem solving mainly consists of 
simply associating the processed data with hypotheses. 

Another important part of diagnosis is accounting for 
abnormal findings and producing composite hypotheses 
when one malfunction cannot account for all of them. Al- 
though these capabilities have not been needed in some 
systems (such as MDX and MYCIN), they appear to be 
necessary in other systems and domains (for example, 
INTERNIST-I whose domain is internal medicine [Pople, 
19771 and ABEL whose domain is acid-base disorders 
[Patil et al. 19811). Josephson et al. (1984) have pro- 
posed a generic task called hypothesis assembly to perform 
these actions in coordination with a classificatory prob- 
lem solver. Roughly, the classifier generates plausible hy- 
potheses and determines the data they can account for. 
The hypothesis assembler builds and critiques composite 
hypotheses, taking into account interactions between hy- 
potheses. The Red system discussed earlier implements 
this combination of problem solvers. 

There are several other issues relevant to diagnostic 
problem solving that need to be considered, such as test 
ordering, causal explanation of findings, and therapeutic 
action. Fully resolving all of these issues and integrating 
their solutions into this diagnostic framework are problems 
for future research. 

Tangled Hierarchies 
CSRL, as previously noted, does not allow the represen- 
tation of tangled hierarchies (hierarchies in which some 
nodes have more than one parent) and, consequently, is 
restricted to representing classification trees. Although 
tangled hierarchies are completely general, trees represent 

a simpler and cleaner solution for classification. In our ex- 
perience, tangled hierarchies can often be untangled by a 
judicious mix of eliminating nodes that provide little clas- 
sificatory power and carefully analyzing the domain. 

For example, consider the tangled hierarchy in Figure 
11. Although infection and viral infection are concepts 
that physicians use, they are not very useful for classifica- 
tory problem solving because there is little evidence that 
distinguishes infections and viral infections from other pos- 
sibilities. Also, one might make hepatitis (liver inflamma- 
tion) a subspecialist of cholestasis because hepatitis often 
causes cholestasis. However, hepatitis is not a subtype 
of cholestasis, and, furthermore, hepatitis often does not 
cause cholestasis; thus hepatitis should not be ruled out if 
cholestasis is ruled out. Figure 12 illustrates an untangled 
version of this hierarchy. The infection nodes are elimi- 
nated because of their weaknesses. A new node, “cholesta- 
sis caused by hepatitis,” is added to distinguish this cause 
of cholestasis from other causes. This new node is one kind 
of composite hypothesis that can be embedded in a clas- 
sificatory structure. The problem-solving issues of how 
this hypothesis can take advantage of decisions concern- 
ing the hepatitis hypothesis are discussed in Gomez and 
Chandrasekaran (1981). 

I 

I infection Liver Disease 

\ 
Vira4 lnfectisn 

\ 

\ 
Viral 

Hepaiitis 

/ 
/ 

Hepatitis 

A Tangled Hierarchy 
Figure 11 

Another advantage of trees over tangled hierarchies is 
that the knowledge of a specialist can be biased to the con- 
text of its superspecialist. Because of the establish-refine 
strategy, the specialist’s knowledge can assume that the 
superspecialist has been established. This simplifies the 
amount of knowledge that needs to be encoded because 
decisions can be made in a single context, eliminating the 
caveats needed to encode other contexts. Also, the spe- 
cialist can take advantage of knowledge that distinguishes 
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the specialist from its siblings. However, there is a danger 
involved-if the superspecialist produces overconfident de- 
cisions, the biasing of knowledge can cause the specialist 
to also be overconfident. 

This should not be taken as an argument that tangled 
hierarchies are never necessary but that they can often be 
simplified without loss of problem-solving power. There is 
a need to discover and investigate those situations in which 
the complexities of tangled hierarchies pay off in increased 
problem-solving ability. 

Uncertainty in Classification 

Uncertainty handling in CSRL is an outgrowth of the tech- 
nique used in MDX (Chandrasekaran et al. 1982). This 
technique is based on a number of assumptions: 

Uncertainty is not a unitary phenomenon. Much of 
the debate within AI treats uncertainty as if it were a sin- 
gle phenomenon. However, a clear distinction needs to be 
made between uncertainty as degree of chance versus un- 
certainty as degree of fit. Rather than assessing the proba- 
bilities of hypotheses, the method of uncertainty handling 
incorporated within CSRL measures the qualitative de- 
gree of fit between hypotheses and data. It is interesting 
to note that this viewpoint has recently been supported by 
Cohen et al. (1985), who cogently argue that degree of fit 
(called representativeness in their paper) is an appropriate 
measure of uncertainty in classification. 

Uncertainty introduced by the problem solver should be 
kept to a minimum. In AI uncertainty-handling techniques 
can introduce uncertainty by making assumptions that are 
not true of the domain and by requiring knowledge that 
cannot be obtained, forcing implementors to make guesses. 
In the case of expert systems, it is important that the 
expert’s reasoning is accurately modeled. 

Symbolic uncertainties should be used for expert sys- 
tem reasoning. This and the previous paragraph seem to 
be contradictory because symbolic uncertainties appear to 
introduce uncertainty from the start. However, we need 

to remember that these judgments are coming from pea- 
ple, who simply don’t have specific fractions in their heads. 
Typically, knowledge engineers translate the expert’s sym- 
bolic judgments into some numeric uncertainty calculus, 
assume that the methods of inference combination will 
correspond to the expert’s reasoning, and then translate 
the numbers back into the symbolic scale. Each of these 
steps introduces uncertainty because they move from the 
expert’s reasoning methods to an artificial system that the 
expert doesn’t use. It would make more sense to use the 
expert’s judgment not only for the “single” inferences, but 
for the combination of inferences as well. 

Our methodology, which we call hypothesis matching, 
allows for a hierarchical evidence structure in which the ex- 
pert provides symbolic judgments on combinations of data 
as well as on how these judgments should be combined to 
determine the confidence in the hypothesis. The following 
scenario illustrates how the hierarchical organization can 
be naturally formed from the data. 

Suppose that we want to measure the evidence for a 
particular bacterial infection called X. It is likely that a 
large amount of data is potentially useful as evidence for 
or against X. It would be a combinatorial nightmare to 
match all combinations of data to a judgment on X’s pres- 
ence. However, these data are not evidentially unrelated 
to one another, but subsets of them are evidence about 
particular parts of the infection process. One thing we 
probably want to know is whether the patient has been 
exposed to the bacteria that causes X. Usually, exposure 
to bacteria is not a datum given to the system; instead, 
there are several data that give indications about expo- 
sure. For example, open wounds, places the patient has 
been, what the patient has been eating or drinking, and 
other activities of the patient are all factors that need to 
be taken into account. Now we can ask the expert how 
these data are evidence for exposure to X bacteria. The 
left half of Figure 13 illustrates this part of the evidence 
combination. For other data, we ask how they relate to 
susceptibility, incubation, various effects of the infection, 
and so forth. After a judgment is made on each of these 
features of X, we can then ask how combinations of these 
abstractions (at various levels of uncertainty) relate to X 
itself. This is illustrated in the right half of Figure 13. 

As this scenario indicates, the methodology of hypoth- 
esis matching is very simple-data are combined into judg- 
ments on evidential abstractions underlying the hypoth- 
esis, and these judgments are combined, using as many 
levels as needed, into a judgment on the hypothesis itself. 
Here are some other points to keep in mind: 

l Because any number of levels of abstractions is per- 
mitted, a large body of evidence can be decomposed and 
combined in a combinatorially manageable fashion. 

l These abstractions are not arbitrarily chosen but 
come from the expert’s understanding of the hypothesis. 

l Because the expert is providing symbolic judgments 
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at each level of abstraction, there is no need for an uncer- 
tainty calculus, and there is no reason to translate into 
and out of a continuous probability system. 

It turns out that hypothesis matching is useful for 
more than classification. Both MDX’s database (Mittal, 
1980; Mittal et al. 1984) and AIR-CYL (Brown and Chan- 
drasekaran, 1984), a design expert system, used forms of 
hypothesis matching to map from situations to decisions. 
Based on these examples and some further analysis, hy- 
pothesis matching is now considered to be a generic task. 

This method of evidence combination closely matches 
the signature table strategy used by Samuel’s checker- 
playing program (Samuel, 1967). Just as Samuel used lay- 
ers of signature tables to reduce the complexity of decision 
making in his program, the layers of evidential abstraction 
eliminate the need to provide one rule for each combination 
of data and also make the decision making comprehensi- 
ble to both the knowledge engineer and the domain expert 
(Chandrasekaran, 1985). 

Hypothesis matching allows a simple but powerful de- 
bugging technique (see Sticklen et al. [1985b] for more ex- 
planation and for another application of hypothesis match- 
ing). If the expert system determines the wrong level of 
uncertainty for a hypothesis, the bug can be traced to the 
abstractions that produced incorrect answers, which can 
then be appropriately modified.5 After many debugging 
sessions, the system becomes tuned to the domain within 
the conceptual framework of the domain expert. 

5This can be as simple as adding another “rule” to the abstraction 
or as difficult as completely reorganizing the abstractions 

To make our position clear, we do not mean to ad- 
vocate hypothesis matching for every classification sys- 
tem. Bayesian probabilities, for instance, should be used if 
quantitative data on probabilities are available and if the 
assumptions apply. However, when the idealized condi- 
tions of uncertainty calculi are not applicable, which they 
often aren’t for expert systems, they become knowledge en- 
gineering obstacles instead of knowledge engineering tools. 
It makes much more sense to use the expert’s judgments 
and conceptual structures whenever possible and to test 
and refine them by using real cases. 

Comparison to Heuristic Classification 
Clancey (1984, 1985) has proposed a description of classifi- 
cation, called “heuristic classification,” that is “an attempt 
to specify what many heuristic programs known as ‘expert 
systems do.” Heuristic classification has three parts: 

Data Abstraction: This relation maps observations 
into data classes or characterizations based on categori- 
cal inferences. Clancey gives the examples of inferring low 
white blood count from a specific white blood count and 
immunosuppression from the low white blood count (low 
white blood count is a form of immunosuppression). 

Heuristic Match: This relation maps data or data 
abstractions to hypotheses in the classification hierarchy. 
This mapping is based on heuristic, but not certain, knowl- 
edge. 

Refinement: This relation indicates what hypotheses 
are subhypotheses of other hypotheses. 

The processes of heuristic classification then use these 
relations to find a solution in the hierarchy. 

We agree with Clancey that heuristic classification 
characterizes the problem solving of a considerable num- 
ber of AI programs and that it is a useful strategy to solve 
many problems. However, from our perspective, heuris- 
tic classification corresponds to a combination of generic 
tasks rather than being a primitive strategy. This point 
has practical consequences. Instead of developing a sin- 
gle “knowledge engineering tool designed specifically to 
perform heuristic classification,” our approach leads us to 
develop separate tools for each generic task and to provide 
mechanisms that not only allow heuristic classification to 
be constructed out of several problem solvers but also al- 
low those generic tasks to be used in other ways. 

Clancey’s data abstraction relation, for example, cor- 
responds to the capability of the intelligent database 
described previously. This capability, however, is not 
just useful for classification but for other problem-solving 
methods as well. We can imagine a designer, that is, an 
agent who constructs a design plan from specifications, 
needing to know if some material is metallic or if the tem- 
perature of the operating environment will be below freez- 
ing. Because simple data inference is a useful function for 
many tasks, and because it requires knowledge organiza- 
tion and problem-solving strategies different from classifi- 
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cation, it is natural to think of it as a separate reasoning general explanation facilities that can take advantage of 
strategy. the organization. 

This separation is more clearly seen in programs that 
do classification but not data abstraction. For example, 
the DART diagnostic program (Genesereth, 1984) uses 
classification to find circuit faults, but instead of using 
data abstraction it generates tests to confirm or reject 
faults. Although DART’s problem solving does not fit 
into the heuristic classification mold, it can be analyzed 
as a combination of classification problem solving and test 
generation based on functional knowledge. 

We believe that CSRL provides a good match to a siz- 
able portion of human expertise. Whenever the solution 
set of a problem (or subproblem) can be characterized by a 
classification tree and whenever an expert can provide the 
judgments that map data to confidence in classificatory 
hypotheses and the evidential abstractions that underlie 
them, the classification tree and the judgments can be di- 
rectly represented in CSRL. 

The heuristic match relation in heuristic classification 
is intended to account for two types of behavior: sug- 
gesting hypotheses and confirming or rejecting hypothe- 
ses. Our approach accounts for the first type by embed- 
ding suggestion rules in individual specialists. This has the 
advantage of tailoring suggestion knowledge to the classi- 
ficatory context. Also, the suggestion rules can operate on 
patterns of data rather than on just a single datum or data 
abstraction. The apparent disadvantage of efficiency by 
not executing the rules when the data are entered can be 
allayed by implementing the suggestion rules as demons. 
Confirming and rejecting hypotheses within CSRL is done 
by hypothesis matching, a generic task that we have al- 
ready covered in some detail. 

Finally, we wish to emphasize that classification is use- 
ful for more than selecting a single solution from a hierar- 
chy. We have already mentioned one architecture in which 
classification and hypothesis assembly can be integrated 
to produce composite hypotheses. Even without hypothe- 
sis assembly, some forms of hypotheses interaction can be 
reasoned about by a classification problem solver (Sticklen 
et al. 1985a). 

From the perspective of the generic task framework, 
CSRL handles only two (classification and hypothesis 
matching) of the many types of problem solving that ex- 
perts use. Besides improving CSRL, special-purpose lan- 
guages need to be developed for the other generic tasks 
that have been identified, and these languages need to 
be integrated for cooperative problem solving. Currently, 
languages for knowledge-directed data retrieval (IDABLE 
[Intelligent DAta Base LanguagEI) and another generic 
task called “plan selection and refinement” (PSRL [Plan 
Selection and Refinement Language]) (Brown and Chan- 
drasekaran, 1984) have been implemented. In addition, a 
language for hypothesis assembly is also being developed. 
This family of languages should be a powerful tool because 
it will allow implementors to encode different types of 
problem-solving knowledge, such as that used for diagno- 
sis, in the appropriate form and to integrate the resulting 
problem solvers into complex knowledge-based systems. 
For example, note that CSRL together with IDABLE will 
provide the function of Clancey’s heuristic classification 
while making IDABLE’s function available for other situ- 
ations where a data abstraction capability is called for. 

Conclusion 

How does CSRL meet the needs that we listed in the intro- 
duction? Currently, CSRL makes some small steps toward 
constraining the meaning of symbols. Because ruling out 
a specialist results in ruling out its subspecialists, CSRL’s 
classification tree is more than a simple way to associate 
hypotheses with one another. The children of a hypothesis 
must be subhypotheses. The current CSRL implementa- 
tion does not enforce the meaning of its messages, but 
given a better analysis of the operations that are needed 
for each type of message, a message procedure could be 
appropriately restricted. 

CSRL makes the organization of classificatory problem 
solvers explicit by providing appropriate abstractions for 
classificatory knowledge: specialists, message procedures, 
knowledge groups, and rules. The expert system imple- 
mentor is then relieved from the burden of implementing 
one level of organization in a language at a different level 
and is free to concentrate on the conceptual structure of 
the domain. Also, there is a greater potential to embed 
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