
Knowledge Base
Verification

We describe a computer program that
implements an algorithm to verify the con-

sistency and completeness of knowledge
bases built for the Lockheed expert system
(LES) shell. The algorithms described here
are not specific to this particular shell and

can be applied to many rule-based sys-
tems. The computer program, which we

call CHECK, combines logical principles
as well as specific information about the

knowledge representation formalism of
LES. The program checks both goal-driven

and data-driven tiles CHECK identifies
inconsistencies in the knowledge base by

looking for redundant rules, conflicting
rules, subsumed rules, unnecessary IF con-
ditions, and circular rule chains. Checking

for completeness is done by looking for
unreferenced attribute values, illegal

attribute values, dead-end IF conditions,
dead-end goals, and unreachable conclu-

sions These conditions can be used to sug-
gest missing rules and gaps in the knowl-

edge base. The program also generates a
chart that shows the dependencies among
the rules CHECK can help the knowledge
engineer detect many programming errors

even before the knowledge base testing
phase It also helps detect gaps in the

knowledge base that the knowledge engi-
neer and the expert have overlooked A

wide variety of knowledge bases have been
analyzed using CHECK.

Tin A. Nguyen, WaIton A. Perkins,
Thomas J. laffey, and Deanne Pecora

ayes-Roth (1985) describes
several features of rule-based
systems that would help to

make such a system suitable as a gen-
eral computing approach. He points
out that one of the key features these
systems lack is “a suitable verification
methodology or a technique for test-
ing the consistency and completeness
of a rule set.” It is precisely this fea-
ture that we address here.

LES is a generic rule-based expert
system building tool (Laffey, Perkins,
and Nguyen 1986) similar to EMYCIN
(Van Melle 1981) that has been used as
a framework to construct expert sys-
tems in many areas, such as electronic
equipment diagnosis, design verifica-
tion, photointerpretation, and hazard
analysis. LES represents factual data
in its frame database and heuristic and
control knowledge in its production
rules. LES allows the knowledge engi-
neer to use both data-driven and goal-
driven rules.

One objective in the design of LES
was to make it easy to use. Thus,
many debugging tools and aids were
added to the LES program. One aid is a
syntax checker that examines each
rule for syntactic errors such as unbal-
anced parentheses or misspelled
names. Another of these aids is the
knowledge base completeness and
consistency-verification program
called CHECK. Its purpose is to help a
knowledge engineer check the knowl-
edge base for existing and potential
problems as it is being developed.
CHECK analyzes the knowledge base
after the rules, facts, and goals have
been loaded into LES.

Related Work
Surprisingly enough, little work has
been reported on knowledge base
debugging. The TEIRESIAS program
(Davis 1976) was the first attempt to
automate the knowledge base debug-
ging process. It worked in the context
of the MYCIN (Shortliffe 1976) infec-
tious disease consultation system.
TEIRESLAS examined the “completed”
MYCIN rule set and built rule models
showing a number of factors, includ-
ing which attributes were used to con-
clude other attributes. Thus, when a
new rule was added to MYCIN, it was
compared with the rule model for the
attributes found in the IF conditions.
The program then proposed missing
clauses if some attributes found in the
IF part of the model did not appear in
the new rule. TEIRESIAS did not
check the rules as they were initially
entered into the knowledge base.
Rather, it assumed the knowledge
base was “complete” (or close to it],
and the knowledge transfer occurred
in the setting of a problem-solving ses-
sion.

Suwa, Scott, and Shortliffe (1982),
on which our work is based, wrote a
program for verifying knowledge base
completeness and consistency. The
program was devised and tested with-
in the context of the ONCOCIN sys-
tem, a rule-based system for clinical
oncology.

Unlike TEIRESIAS, ONCOCIN’s
rule checker is meant to be used as
the system is being developed. It
examines a rule set as it is read into
the system. Knowledge base problems
are found gby efirst partitioning the

SUMMER 1987 69

AI Magazine Volume 8 Number 2 (1987) (© AAAI)

CHECK identifies inconsistencies in the
knowledge base by looking for redundant rules,
conflicting rules, subsumed rulesqnnecessary

IF conditions, and circular rule chains.

rules into disjoint sets based upon
what attribute is assigned a value in
the conclusion. It then makes a table,
displaying all possible combinations of
attributes used in the IF conditions
and the corresponding values that will
be concluded in the THEN part of the
rule. The table is then checked for
conflicts, redundancy, subsumption,
and missing rules. Finally, a table is
displayed with a summary of any
potential errors that were found. The
rule checker assumes there should be
a rule for each possible combination of
values of attributes that appear in the
antecedent. It hypothesizes missing
rules based on this assumption. Such a
process can result in the system
hypothesizing rules that have seman-
tically impossible combinations of
attributes. Also, if the number of
attributes is large, the system can sug-
gest a very large number of missing
rules. Nevertheless, the developers of
the ONCOCIN system found the rule
checker extremely useful in helping
them to debug their evolving knowl-
edge base. ONCOCIN uses both data-
driven and goal-driven inferencing.
Although the rule checker checks the
rule set used in the ONCOCIN sys-
tem, its design is general so that it can
be adapted to other rule-based sys-
tems.

The intelligent machine model
(TIMM) (1985) is an expert system
shell that generates its rules from
examples (that is, induction).
TIMMTM has some capability for
checking rules. In its method, incon-
sistency is defined as (1) those rules
with the same IF conditions but with
different conclusions, (2) those rules
with overlapping IF conditions but
with different conclusions, and (3) sin-
gle rules with more than one conclu-
sion.

The first condition is equivalent to
logical conflict, but the other two con-

70 AIMAGAZINE

ditions are peculiar to the way the sys-
tem generalizes its rules. TIMM
checks for completeness by searching
for points (that is, combinations of
attribute values) in the state space that
have low similarity to the existing
training cases. It does this check by
randomly selecting combinations of
attributes and finding the situation
that is least similar to any training
case. This situation is then presented
to the user along with a similarity
measurement that tells the user how
similar the situation is to the closest
training case in the knowledge base.

Knowledge engineering system
(KES))TM (1983) is an expert system shell
that has a support tool called INSPEC-
TOR. INSPECTOR identifies all recur-
sive attributes that have been directly
or indirectly defined. An example of a
recursive attribute is an attribute that
occurs in both the antecedent and the
consequent of a rule (this definition is
similar to that of circular rules, which
we discuss later). INSPECTOR can
also identify all unattached attributes.
An unattached attribute is one that is
not contained in the antecedent or
conclusion of any rule. However, this
situation might not be an error if the
knowledge engineer put the attribute
in the knowledge base for future use or
is using it to contain some type of ref-
erence information.

The work described in this article is
an extension of the rule-checking pro-
gram used in the ONCOCIN project.
Our work differs from the ONCOCIN
effort in that CHECK is applied to the
entire set of rules for a goal, not just
the subsets which determine the value
of each attribute. Because of this global
view of the knowledge base, CHECK
includes several new rule-checking cri-
teria, including unreachable conclu-
sions, dead-end IF conditions, dead-end
goals, unnecessary IF conditions,
unreferenced attribute values, and ille-

gal attribute values. Furthermore,
CHECK produces dependency charts
and detects any circular rule chains.
This rule-checking system was devised
and tested on a wide variety of knowl-
edge bases built with a generic expert
system shell rather than on a single
knowledge base as in the ONCOCIN
project.

Potential Problems
in the Knowledge Base

static analysis of the rules can
detect many potential problems
that exist in a knowledge base.

First, we identify knowledge base prob-
lems that can be detected by perform-
ing an analysis of goal-driven rules and
then give definitions and examples of
such problems. Later in this article, we
look at how these definitions must be
modified for data-driven rules.

Knowledge base problems can only
be detected if the rule syntax is restric-
tive enough to allow one to examine
two rules and determine whether situ-
ations exist in which both can succeed
and whether the results of applying the
two rules are the same, conflicting, or
unrelated. In rule languages that allow
an unrestricted syntax, it is difficult or
impossible to implement the algo-
rithms described in this article.

Checking for Consistency
By statically analyzing the logical
semantics of the rules represented in
LES’s case-grammar format, CHECK
can detect redundant rules, conflicting
rules, rules that are subsumed by other
rules, unnecessary IF conditions, and
circular-rule chains. These five poten-
tial problems are defined in the subsec-
tions that follow.

Redundant Rules Two rules are redun-
dant if they succeed in the same situa-

tion and have the same conclusions. In
LES this statement means that the IF
parts of the two rules are equivalent,
and one or more conclusions are also
equivalent. The IF parts of two rules
can be equivalent only if each part has
the same number of conditions, and
each condition in one part is equiva-
lent to a condition in the other part.
Because LES allows variables in rules,
two conditions are equivalent if they
are unifiable.

Formally, with the notation from
predicate calculus, rule p(x) --> q(x) is
equivalent to the rule p(y) --> q(y),
where x and y are variables, and p and
q are logical relationships.

For example, consider the two rules
that follow:
IF ?X has a hoarse cough, AND

!X has difficulty breathing
THEN type-of-disease of 2X is

CROUP
IF ?Y has difficulty breathing,

AND
!Y has a hoarse cough

THEN type-of-disease of ?Y is
CROUP

2X and !Y represent variables that
will be instantiated to a person in the
database. These two rules would be
redundant even if they used different
variables and their IF conditions were
in a different order.

As reported by Suwa, Scott, and
Shortliffe (1982), redundancy in a
knowledge base does not necessarily
cause logical problems, although it
might affect efficiency. In a system
where the first successful rule is the
only one to succeed, a problem will
arise only if one of two redundant
rules is revised or deleted, and the
other is left unchanged. Also, unless
the system uses some type of scoring
scheme (for example, certainty fac-
tors), redundancy should not cause a
problem.

Conflicting Rules Two rules are con-
flicting if they succeed in the same sit-
uation but with conflicting conclu-
sions. In LES this statement means
that the IF parts of the two rules are
equivalent, but one or more conclu-
sions are contradictory.

Formally, with the notation from
predicate calculus, the rule p(x) -->
not(q(x)) is contradictory to the rule

PM --’ k4.
For example, consider the two rules

that follow:
IF !X has a hoarse cough, AND

3X has difficulty breathing
THEN type-of-disease of 2X is

CROUP
IF !X has a hoarse cough, AND

!X has difficulty breathing
THEN type-of-disease of ?X is

BRONCHITIS
These two rules are conflicting

(assuming the attribute type-of-disease
is single-valued) because given the
same information, one rule concludes
that the disease is croup, and the other
concludes bronchitis.

NOTE
It is possible that rules with simi-
lar premises might not conflict at
all, especially when they are con-
cluding values for a multivalued
attribute. (A multivalued at-
tribute can assume multiple val-
ues simultaneously. For example,
a person can be allergic to many
different drugs or can be infected
by numerous organisms.]

Subsumed Rules One rule is sub-
sumed by another if the two rules
have the same conclusions, but one
contains additional constraints on the
situations in which it will succeed. In
LES this statement means one or more
conclusions are equivalent, but the IF
part of one rule contains fewer con-
straints or conditions than the IF part
of the other rule.

Formally, with the notation from
predicate calculus, the rule (p(x)and
q(y)) --> r(z) is subsumed by the rule
p(x) --> r(z). Whenever the more
restrictive rule succeeds, the less
restrictive rule also succeeds, resulting
in redundancy.

For example, consider the two rules
that follow:
IF !X has flat pink spots on his

skin, AND
!X has a fever

THEN type-of-disease of 2X is
MEASLES

IF ?X has flat pink spots on his
skin

THEN type-of-disease of ?X is
MEASLES

In this case, we would say that rule
1 is subsumed by rule 2 because rule 2
only needs a single piece of informa-
tion to conclude “measles.” Whenever
rule I succeeds, rule 2 also succeeds,

Unnecessary IF Conditions Two rules
contain unnecessary IF conditions if
the rules have the same conclusions,
an IF condition in one rule is in con-
flict with an IF condition in the other
rule, and all other IF conditions in the
two rules are equivalent. With our
notation from predicate calculus, if we
have the rule (p(x) and q(y)) --> r(z) and
the rule (p(x) and not(q(y)) --> r(z), the
condition involving q(y) in each rule is
unnecessary. These two rules could be
combined into (p(x) and (q(y) or
not(q(y))) --> r(z). The condition (q(y) or
not(q(y))) resolves to TRUE; thus, the
rule becomes p(x) --> r(z). In this case,
the unnecessary IF condition actually
indicates that only one rule is neces-
sary.

For example, consider the two rules
that follow:
IF

THEN

IF

THEN

?X has flat pink spots on his
skin, AND
?X has a fever
type-of-disease of ?X is
MEASLES
2X has flat pink spots on his
skin
?X does not have a fever
type-of-disease of ?X is
MEASLES

In this case, the second IF condition
in each rule is unnecessary. Thus, the
two rules could be collapsed into one.

A special case occurs when two
rules have the same conclusion, one
rule containing a single IF condition
that is in conflict with an IF condition
of the other rule which has two or
more IF conditions. With our notation
from predicate calculus, if we have the
rule (p(x) and q(y)) --> r(z)) and the rule
not(q(y)) --> r(z), then the second IF
condition in the first rule is unneces-
sary, but both rules are still needed
and can be reduced to (p(x)) --> r(z) and
noth(--7 r(z).

Circular Rules A set of rules is circu-
lar if the chaining of these rules in the
set forms a cycle. With our notation
from predicate calculus, if we have the
set of rules p(x) --> q(x), q(x) --> r(x),

SUMMER 1987 71

and I(X) --> p(x), and the goal is r(A),
where A is a constant, then the system
enters an infinite loop at run time
unless the system has a special way of
handling circular rules. Also, this defi-
nition includes the possibility of a sin-
gle rule forming a circular cycle (for
example, p(x) --a p(x)).

For example, consider the following
set of rules:
IF

THEN

IF

THEN

IF

THEN

temperature of ?X > 100 (in
Fahrenheit)
?X has a fever
?X has a fever, AND
?X has flat pink spots on his
skin
type-of-disease of ?X is
MEASLES
type-of-disease of !X is
MEASLES
temperature of ?X > 100 (in
Fahrenheit)

Given a goal of
type-of-disease of patient is

MEASLES,
this set of rules would go into an infi-
nite loop if one attempted to backward
chain them together because the goal
would match the conclusion of rule 2,
the first IF condition of rule 2 would
match the conclusion of rule 1, the IF
condition of rule 1 would match the
conclusion of rule 3, and the IF part of
rule 3 would match the conclusion of
rule 2, thus completing our circular
chain.

Checking for Completeness
The development of a knowledge-
based system is an iterative process in
which knowledge is encoded, tested,
added, changed, and refined. Knowl-
edge flows from the expert into the
knowledge base by way of a middle-
man (the knowledge engineer). This
iterative process often leaves gaps in
the knowledge base that both the
knowledge engineer and the expert
have overlooked during the knowl-
edge-acquisition process. Furthermore,
as the number of rules grows large, it
becomes impossible to check every
possible path through the system. In
our research, we have found four situa-
tions indicative of gaps (that is, miss-
ing rules) in the knowledge base: (1)
unreferenced attribute values, (2) dead-

The TEIRESIAS program
(Davis 1976) was the

first attempt to
automate the knowledge
base debugging process.

end goals, (3) unreachable conclusions,
and (4) dead-end IF conditions. Any
one of these four conditions might
indicate that there is a rule missing.

In the ONCOCIN system, the rule
checker assumes there should be a rule
for each possible combination of val-
ues of attributes that appear in the
antecedent. In practice, we found this
criterion causes the system to hypothe-
size a very large number of missing
rules and chose to leave it out of our
checking process. This problem was
not serious in the ONCOCIN project
because the checker was only tested
on a single application.

LES (and EMYCIN) allows the
knowledge engineer the feature of
strong typing the defined attributes,
thus facilitating the detection of gaps.
For each attribute, one can define a set
of properties for it, including whether
the user can be queried for the value,
and a set of values the attribute can
take on (that is, its legal values). This
method has long been recognized in
software engineering as an excellent
programming practice. In fact, the
newer programming languages (for
example, Pascal and Ada) have type-
checking capabilities along these lines.

LES allows the knowledge engineer
to define properties about each slot in
its factual database, including the set
or range of acceptable attribute values,
system ability to query the user for the
attribute, and the attribute’s type (sin-
gle valued or multivalued). In the sub-
sections that follow, we describe how
LES uses these properties to aid it in
finding gaps and errors in the knowl-
edge base.

Unreferenced Attribute Values Unref-
erenced attribute values occur when
some values in the set of possible val-
ues of an object’s attribute are not cov-
ered by any rule’s IF conditions. In
other words, the legal values in the set
are covered only partially or not at all.

A partially covered attribute can pro-
hibit the system from attaining a con-
clusion or can cause it to make a
wrong conclusion when an uncovered
attribute value is encountered at run
time. Unreferenced attribute values
might also indicate that rules are miss-
ing.

For example, suppose we have the
attribute TEMPERATURE with the set
of legal values {high, normal, low]. If
the attribute values high and normal
are used in the IF conditions of rules
but not low, CHECK alerts the knowl-
edge engineer that low is not used. The
knowledge engineer would then have
to decide if a rule is missing or if the
value low should be removed from the
set of legal values.

Illegal Attribute Values An illegal
attribute value occurs when a rule
refers to an attribute value that is not
in the set of legal values. This error is
often caused by a spelling mistake. No
extra work is required to check for this
condition because it is a by-product of
checking for unreferenced attribute
values.

Suppose we have the attribute TEM-
PERATURE with the set of legal val-
ues {high, normal, low}. If a rule has a
condition such as
IF temperature of ?X is very high... or
. ..THEN temperature of ?X is medium
CHECK alerts the knowledge engineer
that the values “very high” and “medi-
um” are illegal attribute values for
temperature.

Unreachable Conclusions In a goal-
driven production system, the conclu-
sion of a rule should either match a
goal or match an IF condition of anoth-
er rule (in the same rule set). If there
are no matches for the conclusion, it is
unreachable.

For example, suppose we have the
following rule:
IF temperature of ?X > 100 (in

Fahrenheit)
THEN ?X has a fever

If the condition ?X has a fever does
not appear in the IF part of any rule
and is not part of the goal, Check
alerts the knowledge engineer that this
conclusion is unreachable.

It is possible that such a rule is
merely extraneous, in which case it

72 A.IMAGAZNE

might affect efficiency but not the out-
come because it will never be trig-
gered. It is also possible that the con-
clusion does not match a goal (or sub-
goal) because of a terminology error.
For example, a rule might exist with
an IF condition of the form
IF ?X has an elevated tempera-

ture
THEN . . . ,
where the terms “elevated tempera-
ture” and “fever” are synonymous to
the expert but not to the expert sys-
tem.

Dead-End IF Conditions and Dead-End
Goals To achieve a goal (or subgoal) in
a goal-driven system, either the
attributes of the goal must be askable
(user provides needed information), or
the goal must be matched by a conclu-
sion of one of the rules in the rule sets
applying to the goal. If neither of these
requirements is satisfied, then the goal
cannot be achieved (that is, it is a
dead-end goal). Similarly, the IF condi-
tions of a rule must also meet one of
these two conditions, or they are dead-
end conditions.

For example, suppose we have the
following as a goal (or subgoal):

type-of-disease of patient is
MEASLES,

If the attribute type-of-disease is not
askable, and there are no rules that
conclude this fact, then this goal
would be labeled dead-end goal.

Dependency
Chart and Circular-
Rule-Chain Detection
As a by-product of rule checking,
CHECK generates two dependency
charts. One chart shows the interac-
tions among the data-driven rules, and
the other shows the interactions
among the goal-driven rules and the
goals. An example of a dependency
chart for a small set of rules is shown
in Figure 1.

An * indicates that one or more IF
conditions or a goal condition (GC)
matches one or more conclusions of a
rule. The dependency chart is useful
when the knowledge engineer deletes,
modifies, or adds rules to the rule base
because it is a means of immediately

Figure 1. A Simple Rule Set and Its Dependency Chart.

seeing the dependencies among the
rules.

Note that in figure 1 the asterisks (l]
indicate the dependencies for the origi-
nal rule set. (For example, the * in row
Rl, column R2 indicates than an IF
clause of rule Rl is concluded by rule
R2). Adding a condition to rule R2 (see
rule R2a) caused the *2 dependency to
appear. Note that rule R2a now refer-
ences itself (that is, it is a self-circular
rule). The addition of one condition to
rule R3 [see rule R3a) caused the *3
dependency to appear. This addition
also causes the rule set to be circular
because a condition of rule R3a is
matched by the conclusion of rule R2,
and a condition of rule R2 matches the
conclusion of rule R3a.

Circular rules should be avoided
because they can lead to an infinite
loop at run time. Some expert systems,
such as EMYCIN, handle circular rules
in a special way. Nevertheless, the
knowledge engineer will want to know
which rules are circular. CHECK uses
the dependency chart to generate
graphs representing the interactions

between rules and uses a cyclic graph-
detection algorithm to detect circular-
rule chains.

Checking Data-Driven Rules
To this point, we have only considered
goal-driven rules, but as discussed ear-
lier, LES also supports data-driven
inferencing. The data-driven rules are
called WHEN rules. A WHEN rule
consists of one or more WHEN condi-
tions (similar to IF conditions) and one
or more conclusions.

Checking a data-driven rule set for
consistency and completeness is very
similar to checking goal-driven rules.
The detection of conflicting rules,
redundant rules, subsumed rules, cir-
cular-rule chains, dead-end IF condi-
tions, unreferenced attribute values,
and illegal attribute values is done in
the same manner as described earlier
for checking goal-driven rules. Howev-
er, the detection of unreachable con-
clusions is not applicable in checking a
data-driven rule set because there are
no goals to match to the conclusions.

SUMMER 1987 73

Implementation of the
Rule Checker

In solving a problem with LES, the
knowledge engineer partitions the
rules into sets, where each set is

associated with a subject category. (In
LES one can have multiple goals, and
each goal has zero or more rule sets
associated with it.) The set of rules for
each goal can then be checked inde-
pendently. To check a set of rules, the
program performs five steps, as
described in the following paragraphs
(note that the phrase IF part of a rule
means the entire set of antecedent
clauses, and the phrase THEN part of
rule means the entire set of conclu-
sions).

First, each IF and THEN clause of
every rule in the set (and each goal
clause) is compared against the IF and
THEN clauses of every other rule in
the set. The comparison of one clause
against another results in a label of
SAME, DIFFERENT, CONFLICT,
SUBSET, or SUPERSET being stored in
a two-dimensional (2-D) table main-
taining the interclause relationships.
The comparison operation is not
straightforward because variables and
the ordering of clauses must be taken
into consideration.

Second, the IF part and the THEN
part of every rule [and the goal) are
compared against the IF and THEN
part of every other rule to deduce the
relationships. This process is done
using the 2-D table of interclause rela-
tionships, together with the number of
clauses in each part, to determine how
an IF or THEN part (or goal) is related
to another IF or THEN part. The possi-
ble relationships resulting from the
deductions are the same as described
in the first step.

Third, the part relationships of each
rule are compared against the part
relationships of every other rule to
deduce the relationships among the
rules. These comparisons are then out-
put to the user; the possible relation-
ships are SAME (redundant), CON-
FLICT, SUBSET (subsumption),
SUPERSET (subsumption), UNNEC-
ESSARY CLAUSES, or DIFFERENT.

Fourth, gaps are checked for using
the 2-D table of interclause relation-

ships. Unreachable conclusions are
identified by finding those THEN
clauses which have the DIFFERENT
relationship for all IF clauses and
goals. Dead-end goals and IF condi-
tions are identified when the DIFFER-
ENT relationship exists for all conclu-
sions, and the attribute these goals and
conditions refer to is not askable.

Fifth, the dependency chart is also
generated from the 2-D table of inter-
clause relationships. A rule is said to
be dependent on another rule if any of
its IF conditions have the relationship
SAME, SUBSET, or SUPERSET with
any of the other rules’ conclusions.
The actual algorithms that used to do
the checking appear in Nguyen, et al.
(1985). (Since the publication of these
algorithms, we have added the capabil-
ity to check for unnecessary IF condi-
tions. We have also revised our defini-
tion of missing rules.)

How Certainty Factors
Affect the Checking

LES allows the use of certainty factors
in its goal-driven and data-driven
rules. Certainty factors are implement-
ed in the same manner as in the
EMYCIN system, with a value of +l.O
for meaning definitely true, 0.0 for
unknown, and -1.0 for definitely false.
The presence of certainty factors fur-
ther complicates the process of check-
ing a knowledge base. Allowing rules
to conclude with less than certainty
and allowing data to be entered with
an associated certainty factor affects
our definitions, as shown in the fol-
lowing paragraphs.

A conflict--when two rules succeed
in the same situation but with differ-
ent conclusions--is a common occur-
rence in rule sets using certainty fac-
tors. Often, given the same set of
symptoms, the expert might wish to
conclude different values with differ-
ent certainty factors.

In reference to redundancy, rules
that are redundant can lead to serious
problems. They might cause the same
information to be counted twice, lead-
ing to erroneous increases in the
weight of their conclusions.

Subsumption is used quite often in

rule sets with certainty factors. The
knowledge engineer frequently writes
rules so that the more restrictive rules
add weight to the conclusions made by
the less restrictive rules.

In regard to Unnecessary IF condi-
tions, IF conditions that are labeled as
unnecessary when rules conclude with
absolute certainty might be necessary
when dealing with certainty factors.
The knowledge engineer might wish to
conclude a value at different certainty
factors. If the rules conclude with the
same certainty factor, then the IF con-
ditions are still unnecessary.

Certainty factors do not affect our
definition of or the way we detect
unreferenced attribute values. The
same is true with our definition of ille-
gal attribute values.

Finding dead-end IF conditions (or
dead-end goals) becomes complex with
certainty factors. LES, like EMYCIN,
allows the user to specify a threshold
at which point the value becomes
unknown. (In MYCIN this threshold is
set at 0.2.) Thus, a dead-end goal could
occur if there is a THEN clause that
concludes with a certainty factor less
than the threshold (or a chain of rules
that when combined produces a cer-
tainty factor less than the threshold).
For example, suppose there is a linear
reasoning path of three rules (Rl, R2,
and R3), where A is to be asked of the
user and D is the initial goal which
initiated this line of reasoning

Rl R2 R3
A __________-- > B _____-----. > C ____.________ >

0.4 0.7 0.7
If A is known with certainty, D would
only be known with a certainty factor
of (0.4)(0.7)(0.7) = 0.19. This factor is
less than the threshold used in
MYCIN, and, thus, D would be a dead-
end goal. If D is an IF condition rather
than a goal, then D would be a dead-
end condition if it were not askable,
and there were no other lines of rea-
soning to determine it.

Detecting unreachable conclusions
in a rule set with certainty factors also
becomes complex. A conclusion in a
rule could be unreachable even though
its IF part matches a conclusion in
another rule. This situation might
occur if the conclusion that matches
one of the IF conditions cannot be
determined with a certainty factor

74 AIMAGAZINE

above the threshold. For example, sup-
pose we have the following two rules:
Rl: IF A THEN B [certainty factor =

0.1)
R2: IF B THEN C (certainty factor =

1.0)
If the only way to determine B was

with rule Rl, then the conclusion of
rule R2 would be unreachable because
even if A were known with certainty,
C could not be determined with a cer-
tainty factor above the threshold of
0.2.

The detection of circular-rule chains
is not affected by certainty factors.
However, it should be noted that cer-
tainty factors might cause a circular
chain of rules to be “broken” if the cer-
tainty factor of a conclusion falls
below the threshold of 0.2.

From this discussion, we can see
that certainty factors only introduce
minor extensions to the checking pro-
cess, but the knowledge engineer
should be aware of these differences.
(The program CHECK does not look at
certainty factors when checking a
knowledge base.)

Summary
In this article we described CHECK, a
program whose function is to check a
knowledge base for consistency and
completeness. The program detects
several potential problems, including
redundant rules, conflicting rules, sub-
sumed rules, unnecessary IF condi-
tions, and circular rules. CHECK also
attempts to verify completeness in the
knowledge base by looking for poten-
tial gaps, including unreferenced
attribute values, illegal attribute val-
ues, missing rules, unreachable con-
clusions, dead-end IF conditions, and
dead-end goals. We extended and
applied the verification method for
consistency and completeness of
Suwa, Scott, and Shortliffe (1982) to a
variety of knowledge bases built with
the generic expert system shell LES
with excellent results. We showed a
general algorithm that efficiently per-
forms the checking function in a sin-
gle pass through the rules. We also
built a version of CHECK that works
with knowledge bases built with the
Automated Reasoning Tool
(ART[sup/TM]) (Nguyen 1987).

Finally, as a by-product of the rule-
checking process, CHECK generates a
dependency chart that shows how the
rules couple and interact with each
other and the goals. These charts can
help the knowledge engineer visualize
the effects of deleting, adding, or mod-
ifying rules.

From our experiences with con-
structing different knowledge bases,
we found that many changes and addi-
tions to the rule sets occur during the
development of a knowledge base.
Thus, a tool such as CHECK that can
detect many potential problems and
gaps in the knowledge base should be
very useful to the knowledge engineer
in helping to develop a knowledge
base rapidly and accurately.

As the field of knowledge-based sys-
tems matures, large expert systems
will be fielded in critical situations.
Because it will be impossible to test
all paths beforehand, one must be
assured that deadly traps such as cir-
cular rules and dead-end clauses do
not exist in the knowledge base. Thus,
a checking capability similar to the
one described in this article is essen-
tial.

References
Davis, R 1976. Applications of Meta-Level
Knowledge to the Construction, Mainte-
nance, and Use of Large Knowledge Bases.
Ph D. diss , Dept of Computer Science,
Stanford Univ
Hayes-Roth, F 1985 Rule-Based Systems.
Communications of the ACM 28(9): 921-
932.
KES General Description Manual. 1983.
Software Architecture and Engineering,
Inc., Arlington, Va., p 33.
Laffey, T. J ; Perkins, W A.; and Nguyen, T
A. 1986. Reasoning about Fault Diagnosis
with LES. IEEE Expert, Intelligent Systems
and Their Applications l(1): 13-20

Nguyen, T. A 1987 Verifying Consistency
of Production Systems. In Proceedings of
the Third Conference on Artificial Intelli-
gence Applications, 4-8 Washington D.C :
IEEE Computer Society Press
Nguyen, T A ; Perkins, W. A ; Laffey, T. J.;
and Pecora, D 1985. Checking an Expert
System’s Knowledge Base for Consistency
and Completeness In Proceedings of the
Ninth International Joint Conference on
Artificial Intelligence, 374-378. Menlo
Park, Calif.: American Association for Arti-
ficial Intelligence

Shortliffe, E. H. 1976. Computer-Based
Medical Consultations: MYCIN. New
York: Elsevier
Suwa, M.; Scott, A. C.; and Shortliffe, E. H.
1982 An Approach to Verifying Complete-
ness and Consistency in a Rule- Based
Expert System AI Magazine 3(4): 16-21.
TIMM User’s Manual. 1985 General
Research Corporation, Santa Barbara, Calif.,
pp 46-49..*
Van Melle, W J. 1981 System Aids in Con-
structing Consultation Programs. Ann
Arbor, Mich.: UMI Research Press.

Note
l TIMMTM is a registered trademark of Gen-
eral Research Corporation.

*ART is a registered trademark of Inference
Corporation

n Nonmonotonic
n Reasoning
n workshop
Proceedings of the Workshop

Sponsored by
the American Association for
Artificial Intelligence
17-19 October 1984
Mohonk Mountain House
New Paltz, New York

The Proceedings of this successful AAAI
Workshop on Nonmonotonic Reasoning are
still available in limited quantities Cover-
ing a variety of topics, papers in the pro-
ceedings emphasize formal approaches to
nonmonotonicity, with circumscription, de-
fault and auto-epistemic reasoning, being
the favorite topics

$20.00 postpaid.

To order, send a check or money order
to:

Publications Department
American Association for
Artificial Intelligence
445 Burgess Drive
Menlo Park, California 94025

For free information, circle no. 49

SUMMER 1987 75

