
An Assessment ofTools for 
Building Large Knowledge- 
Based Systems 

A number of tools that support the devel- 
opment, execution, and maintenance of 
knowledge-based systems are marketed 

commercially Many of these tools, how- 
ever, are designed for applications that 
can be executed on personal computers 

and are not suitable for building large 
knowledge-based systems The market for 
knowledge engineering tools designed for 

applications that require the computation- 
al power of a Lisp machine or an engineer- 

ing workstation is dominated by a few 
vendors This article is an assessment of 

the current state of tools used to build 
large knowledge-based systems This 
assessment is based on the collective 

strengths and weaknesses of several tools 
that have been evaluated In addition, an 
estimate is made of the features that will 

be required in the next generation of tools 

William Mettrey 

K nowledge engineering tools are 
software systems that support 

the development, execution, and 
maintenance of knowledge-based sys- 
tems (KBSS). The market for tools 
used to build large KBSs is currently 
dominated by a few vendors with 
offerings that support multiple 
knowledge representation and infer- 
encing paradigms, the ability to pur- 
sue hypothetical reasoning, truth 
maintenance, object-oriented pro- 
gramming, extensive debugging aids, 
and graphic interfaces (Richer 1986). 

Current commercial tools can be 
thought of as the third generation of 
knowledge engineering environments 
(Hayes-Roth 1984). The research com- 
munity produced first-generation 
KBSs by developing Lisp programs 
that intermixed knowledge and con- 
trol structures. Second-generation 
KBSs were also developed in research 
environments. The designers of sec- 
ond-generation KBSs recognized the 
value of separating the knowledge 
base from the inferencing process, 
thus extending the utility of a shell 
from a specific application to a class 
of related problems. The current gen- 
eration of commercial tools, for the 
most part, are extensions of these 
research efforts. 

As a result of an in-depth study 
(Knowledge Systems Corp. 1986) of 
commercially supported tools for 
large KBSs, a number of conclusions 
were formed. It is not the intent of 
this article to compare the relative 
strengths and weaknesses of the tools 
that were evaluated but rather to 
assess the current state of commercial 
knowledge engineering tools and esti- 
mate features which will be required 
in the next generation. The categories 
that are addressed include knowledge 
representation, inferencing and con- 

trol, development environments, and 
delivery environments. Although fea- 
tures from a number of tools are con- 
sidered, most examples are drawn 
from five of the most frequently used 
tools for building large systems: (I) 
Automated Reasoning Tool (ART) 
marketed by Inference Corporation, 
(2) Knowledge Engineering Environ- 
ment (KEE) marketed by IntelliCorp, 
13) KnowledgeCraft marketed by 
Carnegie Group Inc., (4) S 1 marketed 
by Teknowledge Inc., and (5) VAX 
OPS5 marketed by Digital Equipment. 

Knowledge Representation 
At a minimum, commercial knowl- 
edge engineering tools support the use 
of rules for knowledge representation. 
In addition, tools designed for large 
KBSs also provide other knowledge 
representation approaches, such as 
frames, objects, and the ability to 
extend the knowledge base to support 
hypothetical reasoning. 

Rules 

Rules provide a modular and uniform 
approach to knowledge representa- 
tion. Tools that support rules as their 
sole representation paradigm are rela- 
tively simple to learn and use. As 
rule-based systems grow, however, 
they become increasingly difficult to 
understand and maintain (van de 
Brug, Bachant, and McDermott 1986). 
In addition, tools that offer only a 
rule-based approach are less effective 
in problem domains that exhibit com- 
plex relationships among a number of 
objects, activities, and events (Brown 
1985). The intermixing of rules that 
describe objects and relationships 
with rules which represent heuristic 
knowledge increases the complexity 
of a knowledge base 
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Frames 

Several tools allow multiple represen- 
tational schemes. These tools support 
a version of frames (Fikes and Kehler 
1985) in addition to rules. S.l 
(Teknowledge 1985b) uses frames as 
templates for classes or logical group- 
ings of entities. When a class instance 
is created, S.l generates a frame that 
inherits the attributes (slots) of the 
class but does not inherit any values. 
ART (Inference Corporation 1987), 
KEE [IntelliCorp 1985), and Knowl- 
edgecraft (Carnegie Group 1987) sup- 
port inheritance of slots and values as 
well as the ability to attach meta- 
knowledge to slots. Metaknowledge 
can be used to constrain values, govern 
the actions of procedures attached to 
slots, and redefine inheritance behavior. 

Objects 

ART, KEE, and KnowledgeCraft also 
support objects as a knowledge repre- 
sentation approach. Each object is rep- 
resented by a frame with methods 
(procedures) attached to the frame’s 
slots. Objects communicate with one 
another by sending messages. When 
an object receives a message, the mes- 

sage is interpreted, and the appropriate 
method is activated. Objects and mes- 
sage passing provide a natural way to 
represent entities in problems involv- 
ing complex relationships (Stefik and 
Bobrow 1986). The use of object-ori- 
ented programming in the environ- 
ments provided by ART, KEE, and 
KnowledgeCraft requires proficiency 
in Lisp in order to develop the 
required methods. 

Hypothetical Reasoning 

ART’s viewpoints, KnowledgeCraft’s 
contexts, and KEE’s KEEworlds are 
mechanisms that support hypotheti- 
cal reasoning. In effect (though not in 
fact], multiple knowledge bases are 
created and maintained during a con- 
sultation (Clayton 1985). When a situ- 
ation suggests several interpretations 
or outcomes, virtual copies of the 
knowledge base are generated to pur- 
sue subsequent reasoning about the 
possibilities. Each copy can be 
thought of as a separate model of the 
domain of interest. This approach is 
useful for representing hypothetical 
situations and situations that vary 
over time. 

Requirements for 
Knowledge Representation 

Knowledge representation paradigms 
supported by commercial tools are 
adequate for many of the problems 
that are being attempted. However, a 
number of unresolved issues exist. 
Among these issues are knowledge- 
acquisition needs, representation of 
causal models, representation of spa- 
tial and temporal relations, a require- 
ment for improved methods of han- 
dling incomplete and uncertain 
knowledge, a requirement for tools 
that understand and enhance their 
knowledge base, and a requirement for 
methodologies to evaluate knowledge 
representation issues. 

The effectiveness of a KBS is depen- 
dent to a large extent on the amount 
of domain-specific expertise it embod- 
ies. Much of this expertise is symbolic 
and heuristic and is usually not well 
formalized It is the knowledge engi- 
neer’s task to capture this expertise 
and codify it in a form that is usable 
by a knowledge engineering tool. 
Knowledge acquisition is currently 
one of the major bottlenecks in the 
building of KBSs (Hoffman 1987). 
Although research systems have been 
built that aid knowledge acquisition 
[Davis 1976; Eshelman and McDer- 
mott 19861, similar facilities are 
nonexistent in commercial tools. 

Causal models specify relations 
among actions and events. They use 
first principles to provide a detailed 
specification of how a complex device 
or process functions. EL (Stallman and 
Sussman 1979) is an example of a 
causal KBS developed as a research 
prototype. Given a description of a cir- 
cuit schematic, EL analyzes the cir- 
cuit and determines the values of volt- 
age and current at specified points. 
EL’s expertise includes general princi- 
ples of electronics (Ohm’s law, Kir- 
chaff’s law] and circuit component 
characteristics (the functional proper- 
ties of transistors). Although research 
projects, such as EL, exist in which 
causal representations are central, 
knowledge of this type is generally dif- 
ficult to represent and reason about 
using commercial tools. 

Spatial models are characterized by 
the need to represent and reason about 
the size, shape, and position of 
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objects; a number of design problems 
fall into this category. XCON (McDer- 
mott 1982), a KBS for configuring 
VAX computers from customer 
orders, decides which components 
must be added to produce a complete 
operational system and determines 
spatial relationships among these 
components. XCON generates dia- 
grams of the spatial relationships for 
use by technicians in assembling the 
VAXen. 

Temporal models involve reasoning 
about problem domains that vary over 
time. Planning, prediction, and prob- 
lems that deal with continuous pro- 
cesses or continuous flows of data are 
examples of domains which require 
temporal models. Representations 
required by temporal models differ 
from those required for static analysis 
(Fagan 1980). Temporal models exhib- 
it the need for multiple contexts in 
order to address the problem of 
representing different time intervals. 
As is the case with causal models, the 
development of KBSs for domains that 
require spatial and temporal relations 
is difficult to accomplish with current 
knowledge engineering tools. 

Tools that support the specification 
of uncertain knowledge tend to be 
designed for specific classes of prob- 
lems. Although a few tools utilize 
fuzzy logic or Bayesian approaches, 
the majority of tools that support the 
specification of uncertain knowledge 
use certainty factors The calculation 
of certainty factors is currently an ad 
hoc process that is usually modeled 
after the work in MYCIN (Buchanan 
and Shortliffe 1984). A need exists for 
further research of the representation 
and manipulation of uncertain knowl- 
edge. 

The effectiveness of a KBS can be 
improved by the knowledge engineer’s 
addition and refinement of knowl- 
edge Future generations of tools 
should have the ability to assist in the 
modification and extension of their 
knowledge base These tools should 
“learn” as they execute, generating 
new rules and objects and modifying 
old ones This type of system might 
make decisions, such as creating sev- 
eral new rules to restrict an overly 
general rule; create one rule to replace 
several that have been applied in a 
sequence; and formulate metarules to 

Table 1. 
KllOWlC&C 
Rcpmcntatiot~. 

guide its own behavior. The feasibility 
of systems improving their perfor- 
mance using metarules and self-modi- 
fication has been demonstrated in 
research projects (Green and Westfold 
1982) but has not progressed to the 
point of being supported by commer- 
cial tools. 

The question of multiple knowledge 
representation schemes versus a single 
approach presents a trade-off between 
the naturalness of representation and 
the ease of learning and using a tool 
Representational needs are dictated by 
the nature of the problems that are 
being addressed. Selecting tools that 
support multiple representational 
schemes for an application adequately 
described by a few hundred rules 
might be unwarranted. Applications 
that are characterized by complex 
dependencies among objects such as 
spatial and temporal relationships, 
however, are difficult to represent 
with a tool which only supports rules. 
Methodologies are needed to match 
representational paradigms to problem 
types and evaluate the efficiency of 
these representations. Given the cur- 
rent state of knowledge representation 
and the continuing debate over the 
constitution of semantic nets, frames, 
and other representational structures 
(Brachman and Levesque 1985), these 
methodologies appear to be a long- 
term objective. 

Inferencing and Control 
The suitability of a knowledge engi- 
neering tool for various classes of 
problems is influenced by the infer- 
encing paradigms it provides. Tools 
intended for building large KBSs pro- 
vide multiple paradigms, including 
rule-based inferencing, procedural 
control, object-oriented programming, 
access-oriented programming, truth 
maintenance, and knowledge-based 
simulation 

Rule-Based Inferencing 

Among the rule-based inferencing fea- 
tures that characterize tools designed 
for large KBSs are support for both for- 
ward and backward chaining, sophisti- 
cated conflict-resolution strategies, 
and the ability to compile rules. 

Forward chaining and backward 
chaining are supported by commercial 
tools in varied ways ART, 
KnowledgeCraft, and VAX OPS5 
adhere to the pure production system 
model in their support of forward 
chaining This approach makes a rule 
eligible to fire whenever its conditions 
are matched by elements in a global 
store called, working memory KEE 
implements forward chaining by mak- 
ing rules eligible to fire that have con- 
ditions which match asserted facts in 
any of the knowledge base’s frames or 
in an unstructured facts list. ART 
implements backward chaining by 
allowing a single backward-chaining 
goal pattern as one of the conditions 
in a forward-chaining rule. S.l ‘s sup- 
port of backward chaining offers a 
high level of abstraction, insulating 
the user from details such as back- 
tracking By contrast, KnowledgeCraft 
implements backward chaining by 
supporting a version of Prolog This 
approach allows the knowledge engi- 
neer to control backtracking by using 
features such as “cut” and “fail.” 

ART, KEE, and KnowledgeCraft sup- 
port a mixed-strategy approach by 
allowing both forward and backward 
chaining to be applied to the same 
problem. The transfer of control 
between the two strategies is accom- 
plished implicitly or explicitly 
depending on the tool. Forward chain- 
ing is ART’s default inferencing strat- 
egy and is executed until a backward- 
chaining goal is encountered. The 
choice of forward or backward chain- 
ing in KEE and KnowledgeCraft is 
specified by user function calls. 
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Current tools also vary in the man- to be matched against working memo- 
ner in which conflict resolution ry. The algorithm is implemented by 
(McDermott and Forgy 1978) is sup- compiling rule conditions into a pat- 
ported. Conflict resolution is required tern-matching network that enables 
when several rules are in the conflict the matching process to factor and 
set (that is, are candidates to fire), and share similar tests Timing tests con- 
some strategy must be used to select ducted by the National Aeronautics 
among them KnowledgeCraft’s CRL- and Space Administration (Riley 1986) 
OPS and Digital’s VAX OPS5 imple- exhibited significant advantages for 
ment conflict resolution by first forward-chaining tools that use rule 
attempting to select the rule that has compilation versus those tools which 
been instantiated by the most recent did not support rule compilation. 

When compared to the current state of software 
engineering, the immaturity of knowledge 
engineering is apparent. 

data in working memory. If recency 
does not resolve the conflict, these 
tools select a rule instantiation based 
on the number and complexity of con- 
ditions that were matched. KEE 
allows the user to select a conflict-res- 
olution strategy from a number of 
options, including least premise com- 
plexity, greatest premise complexity, 
least weight, or greatest weight ART 
selects the instantiated rule with the 
highest user-specified priority 

Support for rule compilation is a 
feature that distinguishes knowledge 
engineering tools intended for build- 
ing large KBSs from tools oriented 
toward smaller problems. The term 
compile in this sense refers to a map- 
ping from a rule’s external form to an 
internal representation. This internal 
representation is designed to reduce 
the number of pattern-matching oper- 
ations required to place rules in the 
conflict set. An obvious approach to 
building a conflict set is to match 
each rule in the knowledge base 
against all the working memory ele- 
ments on each recognize-act cycle. 
This approach is prohibitive for a 
large rule base (Forgy 1979). 

ART, KnowledgeCraft’s CRL-OPS, 
and OPS5 use variations of the Rete 
matching algorithm in conjunction 
with rule compilation (Forgy and 
Shepard 1987). The Rete algorithm 
exploits two properties common to 
production systems: The contents of 
working memory change very little 
on each iteration of the recognize-act 
cycle, and rules contain a number of 
similar conditions and terms that are 

Procedural Control 

Several tools furnish language con- 
structs that enable a knowledge engi- 
neer to specify control strategies. S.l 
supports a Rascal-like procedural lan- 
guage that can be used to create 
objects and assign values to their 
attributes, query users and display 
results, and initiate backward chain- 
ing. ART provides constructs such as 
“for” and “while” that can be specified 
in rules to effect iteration. In addition, 
most tools allow the user to escape to 
external procedures, either to achieve 
functionality not supported by the 
tool or to interface with other sys- 
tems. 

Object-Oriented Programming 

ART, KEE, and KnowledgeCraft sup- 
port object-oriented programming 
The approaches of these tools are sim- 
ilar in that objects are represented as 
frames with methods attached to spec- 
ified slots. Methods are inherited in 
the same manner as conventional slot 
values. Inheritance allows methods to 
be shared by all objects that belong to 
a particular class. In many cases, 
methods must be developed by the 
knowledge engineer to meet specific 
needs. Method libraries provided by 
current tools are not as extensive as 
those supplied by systems such as 
Smalltalk (Goldberg and Robson 1983) 
and Objective-C (Cox 1986). 

Access-Oriented Programming 

The basic primitives of access-orient- 
ed programming are procedures 

(demons, active values) that are acti- 
vated as side effects when specified 
variables are accessed (Bobrow and 
Stefik 1986). Methods and demons are 
conceptually very similar. The chief 
distinction between them is the way 
they are activated Methods are acti- 
vated by a message, and demons are 
activated when their associated values 
are accessed. ART, KEE, and Knowl- 
edgecraft support demons. Demons 
are particularly useful when the 
knowledge engineer wants to make 
changes at dynamically determined 
points in an execution. 

Truth Maintenance 

Truth maintenance (Doyle 1982) is a 
means of keeping track of beliefs and 
their justifications developed during 
an inferencing process. If contradic- 
tions occur, the lines of reasoning 
associated with the contradictions and 
all conclusions resulting from them 
can be retracted Both ART and KEE 
support truth maintenance systems. 
ART allows the knowledge engineer 
to specify contradiction rules that are 
automatically applied whenever the 
specified inconsistency exists. KEE’s 
truth maintenance system is integrat- 
ed with its KEEworlds facility. By 
keeping track of the justifications that 
lead to a belief being accepted, KEE is 
able to determine which KEEworlds 
are consistent with the belief. 

Knowledge-Based Simulation 

Knowledge-based simulation com- 
bines knowledge representation and 
inferencing with discrete-event simu- 
lation (Oren 1985). Several require- 
ments have motivated this approach 
From the simulation perspective, 
many complex problems lend them- 
selves to symbolic and object-oriented 
approaches. These approaches allow 
the construction of models using sym- 
bolic programming, object-oriented 
programming, and frame-based knowl- 
edge representation with inheritance 
(Klahr 1985; Middleton and Zancona- 
to 1985). From the KBS perspective, a 
simulation component, combined 
with the various inferencing 
paradigms, increases the power of the 
reasoning process. Planning problems 
in which temporal reasoning is orga- 
nized in an event-driven framework 
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lend themselves to this approach 
(Erickson 1985). 

Both SIMKIT (Stelzner, Dynis, and 
Cummins 1987) and KnowledgeCraft 
provide support for knowledge-based 
simulation. SIMKIT, which was built 
using KEE, supports event creation 
and scheduling, generation of random 
variables, the manipulation of graphic 
icons, and facilities for collecting and 
reporting the results from a simula- 
tion. KnowledgeCraft supports knowl- 
edge-based simulation by providing a 
multiqueue event manager that 
schedules events to occur using a sim- 
ulated clock. This capability is inte- 
grated with CRL, KnowledgeCraft’s 
knowledge representation language. 

Requirements for 
lnferencing and Control 

As is the case with knowledge repre- 
sentation, inferencing paradigms sup- 
ported by current tools are adequate 
for many of today’s problems. A num- 
ber of needs currently exist in this 
area, however, including improved 
integration of inferencing techniques 
in hybrid tools, inferencing approach- 
es which provide several levels of 
abstraction, and methodologies that 
determine the efficiency of inferenc- 
ing approaches and furnish guidance 
about which combination of 
paradigms should be applied to specif- 
ic problems. 

Tools that support several inferenc- 
ing paradigms find it difficult to pre- 
sent a user interface that is as easy to 
understand and use as tools whose 
design is based upon a single 
approach. Some hybrid tools support 
forward chaining and backward chain- 
ing as independent subsystems that 
are invoked by user calls, much like a 
run-time library in conventional pro- 
gramming systems. This approach 
sometimes results in two independent 
inferencing strategies that are not sen- 
sitive to one another and leave to the 
user the task of integrating them into 
the same problem solution. Another 
approach is to treat forward chaining 
as the primary strategy and initiate 
backward chaining at certain points in 
the inferencing process to assist for- 
ward chaining, Although this ap- 
proach achieves some degree of inte- 
gration, current implementations give 

Table 2. 
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the appearance of being developed by 
grafting backward chaining upon an 
existing forward-chaining system. 

Tools that furnish several levels of 
abstraction for inferencing are also 
needed. At a high level of abstraction, 
features such as menus, online help, 
online tutorials, and guidance about 
which techniques to use based on 
problem characteristics are required. 
These features allow domain experts 
who lack experience with knowledge 
engineering tools to develop and 
maintain models. A lower level of 
abstraction for experienced knowledge 
engineers should also be provided 
This level would allow the specifica- 
tion of metacontrol information to 
guide inferencing at various points 
during processing. 

Methodologies are required for eval- 
uating the efficiency of inferencing 
approaches and matching them to 
problem types. In particular, metrics 
are needed which provide information 
to be used in assigning multiple infer- 
encing paradigms to specific problems 
and which guide in partitioning the 
problem so that the various strategies 
can be applied in an effective manner. 

Development Environments 
A development environment is 
defined here as a set of facilities that 
enable a knowledge engineer to create, 
test, and validate a KBS. Development 
environments are addressed in terms 
of knowledge base management and 
debugging. 

Knowledge Base Management 
KBSs are usually built incrementally. 
Utilities are required that support the 
addition of new knowledge and the 
removal of invalid or redundant 
knowledge in order to effectively build 
and maintain these systems. ART, 
KEE, and KnowledgeCraft provide sup- 
port for windows and mouse- 

selectable menus to aid in the devel- 
opment and maintenance of knowl- 
edge bases. These tools allow the user 
to create and shape windows and spec- 
ify their positioning. Windows are 
used to enter information into the 
knowledge base and display knowl- 
edge base entities. In addition, the 
execution of knowledge base utilities 
from menus is supported. Although a 
number of tools provide access to an 
editor from within their environment, 
the functionality of the editor is usu- 
ally dependent on the system that 
hosts the tool. 

Debugging 

Debugging is an area where some 
commercial knowledge engineering 
tools exhibit a superiority over tradi- 
tional software development environ- 
ments. This advantage is in part the 
result of the Lisp environments in 
which many of the tools are imple- 
mented. Lisp programmers have tradi- 
tionally required extensive develop- 
ment and debugging facilities because 
of the exploratory nature of the appli- 
cations that have been addressed with 
the language. Some tools support 
facilities such as execution traces, the 
ability to halt an execution to exam- 
ine and modify values and then 
resume, the capability to back up and 
reexecute during testing, the ability to 
save and retrieve test cases as well as 
built-in explanation facilities that 
answer questions concerning how and 
why specific conclusions are reached. 
ART and KEE provide graphic tracing 
of rule activity during inferencing. 
KEE and KnowledgeCraft support a 
graphic display of frames in the form 
of an inheritance network. Frames can 
be added to, and deleted from, the 
knowledge base by manipulating the 
displays with a mouse. Graphic dis- 
plays can also be used to edit the slots 
and values of frames. In addition to 
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‘liable 3. 
Dcveloprncnt 
Enviromnent. 

t he interfaces provided for develop- 
ment, ART, KEE, and KnowledgeCraft 
furnish graphic tool kits that allow 
the knowledge engineer to develop 
custom interfaces for end users. 

useful when several people arc 
involved in the maintenance of a large 
knowledge base. 

Requirements for 
Development Environments 

As a knowledge base grows, it be- 
comes difficult to determine manual- 
ly whether new knowledge is redun- 
dant or conflicts with existing knowl- 
edge. Utilities that “understand” the 
semantics of the knowledge base and 
perform consistency checking are 
needed. Features of this type currently 
exist in only a few systems. TEIRE- 
SIAS (Davis 1976) is able to analyze 
rules, make suggestions regarding 
their completeness and consistency, 
and help the knowledge engineer 
debug them using its own rule heuris- 
tics. CHECK [Nguyen et al. 1987) per- 
forms static analysis of a knowledge 
base and is able to detect redundant, 
conflicting, and circular rules. Ver- 
sions of CHECK exist that diagnose 
knowledge bases for LES [Laffey, 
Perkins, and Nguyen 1986) and ART. 

Cross-reference utilities that pro- 
vide information about relationships 
in a knowledge base are needed. 
Cross-reference information is valu- 
able when there is a need to retrieve 
all components that contain or refer- 
ence a given entity or when it is nec- 
essary to determine which entities in 
the knowledge base are affected when 
a given instance is added, modified, or 
deleted. 

Utilities are also needed that main- 
tain different versions of the knowl- 
edge base and record the updates as 
they are made. EMYCIN provides this 
type of support. When a rule is 
changed, the EMYCIN editor auto- 
matically stores the modification date 
and user’s name with the rule for later 
reference. This feature is particularly 
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ART and VAX OPS5 are among the 
few tools that aid the knowledge engi- 
neer in monitoring and evaluating the 
performance of KBSs. ART provides 
statistics concerning the number of 
inferences occurring during a run, pat- 
tern memory usage, and rule activa- 
tions and firings. VAX OPS5 reports 
the number of times a rule fires, the 
amount of central processing unit 
(CPU) time used to execute the left- 
hand side of a rule, and the amount of 
CPU time used to execute the right- 
hand side of a rule. The identification 
of entities that consume large 
amounts of resources is required in 
order to apply KBSs to time-critical 
applications. As KBSs move from 
stand-alone environments and become 
components of information systems, 
performance issues become impor- 
tant. Performance monitoring and 
evaluation facilities can also be used 
to determine the relative efficiency of 
the various inferencing methods and 
representation approaches. An allied 
need exists for standard test case 
suites that can be used to evaluate the 
relative performance of tools. 

For knowledge engineering to 
progress beyond an art and truly 
deserve the engineering label, a set of 
principles and methodologies must be 
formulated and adopted. When com- 
pared to the current state of software 
engineering, the immaturity of knowl- 
edge engineering is apparent. The rela- 
tive youth of knowledge engineering 
has not yet allowed a sufficient base of 
experience to be collected, cataloged, 
and extrapolated to sound methodolo- 
gies. The classic software engineering 
approach consists of developing a sys- 
tem using a specification of the prob- 
lem in conjunction with top-down 
techniques. In contrast, most KBSs are 

developed incrementally in a bottom- 
up approach for applications that are 
not well understood. Often, the build- 
ing of a prototype system serves as the 
specification for the problem. Despite 
differences in the two disciplines, it 
appears that some software engineer- 
ing principles are applicable to KBSs 
(Zualkernan, Tsai, and Volovik 1986). 
In addition, new methodologies that 
address the unique features of knowl- 
edge engineering (for example, knowl- 
edge acquisition) must be developed. 
A necessary step toward achieving 
these goals is collecting and cataloging 
user experience with the various 
knowledge engineering tools. 

Delivery Environments 
A delivery environment is defined 
here as the hardware and software that 
enable an end user to execute a KBS. A 
problem frequently encountered by 
developers of large KBSs is the selec- 
tion of cost-effective hardware for the 
delivery environment. Candidate 
hardware must be supported by the 
appropriate knowledge engineering 
tool and provide sufficient system 
resources to execute the KBS at the 
required level of response; its cost 
must allow a meaningful return from 
the application. Potential delivery sys- 
tems for large KBSs include Lisp 
machines, mainframes, workstations, 
and personal computers. 

Most of the tools for building large 
KBSs were originally developed for 
Lisp machines. These machines are 
designed to give single users access to 
all the system’s resources. Constraints 
that tend to inhibit development, such 
as restricting access to the file system, 
have been avoided. However, the same 
features that aid rapid prototyping in a 
development environment can result 
in a lack of security in a delivery envi- 
ronment. Also, the single-user orienta- 
tion of Lisp machines becomes a cost 
consideration in delivery environ- 
ments when the KBS is distributed to 
a number of users. KBSs currently 
delivered on Lisp machines tend to be 
highly leveraged applications that are 
distributed to a small number of users. 

KBSs are beginning to appear on 
hardware that has traditionally hosted 
data processing applications. Tools 
such as Aion (Aion Corporation 19861, 



Expert System Environment (Intelna- 
tional Business Machines 1986) and 
S.l support the delivery of KBSs on 
IBM mainframes. These tools, written 
in languages other than Lisp, are 
designed for applications that are inte- 
grated with conventional software 
systems. The ability to interface with 
the host operating system, access 
large databases, and be called by other 
applications becomes increasingly 
important as KBSs progress beyond 
stand-alone applications and form 
components of large software systems. 

Many of the tools developed for 
Lisp machines have been ported to 
workstations such as the microVAX, 
SUN, and Apollo systems. Some of 
these tools have remained Lisp based. 
Other tools such as S.l and ART have 
been rewritten in C in an attempt to 
achieve increased run-time per- 
formance and easier integration with 
existing applications. 

A number of tools support develop- 
ment and delivery of small and medi- 
um KBSs on personal computers 
(Teknowledge 1985a; Texas Instru- 
ments 1985; Henson 1987). In addi- 
tion, IntelliCorp provides PC-HOST, a 
delivery option that hosts a run-time 
version of KEE on a VAX and executes 
the user interface on a personal com- 
puter. Several vendors are planning 
delivery options that take advantage 
of increases in the computational 
speed and memory capacity of 32-bit 
personal computers. IntelliCorp 
IntelliNews (1987) plans a run-time 
version of KEE that will execute on 
Intel 80386-based personal computers. 

Although a number of delivery 
options currently exist, tool vendors 
continue to search for better solu- 
tions. Factors such as hardware price- 
performance improvements, very 
large scale integration Lisp chips, 
improved Lisp compilers, and tools 
implemented in conventional lan- 
guages will influence future delivery 
environments. At present, no single 
direction clearly dominates. 

Requirements for 
Delivery Environments 

Features required of a tool in a deliv- 
ery environment differ from those 
needed in a development environ- 
ment. Development environments 

require facilities that enhance editing 
and debugging as well as the ability to 
experiment with different knowledge 
representation and inferencing 
approaches. Delivery environments 
require good end-user interfaces, effi- 
cient execution, and the ability to 
interface with other systems. A num- 
ber of tools (for example, ART, KEE, 
and KnowledgeCraft) provide facilities 
for building end-user interfaces. The 
areas where delivery tools must show 
improvement in order to effectively 
use KBSs for large applications include 
improved execution speed, better inte- 
gration with traditional information- 

rule firings can theoretically be car- 
ried out in parallel. To achieve paral- 
lelism, extensive analysis is required 
to avoid generating invalid informa- 
tion in the knowledge base. 

Current KBSs typically operate in a 
stand-alone consultation mode. As the 
technology matures, there is a need to 
support features that allow KBSs to be 
incorporated into traditional software 
systems and interface with applica- 
tions such as database management 
systems. A factor that inhibits these 
objectives is the lack of adequate exe- 
cution-time input-output facilities 
furnished by tools. Direct support of 

Table 4. 
Delivery Systems. 

processing systems, improved input- 
output, and access to operating-sys- 
tem services. 

Improvements in execution speed 
are needed to effectively address a 
number of applications. The feasibili- 
ty of using a KBS consisting of several 
thousand rules in a critical real-time 
application is probably beyond the 
current state of the art. Brownston et 
al. (1985) estimate that most produc- 
tion systems run from one to two 
orders of magnitude slower than pro- 
cedural programs. Goals for the 
Department of Defense-sponsored 
Strategic Computing Initiative (Hayes- 
Roth 1985) include increasing the size 
of KBSs to 10,000 or more rules and 
increasing solution speeds by two 
orders of magnitude or more. Some of 
these required efficiency gains might 
result from the use of parallel process- 
ing and language-directed architec- 
tural approaches (Forgy and Gupta 
1986, Blelloch 1986). Production sys- 
tems in particular appear to lend 
themselves to parallel execution. 
Operations such as pattern matching, 
rule selection, conflict resolution, and 

input-output facilities by current tools 
is primitive by most standards. It con- 
sists almost entirely of being able to 
accept user responses from a terminal 
and display results to a terminal. In 
order to perform basic input-output 
operations [for example, reading or 
writing a sequential file], the knowl- 
edge engineer must often use Lisp 
functions or resort to external proce- 
dures. 

In order for KBSs to be used effec- 
tively in applications on multiuser 
computing systems, tools must allow 
access to a number of operating-sys- 
tem services. In particular, as KBSs 
find increased use in real-time applica- 
tions, they will need the ability both 
to respond to interrupts and to be 
scheduled in multitasking environ- 
ments that allow a number of cooper- 
ating processes to synchronize and 
share data. 

Summary 
Most knowledge engineering tools 
that currently dominate the industrial 
market are the result of research 
efforts which were later commercial- 
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. . . a number of unresolved issues exist. . . . knowledge-acquisition needs, 
representation of causal models, representation of spatial and 

temporal relations, a requirement for improved methods of handling 
incomplete and uncertain knowledge, a requirement for tools that 
understand and enhance their knowledge base, and a requirement 

for methodologies to evaluate knowledge representation issues. 

ized. These tools have evolved as 
products to the point where they col- 
lectively support an impressive set of 
knowledge engineering features. 
These features include multiple 
knowledge representation and infer- 
encing approaches, the ability to pur- 
sue hypothetical reasoning, object-ori- 
ented programming, support of truth 
maintenance, extensive debugging 
aids, and graphic interfaces. Although 
a number of significant KBSs have 
been built using these tools, they have 
required the efforts of skilled knowl- 
edge engineers. The goal of having a 
domain expert with minimal comput- 
er expertise create and maintain a 
KBS is not feasible with this genera- 
tion of tools. To reach this goal, a 
number of extensions and improve- 
ments are required. 

First is improved facilities for 
acquiring and testing knowledge. 
These facilities must simplify the 
task of transferring knowledge from 
the domain expert to the tool’s 
knowledge base and help maintain the 
integrity of the knowledge base by 
supporting semantic checking, cross- 
referencing, and version control. 

The next improvement is knowl- 
edge representation facilities that sup- 
port reasoning from first principles, 
allow natural representation of spatial 
and temporal relations, and furnish 
improved methods for specifying 
uncertain knowledge. Third is 
improved integration of inferencing 
approaches with the flexibility to 
allow an inexperienced user to control 
inferencing at a high level of abstrac- 
tion and a knowledge engineer to 
specify low-level metacontrol infor- 
mation. 

Fourth, methodologies are needed 
to evaluate knowledge representation 
and inferencing issues and contribute 
to the development process in a man- 
ner comparable to current software 

engineering practices. Then there are 
improved execution speeds that allow 
the use of KBSs in critical real-time 
applications and performance moni- 
toring facilities which enable the tun- 
ing of a model’s execution. Finally, 
features are needed that allow the 
seamless integration of KBSs with 
existing applications, such as database 
management systems and convention- 
al language applications. These fea- 
tures must include improved input- 
output facilities and access to operat- 
ing-system services. 

It will not be possible to achieve all 
these goals in the framework provided 
by current tools. Robust and well- 
integrated implementations of these 
features will require new designs. 
These advances will accelerate the 
proliferation of KBSs both as stand- 
alone systems and as components in 
traditional software systems. 
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