
VT (vertical transportation) is an expert
system for handling the design of elevator

systems that is currently in use at West-
inghouse Elevator Company Although VT
tries to postpone each decision in creating

a design until all information that con-
strains the decision is known, for many

decisions this postponement is not possi-
ble In these cases, VT uses the strategy of

constructing a plausible approximation
and successively refining it VT uses

domain-specific knowledge to guide its
backtracking search for successful refine-
ments The VT architecture provides the

basis for a knowledge representation that
is used by SALT, an automated knowl-

edge-acquisition tool SALT was used to
build VT and provides an analysis of VT’s
knowledge base to assess its potential for

convergence on a solution

VT: An Expert
Elevator Designer That
Uses Knowledge-Based
Backtracking
Sandra Marcus, Jeffrey Stout, John McDermott

I n some cases, plausible guessing
combined with the ability to back-

track to undo a bad guess can be the
most efficient way to solve a problem
(Stefik et al. 1983). Even least com-
mitment systems such as MOLGEN
(Stefik 1981a, 1981b) are sometimes
forced to guess. In the course of
designing genetics experiments, MOL-
GEN tries to avoid making a decision
until all constraints that might affect
the decision are known. In some
cases, this postponement is not possi-
ble, and the system becomes stuck;
none of the pending decisions can be
made with complete confidence. In
such a case, a decision based on par-
tial information is needed, and such a
decision might be wrong. In this case,
a problem solver needs the ability
either to backtrack to correct bad
decisions or to maintain parallel solu-
tions corresponding to the alterna-
tives at the stuck decision point
However, if alternative guesses exist
at each point, and there are many
such decision points on each solution
path, a commitment to examine every
possible combination of alternatives
proves unwieldy. Such complexity
exists in the VT task domain.

VT performs the engineering task of
designing elevator systems. It must
use the customer’s functional specifi-
cations to select equipment and pro-
duce a parts configuration that meets
these specifications as well as safety,
installation, and maintenance require-
ments. Because of the large number of
potential part combinations and the
need for customizing the layout to the
space available in individual build-
ings, VT must construct a solution.
Like MOLGEN, VT tries to order its
decisions so that they are made only
when all relevant constraints are
known; it guesses only when stuck.

Unlike MOLGEN, VT’s decisions
about part selection and placement
are so interdependent that plausible
reasoning (guessing) is a major feature
of its search for a solution Thus, VT’s
problem-solving strategy is predomi-
nantly one of constructing an approxi-
mation and successively refining it.

Systems that use plausible reason-
ing must be able to identify bad guess-
es and improve on these decisions in a
way which helps converge on a solu-
tion. VT is similar to AIR/CYL
(Brown 1985) and PRIDE (Mittal and
Araya 1986) in that it uses a knowl-
edge-based approach to direct this
search; that is, it uses domain-specific
knowledge to decide what past deci-
sions to alter and how to alter them.
This approach contrasts with EL
(Sussman 1977; Stallman and Suss-
man 1977), an expert system which
shares many architectural features
with VT but which uses domain-inde-
pendent strategies to limit the search
during the backtracking phase. As
with EL, the VT architecture makes
clear the role that domain-specific
knowledge plays in the system and
the interconnections among decisions
used to construct and refine a solu-
tion. This architecture provides the
basis for VT’s explanation facility,
which is similar to that of EL and the
related CONSTRAINTS language
(Sussman and Steele 1980), with some
extensions. We have exploited the
structure provided by this architec-
ture even further by using it to man-
age VT’s knowledge acquisition.

VT’s architecture provides structure
for a representation of its domain-spe-
cific knowledge that reflects the func-
tion of the knowledge in problem
solving. This representation serves as
the basis for an automated knowl-
edge-acquisition tool, SALT (Marcus,

WINTER 1987 41

AI Magazine Volume 8 Number 4 (1987) (© AAAI)

Wdcomc to VT -- The Elevator Desigu Expert System
1. JNPUT Eutcr coutract iuformatioe
2. RUN Process the input data
3. SHOW 1)ispiay output information
4. EXPLAIN Explaiu the results of a ruu
5. SAVE Save data for the currcrlt contract
6. EXIT Eud this sessiou with VT
Enter your command [INPUT): <CT>

Figure 1 VT’s Top Level Menu

INPUT GD JWTY GR 24364
Car:1
1. Type of loading
2. Machine
3. Machine Iocatiou
4. Polver supply
5. Capacity
6. Speed
7. Travel
8. Platform width
9. Platforut depth
10. Couutexwcight locntiou
11. Couutcrweight safety
12 Compensation specified
Action [EXIT I:

AJ1MJNISTRATION CENTER

PASSENGER
GEAREJ)
OVERHEAD
208-3-60
3000
250
729
70
84
REAR
NO
NO

L
Figure 2 Completed Sample input Screen.

McDermott, and Wang 1985; Marcus
and McDermott 1986, Stout et al.
19871, which has been used to build
VT. SALT elicits from experts all the
knowledge VT needs in order to
design elevators and represents that
knowledge in a way which enables
VT’s problem-solving method to use
it. SALT’s knowledge representation
can also be used to assess the adequa-
cy of the knowledge base for conver-
gence on a solution.

VT is used by Westinghouse Elevator
engineers to design elevator systems
to customer specifications. VT has
enough domain knowledge to perform
the design task unaided. VT also has
an interactive capability which allows
a user to directly influence its deci-
sions.

The Engineer’s Task

The next section, “What VT Does,” Westinghouse Elevator design experts
presents VT mainly from a user’s receive data collected from several
point of view. “The VT Architecture” cont.ract documents. These data are
describes the VT architecture in transmitted to the engineering opera-
detail, with respect to problem-solv- tion by the regional sales and installa-
ing, explanation, and knowledge tion offices. Three main sources of
acquisition. “Management of Knowl- information exist. (1) customer
edge-Based Backtracking” describes requirement forms describing the gen-
how SALT’s knowledge base analysis eral performance specifications, such
supports VT’s domain-dependent as carrying capacity and speed of trav-
backtracking. “Comparison to Other el, and some product selections, such
Constructive Systems” compares VT as the style of light fixture in the cab;
to other expert systems that perform (2) the architectural and structural
design, planning, or scheduling tasks drawings of the building, indicating
“VT’s Performance” reports some of such elements as wall-to-wall dimen-
VT’s performance characteristics. sions in the elevator shaft (hoistway)

What VT Does

and locations of rail supports; and (3)
the architectural design drawings of
the elevator cabs, entrances, and fix-
tures. Because all this information is
not necessarily available at the start of
a contract, the engineer must some-
times produce reasonable guesses for
incomplete, inconsistent, or uncertain
data to enable order processing to ten-
tatively proceed until customer verifi-
cation is received. (These guesses are
in addition to whatever guesses might
be required during a problem-solving
episode based on these data.)

Given this information, experts
attempt to optimally select the equip-
ment necessary and design its layout
in the hoistway to meet engineering,
safety code, and system performance
requirements. This task is a highly
constrained one. A completed elevator
system must satisfy constraints such
as the following: (1) there must be at
least an 8-inch clearance between the
side of the platform and a hoistway
wall and at least 7 inches between the
platform side and a rail separating two
cars; (2) a model 18 machine can only
be used with a 15, 20, or 25 horsepow-
er motor; and (3) the counterweight
must be close enough to the platform
to provide adequate traction but far
enough away to prevent collision with
either the platform or the rear hoist-
way wall (by an amount dependent on
the distance of travel)

The design task also encompasses
the calculation of the building load
data required by the building’s struc-
tural engineers, the reporting of the
engineering and ordering data required
for the field installation department
and regional safety code authorities,
and the reporting of the mechanical
manufacturing order information.

A Quick Look at VI’ in Action

VT is comprised of several distinct
parts, described briefly in the sample
interactions which follow. VT
prompts appear in boldface. User
replies appear in bold italics

Figure 1 illustrates the top menu,
where the user indicates what VT is to
do. The INPUT command allows the
user either to enter data on a new job
or to modify data from an existing job.
The other modes use previously input
data. VT displays a defauh command

42 AI MAGAZINE

in brackets at the bottom of the
screen that the user can issue by hit-
ting a car
also issue single or multiple com-
mands by typing only a portion of a
command word or the number in
front of it.

VT’s input is menu driven, allowing
entire screens of questions to be
answered at once by providing
defaults wherever possible. The input
mode also provides consistency
checking of data and a general ques-
tion-asking mechanism that is used
throughout VT. A completed sample
input screen is shown in figure 2.
Prompts for data appear on the left,
defaults and input on the right.

Using a simple command language,
the user can confirm some or all val-
ues shown, enter or modify values, or

Fourteen of these data menus cur
ly exist in the INPUT portion of VT.
Once all the data have been entered,
the user returns to the top menu, at
which point the data can be saved for
future use [SAVE) or used immediate-
ly in the design task (RUN).

As VT runs, it tentatively con-
structs an elevator system by propos-
ing component selections and rela-
tionships. At the same time, VT spec-
ifies constraints with which to test
the acceptability of the resulting
design and tests each constraint
whenever enough is known about the
design to evaluate it. Whenever con-
straints are violated, VT attempts to
alter the design (for example, by
selecting more expensive equipment)
in order to resolve the problem. We
refer to these alterations as fixes. VT
reports any such constraint violation
and the fix that is made, as in figure 3

There are two types of fix reports.
The report shown for MAXIMUM-
TRACTION-RATIO is the more com-
mon version. It mentions the con-
straint that was violated, describes
the degree of the violation, and lists
the car

RUNBY is a special case. This version
is used when VT makes an initial esti-
mate for a value in order to calculate a
precise value for it. The value of the
constraint is the precise value; the
estimate is simply changed to this
value.

The CAR-RUNBY (estimated to be 6) has been changed to 6.125.
The MACHINE-SZIEAVE-Z-IEIGWT (estimated to be 30) has been changed to
26.
The CWT.STACK-WEIGHT (estimated to be 4316.25) has been changed to
4287.36.
The MAXIMUM-TRACTION-RATIO coltsmint was violated. The TRAC-
TION-RATIO was 1.806591, but had to be <= 1.783873. The gap of
0.2272000L01 was eliminated by the following action(s):

Decreasing CWT.TO-PLATFORM-FRONT from 4.75 to 2.25
IJpgrading CO~~V-CABLE-UNIT-WEIGIIT ftom 0 to 0.50000OOE-01

The MINIMlJM-MAX-CAR-RAIL-LOAD constraint was violated. The MAX-
CAR-RAIL-LOAD was 6000, but had to be >= 6722.295. The gap of 722.3 was
eliminated by the following action(s):

Uygrading CAR-RAIL-UNIT-WEIGHT from 11 to 16
The MININIUM-PLI1’I’FOBM-TO-CLEAR-HOISTWAY-RIGHT constraint
was violated. The PLATFORM-TO-CLEAR-HOISTWAY-RIGHT was 7.5, but
had to be >X 8. The gap of 0.5 was eliminated by the following action(s):

Decreasing CAR-RETURN-RIGHT from 3 to 2.5
The MINIMUM-PLATFORM-TO-CLEAR-HOISTWAY-LEFT constraint was
violated. The PLATFORM-TO-CLEAR-HOISTWAY-LEFT was 7.5, but had to
be >a 8. The gay of 0.5 was eliminated by the following action(s):

Decreasing CAR-RETURN-LEFT from 25.5 to 25
The MAXIMUM-MACHINE-GROOVI?-I!RESSIJRI? constraint was violated.
The MACHINE-GROOVE-PRESSURE was 149.5444, but had to be <a 119.
The gap of 30,544 was clhninatcd by the following action(s):

Increasing HOIST-CABLE-QUANTITY from 3 to 4
The MINIMUM-HOIST-CABLE-SAPETY-FACTOR comtcaint was violated.
The HOIST-CAf3LJ?-SAFETY-FACTOR was 8.395078, but had to be >- IO.
The gap of I .60492 was eliminated by the following action(s):

Upgrading HOIST-CABLE-DIAMETER from 0.5 to 0.625
The MINIMUM-MACHINE-BEAM-SECTION-MODULUS constraint was
violated. The MACHINE-BEAM-SECTION-MODULUS was 24.7, but had to
be >= 24.87352, The gap of 0.1735 was eliminated by the following action(s):

Upgrading MACHINE-REAM-NLODEL from SlOX25.4 to SlOX35.0
The CHOICE-SET-HOIST-CABLE-DIANIETER coastraitlt was violated. The
IJOIST-COLE-I)IAMETER was 0.625, but was constrained to be 0.5. The
HOIST’-CALILE-DIAMETEH became a member of the set by the following
action(s):

Upgradiq MACHINE-MODEL from 28 to 38

5gure 3. Constraint Violation and Fix Report

During a noninteractive run, VT
uses its own knowledge base to decide
how to remedy constraint violations.
This knowledge base represents engi-
neering practices that Westinghouse
plans to make standard. The RUN can
also be done interactively, in which
case VT asks for confirmation of each
fix before it is actually implemented.
If a particular fix is rejected by the
user, VT can either find another fix or
provide a list of all possible fixes and
ask the user to suggest a particular
one. Records are kept of user over-

consideration by the system maintain-
ers when modifying the knowledge
base The over
fix by the user might indicate that a
standard does not yet exist on a deci-
sion VT makes. It might also be the
result of outside factors that were too
transitory to make it into the VT
knowledge or data base, such as a tem-
porary surplus or a shortage of a par-
ticular equipment model.

On completion of the run, control
returns to the top menu, at which

WINTER 1987 43

SHOW LAYOUT SPECS GR 24364 ADMINISTRATlON CENTER
Loading: PASSENGER Governor: B5B Support: STEEL
Capacity: 3000 Goveruor Cable: 0.375

Length: 2130
Speed: 250 Hoist Cables: (3)-1X5

Length: 1089
Operation: IC-2BC-ERL Compensation: 3/16-CHAIN

Length: 993
lhvel: 729 Car sling: 2.5B-18
Stops: 6 Openings: 6 Crosshead Beam: 1~8x18
Machine: 28 Sheave: 30 Platform Thickuess: 6.625
Deflector Sheave: 20 Sling Weight.,.. 292
Groove: K3269 pressure: 90.03 Platform Weight....... 738
Angle of Contact: 159.09 Safety Weight......... 465
Traction Ratio: 1.79 Cab Weight............1668
Machine Load: 11691 Misc. Weight ..,.,.,.., 434
Motor H.P.: 20 Total Car Weight.,.,.,3609
Power Source: - Counterweight Weight: 4824
Power Supply: 208-3-60 Subweight Weight:
6287 Rails........ Car: 16 Cwt: I I Buffer Reaction Car: 26437

Cwt: 19296
Guide ShoesXar: 6-R Cwt: 3-R Machine Weight: 1700
Uuffer....... Car: OH-1 Cwt: OH-l Heat Emission in M.R.: --
Stroke *Car: 8.25 Cwt: 8.25 Cable Haugcr --
Safety....... Car: HI Cwt: -- Safety to Pit: 42
Press RETURN to coutiuuc [MENU 1: show layout cwt

‘igure 4. Show Screen for Layout Specs

SHOW LAYOUT CWT GR 24364 ADMINISTRATION CENTER
-------_____-- 85 5 .----_____

----_-__
I-L 7-l

Cwt Assembly Weight 537 Overall Cwt Height 138
Cwt Subweight Weight 4287 Maximum Subweight Weight 5273
Total CWT Weight 4824 Cwt Stack Height 87

Maximum Stack Height 107
Maximum Buildiug Tolerance: 1 Stack Percent 8X
Press RETURN to coutiuuc 1 MENU]:

igure 5 Show Screen (Layout CWT)

point the user normally goes into such a review, and others are intended
SHOW mode. SHOW allows users to as input data for other Westinghouse
view data a screenful at a time. Some systems (such as manufacturing-ori-
of the screens are intended for just ented programs, cost estimators, and a

computer-aided drawing system). Fig-
ures 4 and 5 are representative of the
sixteen SHOW screens that cur
exist; the user accesses these screens
by a tree of menus similar to the input
menu.

If the user sees something unusual
while in SHOW (for example, an unex-
pected value), the EXPLAIN mode can
be used to determine the cause.
EXPLAIN can also be used by relative
novices to understand how VT per-
forms the design task.

The user interacts with VT’s expla-
nation facility by asking questions.
The type of information given in the
explanation depends on the type of
question asked. VT’s explanation
facility cur
types of queries that can be asked
about individual system values. These
query types are discussed in detail in
the next section. The sample interac-
tion in figure 6 demonstrates some of
the tools the explanation facility pro-
vides, including the use of VT’s lexi-
con of synonyms for system value
names.

The only major part of VT that is
not visible in figures l-6 is VT’s
database. The database is read only
and primarily contains data about
pieces of equipment and machinery
that VT must configure Each piece of
equipment has its own table; the rows
of each of these tables represent differ-
ent models of the equipment from
which to choose, and the columns rep-
resent attributes relevant to the type
of equipment These attributes can be
restrictions on each model’s use (for
example, maximum elevator speed or
maximum load supported by the
equipment j, values of equipment
attributes [for example, height and
weight), or lists of model numbers of
compatible pieces of equipment.

Calls to the database indicate which
table is to be used and what value is to
be returned. This value can be either
the name of the particular model or
the value of one of its attributes. A
call might also include an arbitrary
number of constraints on the values of
each column.

In the event that multiple entries in
the database satisfy all the constraints
in a call, each table is ordered along an
equipment attribute [for example,
size) to indicate a preference or priori-

44 AI MAGAZINE

ty. The entries in a table are examined
from best to worst, and the first entry
satisfying all the constraints is the
one from which the return value is
obtained.

The VI’ Architecture
VT solves its problem by constructing
an approximate elevator design and
successively refining it. The process
of constructing an approximate design
is forward chaining. Each step in this
phase extends the design by proce-
dures that use input data or results of
prior decisions to determine a value
for a design parameter. Some of these
steps embody heuristic knowledge
about how to propose an approximate
design extension. These steps are
needed when the decision is under-
constrained or when it must be based
on partial information. As VT builds a
proposed design, constraints on the
elevator system are specified whenev-
er enough information is available to
determine their values. The control in
this constructive phase is data driven;
any step can be taken as soon as the
information called for by the proce-
dure associated with the step is avail-
able. As it extends the design, VT also
builds a dependency network that
records for each value which other
values were used to obtain it.

The dependency network developed
during the forward-chaining construc-
tive phase is enough to identify all
contributors to a violated constraint
and the value it constrains. These
contributors represent potential
points to backtrack to in order to
revise the proposed design However,
domain expertise is needed to indicate
what changes in the proposed design
are least costly in real-world terms.
Although it is not possible to assign a
dollar cost to each revision, domain
knowledge determines which of the
potential alterations are legal as well
as the order of preference among the
legal ones.

Demons are used to check for con-
straint violations; whenever enough is
known about the proposed design to
supply values for both a constraint
and the value it constrains, they are
compared. Whenever VT detects a
constraint violation, it tests the effec-
tiveness of suggested changes in order

EXPLAIN GR 24364 ADMINISTRATION CENTER
Exphin: how car rrmby
The CAR-RUNBY WilS determined by a fix,
The CHOICE-SET-CAR-RUNBY constraint was violated.
The CAR-RUNBY was 6, but was constrained to be 6.125.
The CAR-RUNBY was changed from 6 to 6,125.
EIow[CHOICE-SE’I=CAR-IIUNBY 1: <cr>
The CI-IOICE.SET-CN~-RlJNSY (6.125) = PIT-DEPTH (72) - [PLATFORM-
EFEIGHT (6.625) + SAFETY-HEIGHT (9) + CAR-BIJPPER-HEIGHT (28.75) +
CAR-FOOTING- CHANNEL-HEIGHT (3.5) + CAR-BUFPER-BLOCIUNG-
HEIGHT (18)]
EIow [PIT-DEPTH 1: <cr>
The PIT-DEPTH (72) was input by Bob Rochc on 25.MAR-1985
How [PJ,ATFORM-WEIGHT 1: snfety hcig1ir
The SAFETY-HEIGHT (9) was determined by a database lookup.
It was found in the HEIGHT column of the SAFETY table.
[t met the following constraints:

MODEL = SAFETY-MODEL (Bl)
How [SAFETY MODEL]: <a>
The SAFETY-MODEL (131) was determined by a database lookup.
It was found in the MODEL column of the SAFETY table.
[t had the SMALLEST HEIGHT that met the followhlg constraints:

MAX-SPEED 5 SPEED (25CI)
MAX-PL,ATFORM-WJDTII >= PLATIQRiM-WIDTH (70)
MIN-PLATFORM-WIDTH <= PLATFORM-WIDTH (70)

Kow[SPEED]: what ij safety model B4
I’hc SAFETY-MODEL is currently Bl.
[fit were 84, the following major rhangcs would occur:

VAME: ACTUAL: PROPOSED:
MACHINE-GROOVE-PRESSURE 114.118 155.563,
I’RACTION-RATIO 1.80679 1.76682.
ZWT-OVERTRAVEL 49.835 52.835.
ZAR-BUFFER-REACTION 26709.4 27652.4.
ZWT-STACK-PERCEN’I 84.1122 88.148.
“WT-BIJPFER-REACTION 19684 20627.0.
::WT-PI,AT~-(IUANTITY 90 94.3184.
;:WT-WEIGHT 4921.0 5156.76.
DAR-BUFFER-LOAD 6677.35 6913.11.
CAR-WEIGHT 3677.35 3913.11.
DEFLECTOR-SHEAVE-DIAMETER 25 20.
CAR-BUFFER-BLOCKING-HEIGHT 17.125.
EIOIST-CABJ,E-MODEI ;.0.5 (3).0.5.
CAR-RUNBY 6.125 6.
SAPETYdMODEL Bl 84.
Would you like to see ALL vales which would change [NO 1: <CT>
Would you like to implement this [NO 1: <CD
How [MACHINE-GROOVE-PRESSURE 1: safety load
There is more than one SAFETY-LOAD:
1, SAFETY-LOAD-CAR-SIDE-CAR-TOP
2. SAFETY-J,OAD-CAR-SIDE-CAR-BOTTOM
3. SAFETY-LOAD-CWT-SIDE-CAR-TOP
4. SAFETY-LOAD-CWT-SIDE-CAR-BOTTOM
Which would you like to know about?
[SAFETY-LOAD-CAR-SIDE-CAR- TOP 1: 2

Figure 6 A Sample Interaction with the Explanation Facility

WINTER 1987 45

J) MACHINE-MODEL step:
P a value has been generated for SUSPENDED-LOAD, and

there is no value for IMACHINE-MODEL,
F’HEN look in the database in the MACHINE table for the entry with the

SMALLEST WEIGHT whose listing for MAX-LOAD is greater than the
SUSPENDED-LOAD.
Retrieve the value uudcr MODEL for that entry and assign that value to
MACHINE-MODEL.
Leave a trace that SUSPENDED-LOAD contributed to MACHINE-MODEL.
Leave a declarative represmtation of the details of the database call.

trol. This rule is eligible to fire as
soon as a value for SUSPENDED-
LOAD is made availablei then uses
this value to supply MACHINE-
MODEL. Leaving a trace of the contri-
bution adds to the dependency net-
work used by the truth maintenance
system in backtracking. Leaving a
declarative representation of the
action taken by this rule is used by
the explanation facility.

Figure 7. Machine-Model Step

To see how this step might interact
with others, consider the two steps
shown in figure 8.

of decreasing preference rating. As VT
moves through the list of potential
fixes for a constraint violation, it first
tries every individual fix at a given
preference level. Next it tries to com-
bine each fix at the cur
level with those of greater or equal
preference.

Once VT identifies a change to
explore, it first verifies that no con-
straints on the changed value itself
are violated by the change. It then
makes the proposed change and works
through the implications according to
its knowledge about constructing a
proposed design (constraints can be
numeric or symbolic, and procedures
for determining values often involve
nonlinear functions such as selections
from the database). VT continues this
procedure until it has enough knowl-
edge to evaluate the originally violat-
ed constraint. If a proposed change

12) MACHINE-SHEAVE-DIAMETER step:
IP a value has been generated for MACHINE-MODEL, and there is no value fol

MACHINE-SHEAVE-DIAMETER,
YHEN look in the database in the MACHINE table for the entry whose listing

for MODEL is the same as MACHINE-MODEL.
Rctricvc the value under SHEAVE-DIAMETER for that entry and assign that
value to IMACHINE-SHEAVE-DIAMETER.
Leave a trace that MACHINE-MODEL contributed to MACHlNE-SHEAVI?-
DIAMETER.
Leave a declarative representation of the details of the database call.

[3) MACHINE-GROOVl?-PRESSURE-FACTOR step:
IF a value has been generated for HOIST-CABLE-DIAMETER, and there is no

value for MACHINE-GROOVE-PRESSURE-PACTOR,
THEN compute 2 l HOIS’1’-Chl3LE-‘I)INI1ETER.

Assign the result to llIACHINE-GROOVE-PRESSIIHE-PhCTOH.
Leave a trace that HOIST-CABLE-DIAMETER contributed to MACHINE-
GROOVE-PRESSURE-FACTOR.
Leave a declarative representation of the details of the calculation.

violates the constraints, it is reJected, Figure 8 Sheave-Diameter and Pressure-Factor Steps.

and another selection is made. This
lookahead is limited because it only
considers constraints on the changed
value and the originally violated con-
straint. The purpose of this lookahead
is to limit the work done in exploring
the implications of a proposed guess
until VT has reason to believe it is a
good guess. Once a good guess has
been identified, VT applies a truth
maintenance system; that is, it uses
the dependency network constructed
during the forward-chaining phase to
identify and remove any values that
might be inconsistent with the
changed value. VT then reenters the
data-driven constructive phase for
extending the design with the new
data.

A Detailed Look at Problem Solving

In order to better illustrate how VT
ar
forwardchaining and backtracking
done in a small portion of the sample
run. The detail focuses on steps lead-
ing to the specification of MACHINE-
GROOVE-PRESSURE and its con-
straint MAXIMUM-MACHINE-
GROOVE-PRESSURE and follows the
backtracking initiated by a violation
of this constraint.

A step to extend the proposed
design specifies a value for a design
parameter, often using results of deci-
sions already made. For example, the
step to select the model of the
machine that moves the elevator car
can be given the English translation
shown in figure 7

The first line of this step specifica-
tion sets up the forward-chaining con-

According to the control shown in
figures 7 and 8, step 1 must be applied
before step 2 because step 1 creates
the conditions under which step 2 is
satisfied. If step 3 is satisfied at the
same time as either of the other steps,
it does not matter which procedure is
applied first.

The machine moves the elevator by
turning the machine sheave. The
machine sheave contains grooves that
grip the hoist cables which support
the elevator car. Some pressure is
required, but if the pressure on each
individual cable is too great, there is
excessive wear on the cables. Steps 1
and 2 are on the inference chain that
produces a value for MACHINE-
GROOVE-PRESSURE. This value is
the result of a calculation using MAX-
TOTAL-LOAD-CAR-SIDE,

46 AI MAGAZINE

MACHINE-SHEAVE-DIAMETER, and
HOIST-CABLE-QUANTITY. Step 3 is
on the inference chain that produces a
value for MAXIMUM-MACHINE-
GROOVE-PRESSURE. This value is a
function of the MACHINE-GROOVE-
MODEL, the SPEED the elevator will
travel, and MACHINE-GROOVE-
PRESSURE-FACTOR. Once values for
both MACHINE-GROOVE-PRES-
SURE and MAXIMUM-MACHINE-
GROOVE-PRESSURE are available,
they are compared. Because the con-
straint is a maximum, the constraint
is flagged as violated if the value of
MACHINE-GROOVE-PRESSURE is
greater than the value of MAXIMUM-
MACHINE-GROOVE-PRESSURE.
Flagging the constraint as violated
causes VT to shift control into fix
exploration.

As a first step in exploring remedies
for the constraint violation, VT pro-
poses potential remedies. For this par-
ticular violation, a propose-fix step for
the VT knowledge base looks as
shown in figure 9. (This is an abbrevi-
ated listing of fixes for MAXIMUM-
MACHINE-GROOVE-PRESSURE. We
return to a complete treatment of this
example in “Management of Knowl-
edge-Based Backtracking.)

Downgrading the MACHINE-
GROOVE-MODEL to one that grips
the cable less increases the allowable
MAXIMUM-MACHINE-GROOVE-
PRESSURE. Increasing the HOIST-
CABLE-QUANTITY distributes the
load and decreases the actual
MACHINE-GROOVE-PRESSURE on
each groove. VT’s domain expert felt
these two potential fixes would be
practical to attempt. Of the two fixes,
the first is preferable

VT first considers a downgrade of
MACHINE-GROOVE-MODEL by try-
ing to select the next higher groove
according to the preference ordering.1
If there is such a prefer
determines what the MAXIMUM-
MACHINE-GROOVE-PRESSURE for
this groove is. If this value is not less
than the value of MACHINE-
GROOVE-PRESSURE, VT tries to
downgrade the groove model further.
When there are no longer any models
to try (there are only two groove mod-
els), VT considers an increase of
HOIST-CABLE-QUANTITY by adding
1 to its cur

IF there has been a violation of MAXIMUM-MACHINE-GROOVE-PRESSURE,
THEN try a DOWNGRADE for MACHINE-GROOVE-MODEL which has a

preference rating of 1 hecause it CAUSES NO PROBLEM.
Try an INCREASP, BY-STEP of 1 of HOIST-CABLE-QUANTITY which has a
prefercncc rating of 4 because it CHANGES MINOR EQUIPMENT SIZING.

Figure 9 A Propose-Fix Step

to see whether this quantity is larger
than the MAXIMUM-HOIST-CABLE-
QUANTITY (which in any application
is never more than six cables). If not,
VT then recomputes the MACHINE-
GROOVE-PRESSURE using the new
HOIST-CABLE-QUANTITY to see if
this quantity brings the pressure
under the maximum. If it does not,
VT tries adding another hoist cable
and repeats the procedure. If VT
exceeds the MAXIMUM-HOIST-
CABLE-QUANTITY before bringing
MACHINE-GROOVE-PRESSURE
under its maximum, it then attempts
a combination of the two fixes. If none
of the specified fixes resolve the viola-
tion, VT has reached a dead end (that
is, the constraint violation cannot be
car
previously, the proposed design
already employed the prefer
at the time of the constraint violation;
adding a single hoist cable was the
selected remedy.

Once VT finds the fix it wants to
implement, it uses the dependency
network built during the forward
chaining to remove any values that
depended on the one it changed. It
then returns to the forward-chaining
phase with the new HOIST-CABLE-
QUANTITY and continues.

A Detailed Look
at the Explanation Facility

Every decision VT makes must be jus-
tifiable to the user. This condition is
provided for by making a record of
each decision as it is made. The
dependency network built for VT’s
truth maintenance system can provide
the foundation for a very useful expla-
nation facility (Doyle 1979; Sussman
and Steele 1980). This network is aug-
mented by the details of the contribu-
tion relation, for example, a descrip-
tion of an algebraic formula or the
relation between values required by a
precondition. In addition, VT records

adjustments to the proposed design
that it makes, such as fixes of con-
straint violations The explanation
facility pieces these individual actions
together to describe VT’s line of rea-
soning.

VT’s explanation facility does more
than just examine past decisions; it
also performs some hypothetical rea-
soning to demonstrate the effect of
alternative decisions the user sug-
gests. Hypothetical explanations are
relatively simple to construct given
the VT knowledge representation.
What the system must do in order to
answer hypothetical queries is closely
related to how it resolves constraint
violations.

Explaining Past Decisions. The how
query is probably the most fundamen-
tal and can be thought of as asking the
question “How did you determine the
value of <x>?” First, the explanation
facility looks for the appropriate node
in the dependency network that
recorded the decision which VT made
regarding the value assigned to <x>.
This decision record includes, for
example, not only a formula but also
any conditions in the system that
made the formula appropriate. The
dependency network provides pointers
to the actual values that were used in
determining the value in question.

If the user were to ask how the
machine groove pressure was deter-
mined, VT would respond with some-
thing like the following:

The MACHINE-GROOVE-PRES-
SURE (90.0307) = MAX-TOTAL-
LOAD-CAR-SIDE (6752.3042) /
[[MACHINE -SHEAVE-DIAME-
TER (30) * 0.5] * HOIST- CABLE-
QUANTITY (5)]

The machine groove pressure was
determined by a calculation, which is
displayed in terms of the names of the
system values and their values.

If the value being explained was

obtained via a database lookup, the
explanation facility responds with
something like the following:

The MOTOR-MODEL (20HP)
was determined by a database
lookup. It was found in the
MODEL column of the MOTOR
table. It had the SMALLEST
HORSEPOWER that met the fol-
lowing constraints:

HORSEPOWER > REQUIRED-
MOTOR-HP (18.705574)
The facility reports the name of the

table and the column within the table
from which the value was obtained as
well as what criterion was used in
ordering the table. It then lists the
constraints that were applied to the
attributes in the table which nar-

If the method used to calculate the
value in question was selected accord-
ing to a precondition, the description
of the method is followed by a
description of the precondition, as fol-
lows:

The CAR-RETURN-LEFT (25) =
PLATFORM-WIDTH (70) -
[OPENING-WIDTH-FRONT (42)
+ CAR-RETURN-RIGHT (3)]
This particular method was used
because:
[DOOR-SPEED-FRONT = TWO]
AND [OPENING-STRIKE-SIDE-
FRONT = RIGHT]
In addition, the how query finds

possible reasons why a quantity in the
system might have a value that the
expert believes to be out of the ordi-
nary, unexpected, or just plain incor-

values can occur, as the following
paragraphs illustrate:

Conflicting input values: Some
inputs to VT can come from multiple
sources. If these sources specify differ-
ent values, one is chosen (by applying
a specified strategy), and a record is
made of the event. Obviously, the
choice can be incor
cause unusual values to propagate
throughout the system.

Inconsistent input values. This situ-
ation occurs when two input values
violate an expected relationship
between them. For example, inputs
exist for the number of front open-
ings, number of rear openings, and the
total number of openings in an eleva-

48 AI MAGAZINE

tor shaft. Obviously, “front” plus “rear”
should equal “total,” but if such is not
the case, a decision is made about how
to make the values consistent, and a
record is made of the event.

Unusual input values: Some inputs
have a reasonable range of values spec-
ified. A value outside the reasonable
range is allowed (as long as it does not
violate the absolute range) but is an

value is determined by its direct con-
tributors or unusual decisions which
directly change its value. Everything
upstream in the dependency network
contributes to the proposed value. The
explanation facility allows the user to
step back through the network by
repeated questioning and provides
default queries after each answer to
aid in this process, as shown earlier in

Explain: how traction ratio
The TRACTION-RATIO (1.796574) =

MAX 1 TRACTION-RATIO-CAR-TOP-PULL (1.759741)
TRACTION-RATIO-CAR-BOTTOM-FULL (1.796574)
TRACTION-RATIO-CAR-TOP-EMPTY (1.742178)
TRACTION-RATIO-CAR-BOTTOM-EMPTY (1.696701)]

The value for TRACTION-RATIO may be unusual because:
(1) The IMACHINE-MODBL was changed due to a constraint on the HOIST-
CABLE-DIAMETER. (Depth = 3)
(2) The CAPACITY was an inconsistent input value. (Depth x 3)

Figure 10. An Explanation Noting Unusual Contributors.

indication that VT is receiving an
input which is out of the ordinary. As
stated earlier, this unusual value can
propagate other unusual values
throughout the system.

Default input values: If the user
chooses not to answer a particular
question in the input, a default value
is assigned. The chances that the
default chosen is actually the car
value depends on the particular ques-
tion.

Fixed values: A value changed by
the fix mechanism can look unusual
to a user, particularly if the value
changed is an input or if a low-prefer-
ence fix was required.

When the user makes a how query
about a value, unusual occur
are reported as well:

Explain: how hoist cable quantity
The HOIST-CABLE-QUANTITY
(4) was determined by a fix:
The MAXIMUM-MACHINE-
GROOVE-PRESSURE constraint
was violated. The MACHINE-
GROOVE-PRESSURE was
149.5444, but had to be <= 119.
The gap of 30.544 was eliminated
by the following action(s):

Increasing HOIST-CABLE-
QUANTITY from 3 to 4
Of course, it is simplifying the pro-

cess of extending a design to say that a

“What VT Does.” The facility also
searches the upstream network on its
own and in answering any how query
reports any unusual decisions made
about upstream contributors. In
searching for reasons why cx> might
be unusual, the explanation facility
examines all the items that directly
contributed to <x> as well as the
items used in evaluating any precondi-
tions on <x>‘s method. This examina-
tion is recursive in that each of these
contributors is also examined similar-
ly and so on until the explanation
facility grounds out on either inputs
or constants.

Figure 10 illusrates an unusual
explanation; the user asks how TRAC-
TION-RATIO was determined. The
depth indicates how far upstream the
contributor is.

Hypothetical Reasoning. The data-
driven control for the forward-chain-
ing construction of the proposed
design assumes that the dependency
network built while the design was
extended is a directed acyclic graph.
Because of this assumption, hypothet-
ical queries can proceed in two direc-
tions-upstream and downstream.
The two hypothetical query
types-why not and what if-differ in
their emphasis on what direction is of
interest to the user. Thus, the answer

Explain: rvljy not safety model 34
The SAFETY-MODEL (currently Ill) could be B4, but that is less desirable

because it has a larger HEIGHT. A SAFETY-MODEL of Bl was selected
because it met the following constraints:
Its MAX-SPEED (500) was at feast as much as the SPEED (250).
Its MAX-PLATFORM-WIDTH (93) was not less than the PLATFORM-
WIDTH (70).
Its MIN.PLATFORM-WIDTH (54) was not more than the PLATPORM-
WIDTH (70).

1

Figure 11. Why Not Explanation

to the query is reported differently
depending on the query type. Howev-
er, fixes for constraint violations can
form loops in VT’s line of reasoning.
Downstream constraint violations can
cause upstream design adjustments
that can affect the node from which
the query originated. Thus, when
hypothesizing about a change to a
node in the dependency network, the
system must be run to quiescence to
ensure that the reported causes or
effects are taken from a consistent,
acceptable design.

The why not query can be thought
of as asking the question “Why wasn’t
the value of <x> a particular value?”
This question is appropriate if the
user expected (or desired] a certain
value, and VT did not produce it. The

explanation facility then suggests
what has to be done in order to obtain
the desired result. The how query
does a search for reasons why a value
might be unexpected, and the why not
query looks for a way to bridge the gap
between the system’s model and that
of the user

If the user expected VT to choose a
larger safety, the question “why not
safety model B4” could be posed. The
results are shown in Figure 11.

Thus, in this case, the user’s expec-
tation is possible but not prefer
Here, the explanation facility locates
all constraints in the system that con-
strained the safety model (including
implicit constraints in database calls)
and reports them.

The following case is the opposite.

Explain: what ifsafety model R4
The SAFETY-MODEL is currently Bl.
If it were H4, the followir~g major cha3lges would 0ccUI:
NAME: ACTUAL:
MACHINE-(;ROOVE-PRESSUnE 114.118
‘TRACTION-RATIO 1.80679
CWT-OVERTRAVEL 49.835
CAR-BUFFER-REACTION 26709.4
CWT-STACK-PERCENT 84.1122
CWT-BUFFER-RBACTION I9684
CWT-PLATB-9lJ~TlTY 90
C;WT-WEIGHT 4921.0
CA&-BUFFER-LOAD 6677.35
CAR-WEIGHT 3677.35
DEFLECTOR-SHEAVE-DIAMETER 25
CAR.BUFFER-BLOCKING-HEIGHT
HOIST-CABLE-MODEL ;;?.5
CAR.RUNBY 6.125
SAFETY-MODEL HI

PROPOSED:
155.563
1.76682
52.835
27652.4
88.148
20627.0
94.3184
5156.76
6913.1 I
3923.11
20
17.125
(3).5
6
B4

Would you like to see ALL values which would change [NO]: <CT>
Would you like to implement this [NO 1:

Qwe. 12. What If Explanation.

The suggested value is prefer
not possible, except perhaps by chang-
ing values upstream (for example,
introducing nonprefer
where).

Explain: why not safety model Bl
A SAFETY-MODEL of Bl would

have been used (instead of B4) if:
The PLATFORM-WIDTH were
84 instead of 86.
In order to handle this second case,

VT uses knowledge that was acquired
solely for the purpose of handling
hypothetical queries about the value
of SAFETY-MODEL. The form of the
knowledge required is the same as
that required for fixing designs which
violate constraints. VT must have
knowledge of what contributors to
SAFETY-MODEL are changeable, the
relative preference for possible
changes, and the nature of the change
in a contributor that would produce
the desired difference in SAFETY-
MODEL. As mentioned earlier, the
system continues to completion to
verify that changes made to produce
the desired SAFETY-MODEL can stay
in place regardless of any fixes for sub-
sequent constraint violations. If the
proposed changes cannot be incorpo-
rated into an acceptable design-that
is, some constraint violation is impos-
sible to fix-this condition is reported.
Otherwise, the explanation facility is
poised to describe the effects of these
changes in the same way it does for
what if queries, and VT offers to dis-
play this information to the user.

The what if query can be thought of
as asking the question “What would
happen if I changed <x> to be a partic-
ular value?” The user then sees the
impact this change would make on
the system when VT lists which
important system values would
change. (The term important is prede-
fined and is part of VT’s knowledge
base.) Sixty system values are cur
ly considered important in this con-
text, but usually only a relatively
small subset of these 60 change in a
given scenario; thus, the user is not
overwhelrhed by information. Figure
12 shows the what if explanation of
the scenario that was shown in figure
11.

If the user does wish to examine
detailed information, the option is

WINTER 1987 49

provided to see all the values that
would change. The ability to imple-
ment a suggested change is provided.
As was the case with the fix mecha-
nism when run interactively, this
option is provided as a way to force
VT to produce nonstandard results
(perhaps in response to inventory fluc-
tuations or other transient situations).

Internally, the why not and what if
queries are virtually identical.
Because they both propose a value for
a particular quantity, they must be
able to go upstream and modify values
in order to make the system consis-
tent with the new value and then
propagate the value downstream. This
process is exactly what the fix mecha-
nism follows, and in fact, these two
queries effectively add a dynamic con-
straint to the system. As mentioned
earlier, VT must have fix knowledge
to go with these constraints, some-
thing which is impractical for all val-
ues that VT derives while it con-
structs a design. When the user asks a
why not or what if query about a
value that VT has no fix knowledge
for, the user is so warned. The what if
report might still be of interest, but it
is then up to the user to verify
upstream consistency.

tems it generates will use a propose-
and-revise problem-solving strategy
SALT acquires knowledge from an
expert and generates a domain-specif-
ic knowledge base compiled into
rules. This compiled knowledge base
is then combined with a problem-
solving shell to create an expert sys-
tem. SALT maintains a permanent,
declarative store of the knowledge
base which is updated during in&r-
views with the domain expert and
which is the input to the compiler.
This intermediate representation lan-
guage seeks to make the function of
domain knowledge explicit.

As with CONSTRAINTS, SALT’s

SALT: A Look at
Knowledge Acquisition

renresentation scheme is built around
the framework of a dependency net-
work For SALT, each node in the net-
work is the name of a value; this
name can be that of an input, a design
parameter, or a constraint. Three
kinds of directed links represent rela-
tions between nodes: (1) “contributes-
to” links A to B if the value of A is
used in a procedure to specify a value
for B; (2) “constrains” links A to B if A
is the name of a constraint, B is the
name of a design parameter, and the
value of A places some restriction on
the value of Bj and (3) “suggests-revi-
sion-of” links A to B if A is the name
of a constraint, and a violation of A

VT’s problem-solving strategy impos-
es an organization on the system’s
knowledge that can be exploited for
knowledge acquisition. Given the
assumed propose-and-revise strategy,
domain-specific knowledge must per-
form one of three roles with respect to
the problem solver: (1) PROPOSE-A-
DESIGN-EXTENSION, (2) IDENTIFY-
A-CONSTRAINT on a design exten-
sion, or (3) PROPOSE-A-FIX for a con-
straint violation. A representation
scheme for a domain-specific knowl-
edge base such as VT’s should recog-
nize these roles and the interdepen-

suggests a change to the cur
posed value of B. Each of these links is
supported by additional information
in the knowledge base. Ill con-
tributes-to links-are suppdrted by
details of how contributors are com-
bined to specify the value of the node
pointed to: (21 constrains links are
supported ‘by a specification of the
nature of the restriction; and (3) sug-
gests-revision-of links are supported
by a declaration of the nature of the
proposed revision [for example, direc-
tion and amount of change) and its
relative preference

For SALT, the knowledEe-accruisi- - _
dencies among them. Understanding
knowledge roles and relationships is
crucial to acquisition and mainte-
nance of the knowledge base and pro-
vides the key to how and when the
knowledge should be used by the
problem solver.

SALT is an automated knowledge-
acquisition tool that assumes the sys-

tion task becomes one of fleshing out
the knowledge base using these repre-
sentational primitives. SALT allows
users to enter knowledge piecemeal
starting at any point. The grain size of
the pieces car
three knowledge roles for the propose-
and-revise strategy: Users can supply
a procedure for specifying a parameter
value, identify a constraint on a

tomer satisfaction as well as dollar
cost to the company. Relative position

parameter value, or suggest a remedy
for a constraint violation. SALT keeps
track of how the pieces are fitting
together and warns the user of places
where pieces might be missing or cre-
ating inconsistencies.

SALT users must first specify which
of the three roles each piece of entered
knowledge plays. Once this choice is
made, SALT presents a set of prompts
for the detailed knowledge required by
this role. For example, a filled-in
schema for PROPOSE-A-DESIGN-
EXTENSION for CAR-RETURN-
LEFT is shown in figure 13; where
SALT prompts appear on the left and
user responses on the right.

The IDENTIFY-A-CONSTRAINT
schema prompts for similar informa-
tion to acquire a procedure for deter-
mining a value (or values in the case
of a set constraint) for the constraint.
In addition, the schema requires the
user to specify what parameter is con-
strained and what kind of constraint
it is (for example, a maximum).

Collection of information to direct
backtracking is also highly structured.
Each piece of PROPOSE-A-FIX knowl-
edge is a proposal for remedying the
violation of a particular constraint by
changing one of the decisions made
while extending a design. Procedures
used in the forward-chaining portion
of extending a design produce values
the expert would prefer in an under-
constrained case. Associated with the
potential fixes is some reason why
they are less prefer
nally proposed value. The reasons are
drawn from the following list:

1. Causes no problem
2. Increases maintenance requirements
3. Makes installation difficult
4. Changes minor equipment sizing
5. Violates minor equipment

constraint
6. Changes minor contract specifications
7. Requires special part design
8. Changes major equipment sizing
9. Changes the building dimensions
10. Changes major contract specifications
11. Increases maintenance costs
12. Compromises system performance

These effects are ordered from most
to least prefer

50 AI MAGAZINE

on this scale is significant, but abso-
lute position is not. When more than
one fix is suggested to remedy a par-
ticular constraint violation, the most
prefer
attempted first.

In addition, the domain expert must
indicate the kind of change that
should be made. This indication can
be a perturbation of whatever the cur-

that doesn’t reference the cur
value, such as the substitution of
some other system value. Figure 14 is
an example of a filled-in schema for a
fix for MAXIMUM-MACHINE-
GROOVE-PRESSURE.

In addition to providing a language
for representing domain-specific
knowledge, SALT analyzes the knowl-
edge base and guides the user’s input
to ensure that the knowledge base is
complete and consistent. SALT’s over-
all design and operation are described
in detail elsewhere (Marcus, McDer-
mott, and Wang 1985; Marcus and
McDermott 1986). The next section
describes an analysis SALT provides
to test any knowledge base it collects
for adequacy with respect to the prob-
lem-solving method it assumes.

Management of
Knowledge-Based Backtracking

The kind of domain-specific informa-
tion that SALT initially collects to
direct backtracking is relatively easy
to supply because the expert can focus
on one constraint violation at a time.
However, a search that relies solely on
this local information and ignores
potential interactions among fixes for
different constraint violations can run
into trouble. One naive way to ensure
that a system which uses backtrack-
ing converges on a solution, if one
exists, is to open the search complete-
ly and try every possible combination
of values for every potential fix before
announcing failure. This solution is
not practical for domains that have
any significant amount of complexity,
such as VT’s domain. VT can cur
ly encounter 52 different constraint
violations. Most constraint violations
(37 of 52) have only one fix-one
parameter that might be revised.
However, typically there are several or
many alternative values a parameter

Na11UX CAR-RETURN-LEFT
Precondition: [DOOR-SPEED-FRONT = TWO] AND

1 OPENING-STRIKE-SIDE-FRONT = RIGHT]
Procedure Type: CALCULATION
Forlllula: PLATFORM-WIDTH - OPENING-WIDTH-FRONT +

CAR-RETIJRN-RIGHT

Figure 13. A Completed SALT Schema for a Procedure.

Constraint Nantc: MAXIMUM-MACHINE-GROOVE-PRESSURE
Value to Change: HOIST-CABLE-QUANTITY
Chaugc Tyyc: INCREASE
Step Type: BY-STEP
Step Size: 1
Preference Rating: 4
Preference Reason: CHANGES MINOR EQUIPMENT SIZING

Figure 14 A Completed SALT Schema for a Fix.

cur might assume. This case also exists
for the remaining constraints with
multiple fixes; 10 have two fixes each,
3 have three fixes, and 2 have four
potential fixes, with multiple possible
instantiations for each fix A blind
search that considered all possible
combinations of these fixes would
have a potentially large search space.
In fact, it might be unnecessarily large
because it might not be the case that
every fix interacts with every other.

ed in order of the expert’s preference.
Until a remedy is found for this viola-
tion, all possible combinations of
these constraint-specific remedies are
tried. If the system reaches a dead end,
that is, none of these combinations
remedy the local constraint violation,
the system announces that there is no
possible solution. If fixes for one con-
straint violation have no effect on
other constraint violations, this strate-
gy guarantees that the first solution
found is the most prefer
the system car
no successful fix is found for an indi-
vidual constraint.

SALT helps manage knowledge-
based backtracking by mapping out
potential interactions among fixes for
different constraint violations A
developer can then examine cases of
interacting fixes for their potential to
cause trouble for convergence on a
solution. Nonproblematic fixes can be
handled using local information only.
This treatment ignores potential inter-
actions among fixes for different con-
straints. Trouble spots are treated as
special cases that take into account
global information.

VT’S Local
Treatment and Its Trouble Spots

In the local treatment, deciding which
upstream value is to be modified is
conditioned on individual constraint
violations. Potential fixes considered
are only those which the domain
expert identified as relevant to the

However, it is possible that reme-
dies selected for one constraint viola-
tion might aggravate constraint viola-
tions that occur further downstream.
In some instances, this situation can
result in failure to find a solution
when one does exist.2 In these cases, a
fix that appears optimal based on local
information would not be prefer
more were known about the search
space.

For example, the most prefer
for one constraint violation might
aggravate a downstream constraint
violation to such a degree that it
reaches a dead end when exploring its
own fixes. If less prefer
first constraint do not have the same
negative effect downstream, then a

WINTER 1987 51

solution might be possible. The unde-
sired behavior of the system in this
case would be a premature announce-
ment of failure.

Another potential problem is that
unproductive looping can occur
between fixes for two constraint vio-
lations if each has a prefer
a counteracting effect on the other.
This situation occurs, for example, if
fixing one constraint violation
increases a certain value that leads to
the violation of another constraint
whose fix results in decreasing the
same value, and so on. Repeated viola-
tions of the same constraint are not
necessarily pernicious, but such a case
of antagonistic constraints might
result in an infinite loop.

SALT provides a mapping of the
interactions among fixes in a knowl-
edge base. It does this mapping using
its understanding of dependencies
among procedures for extending a
design plus identification of con-
straints and fixes. (See Marcus and
McDermott 1986 for a detailed
description of this analysis.) We used
this map to analyze VT’s knowledge
base for its potential to get into trou-
ble with a local, constraint-specific
search. We then hand coded a special
case treatment for the problem spots
we found. We plan to automate this
entire process in SALT.

VT’s Fix Interactions
and Their Special Handling

The VT knowledge base contains 37
chains of interacting fixes. Eleven of
these chains are short and nonprob-
lematic. The rest represent different
entry points for loops on 8 con-
straints. Two of these looping con-
straints represent no danger for the
local treatment. Three pairs of con-
straints might cause thrashing under
the local treatment and are treated as
special cases in VT.

Each of the eleven short chains
involve at most three constraints and
the effects of only one fix per con-
straint. The most common scenario
for these chains is that when a con-
straint violation causes one piece of
equipment to be upgraded (or
increased in size), the values of con-
straints on related equipment are
affected and might require that the

related equipment be upgraded as
well. For example, if the number of
hoist cables needed for a job exceeds
the maximum allowable for the
machine model selected, the fix is to
choose a larger machine that can
accommodate more cables. The
machine model’s specifications limit
what machine sheave heights it can
be used with; larger machines require
larger machine sheaves. If the cur
machine sheave is too small for the
newly upgraded machine model, a
larger machine sheave (the smallest
one that meets constraints) is substi-
tuted.

The situation involving the two
nonproblematic looping constraints,
CHOICE-SET-HOIST-CABLE-QUAN-
TITY and CHOICE-SET-HOIST-
CABLE-DIAMETER, also involves a
rippling effect of upgrading equip-
ment. Most of the equipment selec-
tion in VT depends on the weight of
other components selected. The hoist
cable quantity and diameter depend
on hoist cable quantity and diameter
(that is, they must be able to support
their own weight) as well as proper-
ties of other parts that require knowl-
edge of hoist cable quantity and diam-
eter in their selection. The VT
strategy estimates the lowest accept-
able value for hoist cable quantity and
diameter using rough criteria, selects
other parts using these estimates, and
derives from these estimates a con-
straint on the quantity and diameter
that must be used. If the value of the
constraint does not match the initial
estimate, quantity and diameter are
increased. Violations of other con-
straints on the system derived from
this major equipment selection, such
as the MAXIMUM-MACHINE-
GROOVE-PRESSURE shown earlier,
also call for changing hoist cable
quantity or diameter but always in
the direction of increasing the values.
Furthermore, the VT knowledge base
also contains knowledge of MAXI-
MUM-HOIST-CABLE-QUANTITY
and MAXIMUM-HOIST-CABLE-
DIAMETER (SALT asked for this
information when fixes were entered
that called for increasing the quantity
and diameter.) Thus, this loop does
not present the danger of infinite
looping. Because the values start at
the lowest possible point and always

increase until the maximums are
reached, the system does not thrash.

Three cases, however, might result
in infinite loops under the local treat-
ment. These cases contain a pair of
antagonistic constraints that might
cause thrashing. A local treatment of
one of these constraints, MAXIMUM-
MACHINE-GROOVE-PRESSURE,
was described earlier. Its antagonistic
constraint is MAXIMUM-TRAC-
TION-RATIO. The complete set of
potential fixes for each of these is
shown in figure 15.

Figure 16 shows the relevant seg-
ment of the VT knowledge base as
SALT represents it. Constraints are
connected to the values they con-
strain by the dotted ar
tom Above these ar
portion of the dependency network
that links the constraint-constrained
pairs to their potential fix values.
Contributors are linked to the values
they contribute to by a solid ar
order to make the figure readable, not
all contributors are shown. In addi-
tion, suggests-revision-of links were
omitted. Instead, suggested revisions
in response to a violation of MAXI-
MUM-MACHINE-GROOVE-PRES-
SURE are sur
and suggested revisions for violations
of MAXIMUM-TRACTION-RATIO
are enclosed in ovals.

One scenario can illustrate the
potential for thrashing in this part of
the network. This scenario uses the
knowledge shown in figure I plus
information supporting the links,
including formulas for combining
contributors, the nature of con-
straints, and the suggested direction
of revisions. Suppose MAXIMUM-
TRACTION-RATIO is violated, and
VT responds by increasing CAR-SUP-
PLEMENT-WEIGHT. This situation
increases CAR-WEIGHT, which, in
turn, increases SUPPORTED-LOADS.
This condition decreases TRAC-
TION-RATIO but increases
MACHINE-GROOVE-PRESSURE. An
increase in MACHINE-GROOVE-
PRESSURE makes it likely for it to
exceed its maximum. A violation of
MAXIMUM-MACHINE-GROOVE-
PRESSURE could call for a decrease of
COMP-CABLE-UNIT-WEIGHT,
which, in turn, would decrease
COMP-CABLE-WEIGHT, CABLE-

52 AI MAGAZINE

WEIGHT, and SUPPORTED-LOADS
Decreasing SUPPORTED-LOADS
increases TRACTION-RATIO, mak-
ing it more likely to violate MAXI-
MUM-TRACTION-RATIO. At this
point, the scenario could repeat itself

SALT analyzes the knowledge base
for scenarios such as this one and pro-
duces messages such as the one
shown in figure 17.

The top leftmost constraint, MAXI-
MUM-TRACTION-RATIO, in figure
17 is an arbitrary starting point.
Potential fixes for its violation appear
in parentheses and indented one level.
The suggested changes to three of
these values-MACHINE-GROOVE-
MODEL, COMP-CABLE-UNIT-
WEIGHT, and CAR-SUPPLEMENT-
WEIGHT-would make violation of
MAXIMUM-MACHINE-GROOVE-
PRESSURE more likely, as indicated
by its appearance indented below
these fixes. Violation of MAXIMUM-
MACHINE-GROOVE-PRESSURE, in
turn, could call for changes to these
same three fix values. The LOOP flags
indicate that these changes might
make a violation of MAXIMUM-
TRACTION-RATIO more likely. As
shown by a lack of nesting, decreasing
the CWT-TO-PLATFORM-DIS-
TANCE to fix MAXIMUM-TRAC-
TION-RATIO does not affect
MACHINE-GROOVE-PRESSURE or
its maximum. Adding hoist cables to
fix MAXIMUM-MACHINE-GROOVE
-PRESSURE tends to relieve a prob-
lem with MAXIMUM-TRACTION-
RATIO, although the effect is not sub-
stantial enough to war
sion as a fix for this constraint.

As long as only one of the two con-
straints is violated, the local search
for a solution based on isolated con-
straint violations is satisfactory. How-
ever, if both constraints are violated,
the system might thrash. We added to
the VT shell the ability to treat this
latter situation as a special case and
investigate fixes for the two in tan-
dem. To do this investigation, VT
required one additional piece of infor-
mation. If both constraints cannot be
remedied at the same time, our
domain expert relaxes MAXIMUM-
MACHINE-GROOVE-PRESSURE
before violating MAXIMUM-TRAC-
TION-RATIO. If both cannot be fixed,
VT tries to minimize the violation of

IP there has been a violation of MAXIMUM-TRACTION-RATIO,
l31EN try a DECREASE BY-STEP of 1 inch of CWT-TO-PLATPORM-DIS-

TANCE which has a ptcfcteuce rating of 1 because it CAUSES NO PROB-
LEM.
Try an UPGRADE of COMP-CABLE-UNIT-WEIGHT which has a ptcfet-
ence rating of 4 because it CHANGES MINOR EQUIPMENT SX%lNG.
Try au INCREASE BY-STEP of 100 lhs. of CAR-SUPPLEMENT-WEIGHT
which has a preference rating of 4 because it CHANGES MINOR EQUIP-
MENT SIZING.
Try an UPGRADE for MACHINE-GROOVE-MODEL which has a ptcfet-
ence tatiug of 11 because it INCREASES IMAINTENANCE COSTS.

lF there has been a violation of MAXIMUM-MACHINE-GROOVE-PRl?S-
SURE,

rHEN try a DOWNGRADE for MACHINE-GROOVE-MODEL which has a
ptefeteucc rating of 1 because it CAUSES NO PROBLEM,
Try an INCREASE BY-STEP of 1 of HOIST-CABLE-QUANTITY which has
a ptefeteuce rating of 4 because it CHANGES MINOR EQUIPMENT SIZ-
ING.
Try a DOWNGRADE of COIMP-CABLE-UNIT-WEIGHT which has a ptef-
ctence tatiug of 4 because it CHANGES MINOR EQUIIJMENT SIZING.
Try a DECREASE BY-STEP of 10 Ibs. of CAR-SUPPLEMENT-WEIGHT
which has a ptefeteucc rating of 4 because it CHANGES MINOR EQUIP-
MENT SIZING.

Figure 25. Potential Fixes for Two Conflicting Constraints.

MAXIMUM-MACHINE-GROOVE-
PRESSURE without violating MAXI-
MUM-TRACTION-RATIO.

Whenever a demon detects a viola-
tion of one of these constraints, VT
checks to see if the other has been vio-
lated. If it has, it resets the values of
all potential fix values to the last
value they had before the first viola-
tion of either constraint. It then tries
out potential fixes, making sure that it
does not repeat a combination of
them, in the following order of fix
function: (1) helps both, (2) helps one
and doesn’t hurt the other, and (3)
helps one but does hurt the other. In
the third case, the system applies the
fix in the direction intended to reme-
dy the constraint most important to
fix. If there is asymmetry in the
amount of change in a bidirectional
fix, as there was for CAR-SUPPLE-
MENT-WEIGHT discussed earlier,
after fixing the most desired con-
straint, VT changes the value in the
other direction by the largest amount
that still leaves the first constraint
unviolated.

Nowhere in the VT knowledge base

did we observe a problem that might
cause the declaration of a premature
dead end. In most cases, a failure
report cannot be premature because
the fixes that cause downstream viola-
tions are the only possible fix at their
point of origin. Thus, any dead end
observed at the aggravated down-
stream point is unavoidable. This situ-
ation is true for hoist cable quantity
and diameter. For the other cases, the
aggravating fix is the most expensive
alternative for its constraint violation
and won’t be implemented unless
nothing else works at this point.
Again, this situation means that any
dead end downstream would be
unavoidable.

If we had identified a chain of inter-
acting fixes that might result in pre-
mature dead end, it would have been
relatively simple to provide a cus-
tomized treatment for the potential
site of the dead end. The VT shell
could be modified so that whenever a
dead end were found for such a con-
straint violation, VT would go back
and try more expensive fixes at the
relevant prior constraint violation(s).

WINTER 1987 53

I___mms-ms
Figure 16 A Segment of the VT Knowledge Base Containing Antagonistic Constraints

SALT’s map of interacting fixes could
be used to identify the relevant prior
fixes.

For VT then, SALT’s analysis locat-
ed cases in which fixes for different
constraints interacted. Our examina-
tion showed in most cases the propa-
gation of changes was such that a
search based on fixing one constraint
at a time would either converge on a
solution or car
solution was possible. In three cases
involving pairs of constraints, the sys-
tem might thrash if constraint viola-
tions were fixed independently; so,
additional knowledge was used to deal
with the interacting constraint viola-
tions in combination.

Domain knowledge is needed to
specify what revisions are possible in
the real world and what their relative
desirability is for fixing particular
constraints As a first step, SALT asks
the domain expert to address each
constraint violation individually This
situation relieves the expert from hav-
ing to anticipate the ramifications for
the rest of the design-something that
is difficult for a person to do in a com-
plex domain. SALT can help decide
whether this approach is adequate for
a problem solver because it has access
to the entire knowledge base and
because its representation of the
knowledge base makes clear how the
knowledge is to be used. In the case of

1

,
MAXIMUM TRACTION RATIO --___-_____

(CWT TO PLATFORM DISTAiiCE, Down)
(COMP CABLE IJNIT WEIGHT, Up}

MAXIMUM MACHINE GROOVE PRESSURE
(MACHINE GROOVE MODEL, Down)------* ’ LOOP l l -
(HOIST CABLE QUANTITY, Up)
(COMP CABLE UNIT WEIGHT, Down
(CAR SUPPLEMENT WEIGHT, Down)

}-;l’ y; ‘*--
l ‘-

(CAR SUPPLEMENT WEIGHT, Ilp)
MAXIMUM MACHINE GROOVE I’RESSURE

(MACHINE GROOVE MODEL, Down)----- l LOOP ’ *---
(HOIST CABLE QUANTITY, Up)
(COMP CABLE UNIT WEIGHT, DO~II) l ’ LOOP l *-
(CAR SUPPLEMENT WHGHT, Down)- +* LOOP *+-

(MACHINE GROOVE MODEL, IJy)
MAXIMUIM MACHINE GROOVE PRESSURE

(MACHINE GROOVE MODEL, ~~OWJ$------* * LOOP l l ---,
(HOISr SABLE QUANTITY, Up)
(COMP CABLE UNIT WEIGHT, Down
[CAR SUPPLEMENT WEIGHT, Down)--

Figure 17 SALT’s Report of Interacting Fixes

VT, a search space with hidden mine
fields for a locally based search was
much more manageable when supple-
mented with analysis-based special
case treatment. The particular solu-
tions to knowledge base inadequacies
used in VT might not be sufficient for
all constraint-satisfaction tasks. How-
ever, SALT’s representation scheme
and analyses still help in addressing

inadequacies because they make obvi-
ous the ramifications of problem-solv-
ing decisions with a given knowledge
base. Thus, they can identify the need
for additional knowledge and identify
considerations that should go into
deciding how and when knowledge
should be used (Marcus 1988; Stout et
al 1987).

54 AI MAGAZINE

Comparison to Other
Constructive Systems

The ordering of decisions in VT is in
the spirit of the Expert Executive for
aerospace vehicle design described in
Chalfan (1986). The Expert Executive
knows the inputs required and out-
puts produced by each of the proce-
dures, or programs, it must configure.
A program is run only when all other
programs have been run whose out-
puts serve as its inputs. Unlike VT,
the Expert Executive and the pro-
grams it configures are intended to be
a design aid rather than a design
expert. The Expert Executive and pro-
gram configurations leave to the
human expert the task of suggesting
plausible starting values for free
parameters, checking constraints, and
directing revisions. VT performs these
functions as well.

VT’s architecture is probably most
similar to that of EL, an expert system
which performs analysis of electric
circuits. EL makes a guess for, say, the
cur
principles such as Ohm’s Law and
Kirchoff’s Law to propose values at
other points in the circuit. It is simi-
lar to VT in that it builds up a depen-
dency network representing this prop-
agation, backtracks whenever con-
straints are violated (when some point
is assigned two different values), and
uses a truth maintenance system. The
main difference between EL and VT is
that EL uses a domain-independent
strategy of dependency-directed back-
tracking as opposed to VT’s domain-
specific knowledge-based approach.
EL’s decision of where to backtrack to
is based solely on the dependency net-
work’s record of what guesses con-
tributed to the conflicting constraints.
Furthermore, EL is committed to a
search that tries all possible combina-
tions of all guesses, although it pre-
vents thrashing by keeping track of
combinations already tried and never

CONSTRAINTS language allows the
user to direct backtracking and is sim-
ilar to VT when running in interactive
mode or performing what-if explana-
tion.

Domain-independent dependency-
directed backtracking is not satisfac-
tory for VT’s domain. VT is not sim-

ply searching for a single solution that
meets constraints, where any solution
is equally good. Generally, many pos-
sible solutions exist, and these solu-
tions differ in domain-specific disad-
vantages. These differences are
expressed in VT by using the expert’s
most prefer
an initial value and using explicit
preferences supplied by the expert on
potential fixes for constraint viola-
tions .

GARI (Descotte and Latombe 1985)
does incorporate a notion of domain-
specific preference in its plausible rea-
soning but in an indirect and difficult-
to-maintain manner. GARI’s task is to
devise a plan for machining parts that
meets constraints on the order in
which operations should be performed
and the orientation of parts with
respect to the machining tools It
employs backtracking whenever con-
straints conflict, and the decision
about what point to backtrack to is
determined by weights taken from
domain experts. GARI backtracks to
its most recent, lowest-weight deci-
sion. GARI does not use a dependency
network or any relation of contribu-
tion in this decision The result is
that the decision it changes might be
ir
which has arisen In addition,
although the weights are taken from
domain experts, the designers note
that the experts find the weights diffi-
cult to assign and that afterwards
knowledge engineers must adjust
these weights by experimentation.
This process must be particularly dif-
ficult because these weights might
have evolved to express both a combi-
nation of expense in terms of materi-
al, equipment cost, and so on, and of
their likelihood to converge on a solu-
tion.

Two other design systems,
AIR/CYL (Brown 1985) and PRIDE
(Mittal and Araya 1986), use a knowl-
edge-based approach to revising
designs in response to constraint vio-
lations but differ somewhat from VT
in the knowledge used. AIR/CYL has
failure handlers that respond to con-
straint violations by calling for

of the design. If more than one value
might be revised, AIR/CYL uses a
least backup strategy; it attempts revi-

sion at the most recently established
relevant value. AIR/CYL moves back
to the next most recently established
only if it fails to remedy the violation
at the cur
wants to restrict the range of back-
tracking on the grounds that this
restriction is what human design
experts do PRIDE also uses domain
expertise to suggest how to revise
parts of the design in response to con-
straint violations. For PRIDE, the
presence of more than one suggestion
about how to respond to a particular
constraint violation causes the system
to set up multiple contexts for explor-
ing each suggestion. The PRIDE user
can then select among alternatives.
VT explores design revisions sequen-
tially. In interactive mode, users can
determine the order in which revi-
sions are explored and suggest revi-
sions of their own. In the absence of
user input, VT has domain expertise
regarding the preference of alternative
fixes that it uses to decide the order in
which it explores them.

Rl (McDermott 1982) is a system
that constructs a solution but uses a
strategy for plausible reasoning which
might be described as “lookaround.”
Whenever a decision based on partial
information is required, Rl tries to
collect as much information as it can
to ensure that the decision is accept-
able. The kind of information it col-
lects might be the same kind of infor-
mation that could be used to augment
fix knowledge, that is, information
about how close the cur
is to violating related constraints
Without the kind of dependency net-
work representation that VT/SALT
uses, it is difficult to identify the role
of this information. Rl is cur
being revised to more clearly repre-
sent the roles that knowledge plays
with respect to its own problem-solv-
ing method (van de Brug, Bachant, and
McDermott 1986). This revision
should make it easier to compare the
two systems.

As mentioned at the outset, VT
does postpone decisions where possi-
ble, but most of its effort goes into
plausible guessing combined with
backtracking. This system contrasts
with MOLGEN whose main effort is
put into managing its least commit-
ment planning. Although MOLGEN

WINTER 1987 55

has the ability to backtrack, its guess-
ing and backtracking capability is
underdeveloped, and MOLGEN often
does not recover from bad guesses
[Stefik I98Ia)

ISIS [Fox 1983; Smith, Fox, and Ow
1986) is another constraint-satisfac-
tion planner that uses least commit-
ment in job shop scheduling. ISIS
expresses preferences as constraints
When forced to guess, that is, to
choose among constraints it will meet
when it can’t meet all of them, ISIS
conducts a beam search by maintain-
ing in parallel the most prefer
tions If a solution is not found by
scheduling in the forward direction,
that is, from first operation in time to
last, then a second attempt is made
starting from the last operation. The
efficiency and probability of the
search’s success depends on the
weights assigned to the constraints
and the width of the beam. As with
GARI, this architecture can lead to a
difficult problem in credit assign-
ment.

MOLGEN, ISIS, AIR/CYL, and
PRIDE share the property of being
hierarchical in that they select a met-
alevel plan or design and then refine
it. In Friedland’s version of MOLGEN
especially, selecting which metalevel
plan to refine involves a great deal of
search [Cohen and Feigenbaum 1982).
Although solution paths for extending
a design for an elevator can differ
depending on input parameters, these
path differences are represented in VT
as preconditions on individual steps.
Nowhere are the path differences rep-
resented as separate metalevel
designs. In the hierarchical planners,
an abstract, metalevel design also
serves to split the task into nearly
independent subproblems. Interac-
tions take the form of constraints that
propagate from one subproblem to
others VT does not have a subtask
level of organization to group proce-
dures for extending a design and speci-
fying constraints. One benefit of a
subdivided architecture might be that
it helps the system builders keep
track of interactions among decisions.
SALT’s knowledge representation and
the analysis it does based on the
anticipated problem-solving strategy
serves this function for VT (see also
Marcus 1988).

VT’s Performance
VT is cur
house Elevator Company. It must
function with a large knowledge base
and converge on an acceptable solu-
tion within a reasonable amount of
time This section provides a descrip-
tion of its size and some indication of
its performance characteristics

Rule Characteristics

Because VT is implemented in OPS5
(Forgy 19811, it is appropriate to
describe its size and complexity in
terms of rules. VT cur
total rules Of these, 2191 are domain-
specific rules generated by SALT (70.2
percent). The remainder belong to the
general shell for I-O, explanation, and
problem-solving control There are
several types of SALT-generated rules
Some are not directly used in problem
solving. These 698 rules (31.9 percent
of all SALT-generated rules) contain
domain-specific information required
for I-O and the explanation facility.
The remaining 1393 SALT-generated
rules break down into the following
categories: (1) 521 (23.8 percent] are
forward-chaining rules for proposing a
part of the elevator design, 12) 12~1 (5 5
percent) are forward-chaining rules for
specifying constraints on the design,
(3) 58 (2.7 percent) are rules for
proposing potential fixes conditioned
on the violation of particular con-
straints, (4) 44 [2 0 percent) are rules
for directing exploration of the impli-
cations of a fix /lookahead), IS) 530
(24 2 percent) are lookahead rules for
extending a design, and (6) 120 (5.5
percent) are lookahead rules for speci-
fying constraints.

These rules represent procedures
derived from the knowledge SALT col-
lects in its three knowledge roles. The
first three rule types make use of the
knowledge in the roles of PROPOSE-
A-DESIGN-EXTENSION, IDENTIFY-
A-CONSTRAINT, and PROPOSE-A-
FIX, respectively The next group,
rules for directing lookahead, define
which procedures for proposing design
extensions and identifying constraints
are relevant to deciding whether pro-
posed fixes actually remedy the con-
straint violation they are intended to
fix The last two categories employ
the same knowledge encoded in the

first two groups, PROPOSE-A-
DESIGN-EXTENSION and IDENTI-
FY-A-CONSTRAINT They differ
from the first two in that the condi-
tions under which they fire are set up
by the rules that direct lookahead.
They are used to selectively explore
implications of proposed fixes before
choosing one to implement Table 1
gives an impression of rule complexi-
ty in each of these categories.

Run Characteristics

Statistics reported here are based on a
sample of six test cases that Westing-
house engineers feel are representa-
tive of the range of complexity which
VT must handle. A breakdown of
these cases on measures that reflect
search complexity is given in table 2.
All constraint violations are fixed on
the runs in table 2; that is, there are
no dead ends.

The breakdown of rule firings
shown in table 3 helps to give an idea
of where the activity is focused during
a run. The breakdown for these jobs in
CPU time, as measured on a VAX
11/780 with 20MB of memory, is
shown in table 4.

Conclusion
VT is an expert system whose domain
requires plausible guessing. Its prob-
lem-solving strategy incrementally
constructs an approximate elevator
design by proposing values for design
parameters At the same time, it iden-
tifies constraints on design parame-
ters. If a constraint is violated, VT
uses domain expertise to figure out
how to revise the proposed design. In
doing so, it uses an architecture that
makes clear the role which each piece
of domain-specific knowledge plays in
proposing, constraining, and revising
solutions. This knowledge representa-
tion serves as the basis for VT’s expla-
nation facility that can both explain
past decisions and hypothesize about
alternative solutions. It is also the
foundation of an automated knowl-
edge-acquisition tool, SALT, that can
be used to generate expert systems
which use this problem-solving strate-
gy and explanation facility. SALT was
used to acquire the knowledge for and
to generate the system described here
as well as to map out potential inter-

56 AI MAGAZINE

actions among fixes. This analysis
helps a developer assess the potential
for the system to converge on a solu-
tion if one exists. Trouble spots locat-
ed by this analysis can be given spe-
cial treatment in the backtracking
search. In the future we plan to con-
tinue our exploration of the use of
knowledge-based backtracking
through the use of SALT as a tool to
acquire the knowledge for other types
of constructive tasks.

Acknowledgments
This research was sponsored by Westing-
house Elevator Company, Randolph, New
Jersey The views and conclusions con-
tained in this document are those of the
authors and should not be interpreted as
representing the official policies, either
expressed or implied, of Westinghouse Ele-
vator Company Many people have helped
with VT’s development We would espe-
cially like to thank John Gabrick, Michael
Gillinov, Robert Roche, Timothy Thomp-
son, Tianran Wang, and George Wood

References
Brown, D 1985 Failure Handling in a
Design Expert System Computer-Aided
Design 17~436-442.

Chalfan, K M. 1986. A Knowledge System
That Integrates Heterogeneous Software
for a Design Application AI Magazine
7(2): 80-84
Cohen, P. R., and Feigenbaum, E. A. 1982.
The Handbook of Artificial Intelligence,
Volume 3 Los Altos, Calif : Kaufmann

Descotte, Y., and Latombe, J C. 1985.
Making Compromises among Antagonist
Constraints in a Planner Artificial Intelli-
gence 271183-217
Doyle, J. 1979. A Truth Maintenance Sys-
tem Artificial Intelligence 12:231-272

Forgy, C 1981. OPS5 User’s Manual, Tech-
nical Report, CMU-CS-81-135, Dept. of
Computer Science, Carnegie-Mellon Univ

Fox, M. S. 1983. Constraint-Directed
Search: A Case Study of Job-Shop Schedul-
ing, Technical Report, CMU-CS-83-161,
Dept of Computer Science, Camegie-Mel-
lon Univ

Marcus, S. 1988. A Knowledge Representa-
tion Scheme for Acquiring Design Knowl-
edge In Artificial Intelligence Approaches
to Engineering Design, eds C. Tong and D
Sriram, Forthcoming. Reading, Mass :
Addison-Wesley.
Marcus, S., and McDermott, J. 1986 SALT:
A Knowledge Acquisition Tool for Pro-
pose-and-Revise Systems, Technical
Report, CMU-CS-86-170, Dept of Com-

Rnlc Type Condition Elements Attributes per CE
Extend a design 3.74 2.06
Identify a COIJStKJiJlt 3.42 2.03
l’fOpCJX a fix 2.24 331
Direct to lookahcatl 1 .oo 1 .oo
Extcntl an exploratory &sign S 3 1 1.99
Identify an

exploratory constraint 5.39 1.Y4

‘fable 1. RdC COJJIpkXit)‘.

Action Elements
3 48
3.74
1.07
5.36
3.23

329

Cast 1 Case 2 Case 3 Case4 Cast 5 Case6
Distinct consttainls violaten 7 8 8 12 9 12
Total constraint violations 9 9 12 16 17 23
Fixes cxplorcd per

constraint violastion 1.0 13 1.0 1.4 1.2 1.3
Nonconstraint vahws undone

per implemcntcd fix 18.9 25.7 26.0 33.7 29.6 40.4
Constraints imtlone

pm iinplcmontcd fix 3.4 3.9 4.2 12.6 112 11.0

I

Table 2. Complexity Mcasurcs on Test Case Runs.

SALT-Gencratcd Rules
Case 1 Case 2 Case3 Cast 4 Case 5 Cast 6

Direct to look&ad Y 11 9 28 27 25
Extend an exploratory design 57 9.3 52 378 237 356

General Control Rules
Test a constwint \47 147 18Y 232

Maintain consistency 831 1074 1422 2886
‘2.22 372 308 806
1672 2185 2513 5317
2812 3401. 3909 7882

Table 3. Rule Firings per Run.

250 422

2570 4732
726 562
4797 7680
6860 11274

Case I Cast‘2 Case3 Case4 Case5 Case 6
Time in forward-

chaining mortc 4:52 4:17 6~23 7:lO 7:lY 10:40
Time in fix-

exploration anode 2:16 2:53 3:32 8:39 7~26 II:09
Total tinw run 7:08 per 7:IO 955 IS:49 14:45 21:49

Table 4. CPU Time per RUJJ.

WINTER 1987 57

puter Science, Carnegie-Mellon Univ

Marcus, S ; McDermott, J ; and Wang, T
1985 Knowledge Acquisition for
Constructive Systems In Proceedings of
the Ninth International Joint Conference
on Artificial Intelligence, 637-639 Los
Altos, Calif : Morgan Kauffmann
McDermott, J 1982 Rl: A Rule-Based
Configurer of Computer Systems Artifi-
cial Intelligence 19: 39-88

Mittal, S, and Araya, A 1986 A Knowl-
edge-Based Framework for Design In Pro-
ceedings of the Fifth National Conference
on Artificial Intelligence, 856-865 LOS
Altos, Calif : Morgan Kauffmann

Smith, S ; Fox, M ; and Ow, P 1986 Con-
structing and Maintaining Detailed Pro-
duction Plans: Investigations into the
Development of Knowledge-Based Factory
Scheduling Systems AI Magazine 7(4): 45.
60
Stallman, R M, and Sussman, G J 1977
Forward Reasoning and Dependency-
Directed Backtracking in a System for

Acquaint is a

Computer-Aided Circuit Analysis Artifi-
cial Intelligence 9: 135-196
Stefik, M 1981a Planning and Meta-Plan-
ning (MOLGEN: Part 2) Artificial Intelli-
gence 16: 141-170
Stefik, M. 198Ib Planning with Con-
straints (MOLGEN: Part 1) Artificial Intel-
ligence 16: 111-140

Stefik, M ; Aikins, J ; Balzer, R ; Benoit, J ;
Birnbaum, L.; Hayes-Roth, F; and Sacer-
doti, E 1983 The Architecture of Expert
Systems In Building Expert Systems, eds
F Hayes-Roth, D Waterman, and D Lenat,
89.126 Reading, Mass.: Addison-Wesley

Stout, J ; Caplain, G ; Marcus, S ; and
McDermott, J 1987 Toward Automating
Recognition of Differing Problem-Solving
Demands Paper presented at AAAI Work-
shop on Knowledge Acquisition for Knowl-
edge-Based Systems
Sussman, G J 1977 Electrical Design, A
Problem for Artificial Intelligence
Research In Proceedings of the Fifth Inter-
national Joint Conference on Artificial

Intelligence, 894-900. Los Altos, Calif :

Sussman, G J, and Steele, G L , Jr 1980

Morgan Kauffmann.

CONSTRAINTS-A Language for Express-
ing Almost-Hierarchical Descriptions
Artificial Intelligence 14: 1-39

van de Brug, A; Bachant, J; and McDer-
mott, J 1986 The Taming of RI IEEE
Expert 1: 33-38.

Notes
1 The down in downgrade usually pertains
to a decrease in size or cost In the VT
domain, size tends to vary inversely with
preference
2 A related but less serious problem is that
a remedy not chosen might have an ame-
liorating effect on a downstream constraint
violation In such a case, the system might
miss a solution in which the total cost of
fixing the two violations might be less if a
more costly fix were chosen for the first

window based system, that
runs on personal computers.
If you want to start simple, the
Acquaint-Light version lets you
explore the world of Expert Systems
without having to make a large

L$$iL

investment. Lit
Once you have outgrown the facilities

of Acquaint-Light,
you may upgrade The Expert System Development
to the full version,
which is intended Tool that grows with you. comparisons.

to be used by knowledge engineers. Because it is
written entirely in muLisp, you can get access to
most of the systems internal functions and you
may add your own functions as well.

It has a powerful forms facility, that your
users will feel at home with.

For more information, please write to:

LITlIP SYSTEE(IS w PO BOX jj3,1140AN PURMEREND,THENETHERLANDS
For free information, circle no 77

58 AI MAGAZINE

