
An Assessment ofTools for
Building Large Knowledge-
Based Systems

A number of tools that support the devel-
opment, execution, and maintenance of
knowledge-based systems are marketed

commercially Many of these tools, how-
ever, are designed for applications that
can be executed on personal computers

and are not suitable for building large
knowledge-based systems The market for
knowledge engineering tools designed for

applications that require the computation-
al power of a Lisp machine or an engineer-

ing workstation is dominated by a few
vendors This article is an assessment of

the current state of tools used to build
large knowledge-based systems This
assessment is based on the collective

strengths and weaknesses of several tools
that have been evaluated In addition, an
estimate is made of the features that will

be required in the next generation of tools

William Mettrey

K nowledge engineering tools are
software systems that support

the development, execution, and
maintenance of knowledge-based sys-
tems (KBSS). The market for tools
used to build large KBSs is currently
dominated by a few vendors with
offerings that support multiple
knowledge representation and infer-
encing paradigms, the ability to pur-
sue hypothetical reasoning, truth
maintenance, object-oriented pro-
gramming, extensive debugging aids,
and graphic interfaces (Richer 1986).

Current commercial tools can be
thought of as the third generation of
knowledge engineering environments
(Hayes-Roth 1984). The research com-
munity produced first-generation
KBSs by developing Lisp programs
that intermixed knowledge and con-
trol structures. Second-generation
KBSs were also developed in research
environments. The designers of sec-
ond-generation KBSs recognized the
value of separating the knowledge
base from the inferencing process,
thus extending the utility of a shell
from a specific application to a class
of related problems. The current gen-
eration of commercial tools, for the
most part, are extensions of these
research efforts.

As a result of an in-depth study
(Knowledge Systems Corp. 1986) of
commercially supported tools for
large KBSs, a number of conclusions
were formed. It is not the intent of
this article to compare the relative
strengths and weaknesses of the tools
that were evaluated but rather to
assess the current state of commercial
knowledge engineering tools and esti-
mate features which will be required
in the next generation. The categories
that are addressed include knowledge
representation, inferencing and con-

trol, development environments, and
delivery environments. Although fea-
tures from a number of tools are con-
sidered, most examples are drawn
from five of the most frequently used
tools for building large systems: (I)
Automated Reasoning Tool (ART)
marketed by Inference Corporation,
(2) Knowledge Engineering Environ-
ment (KEE) marketed by IntelliCorp,
13) KnowledgeCraft marketed by
Carnegie Group Inc., (4) S 1 marketed
by Teknowledge Inc., and (5) VAX
OPS5 marketed by Digital Equipment.

Knowledge Representation
At a minimum, commercial knowl-
edge engineering tools support the use
of rules for knowledge representation.
In addition, tools designed for large
KBSs also provide other knowledge
representation approaches, such as
frames, objects, and the ability to
extend the knowledge base to support
hypothetical reasoning.

Rules

Rules provide a modular and uniform
approach to knowledge representa-
tion. Tools that support rules as their
sole representation paradigm are rela-
tively simple to learn and use. As
rule-based systems grow, however,
they become increasingly difficult to
understand and maintain (van de
Brug, Bachant, and McDermott 1986).
In addition, tools that offer only a
rule-based approach are less effective
in problem domains that exhibit com-
plex relationships among a number of
objects, activities, and events (Brown
1985). The intermixing of rules that
describe objects and relationships
with rules which represent heuristic
knowledge increases the complexity
of a knowledge base

WINTER 1987 81

AI Magazine Volume 8 Number 4 (1987) (© AAAI)

UNITS -

ART

VAX OI’SS

KEE

\ EMYCIN+KS300-+ S. 1

L Generation I II

Figure I Evolution of Knowledge Engineering Tools

III

Frames

Several tools allow multiple represen-
tational schemes. These tools support
a version of frames (Fikes and Kehler
1985) in addition to rules. S.l
(Teknowledge 1985b) uses frames as
templates for classes or logical group-
ings of entities. When a class instance
is created, S.l generates a frame that
inherits the attributes (slots) of the
class but does not inherit any values.
ART (Inference Corporation 1987),
KEE [IntelliCorp 1985), and Knowl-
edgecraft (Carnegie Group 1987) sup-
port inheritance of slots and values as
well as the ability to attach meta-
knowledge to slots. Metaknowledge
can be used to constrain values, govern
the actions of procedures attached to
slots, and redefine inheritance behavior.

Objects

ART, KEE, and KnowledgeCraft also
support objects as a knowledge repre-
sentation approach. Each object is rep-
resented by a frame with methods
(procedures) attached to the frame’s
slots. Objects communicate with one
another by sending messages. When
an object receives a message, the mes-

sage is interpreted, and the appropriate
method is activated. Objects and mes-
sage passing provide a natural way to
represent entities in problems involv-
ing complex relationships (Stefik and
Bobrow 1986). The use of object-ori-
ented programming in the environ-
ments provided by ART, KEE, and
KnowledgeCraft requires proficiency
in Lisp in order to develop the
required methods.

Hypothetical Reasoning

ART’s viewpoints, KnowledgeCraft’s
contexts, and KEE’s KEEworlds are
mechanisms that support hypotheti-
cal reasoning. In effect (though not in
fact], multiple knowledge bases are
created and maintained during a con-
sultation (Clayton 1985). When a situ-
ation suggests several interpretations
or outcomes, virtual copies of the
knowledge base are generated to pur-
sue subsequent reasoning about the
possibilities. Each copy can be
thought of as a separate model of the
domain of interest. This approach is
useful for representing hypothetical
situations and situations that vary
over time.

Requirements for
Knowledge Representation

Knowledge representation paradigms
supported by commercial tools are
adequate for many of the problems
that are being attempted. However, a
number of unresolved issues exist.
Among these issues are knowledge-
acquisition needs, representation of
causal models, representation of spa-
tial and temporal relations, a require-
ment for improved methods of han-
dling incomplete and uncertain
knowledge, a requirement for tools
that understand and enhance their
knowledge base, and a requirement for
methodologies to evaluate knowledge
representation issues.

The effectiveness of a KBS is depen-
dent to a large extent on the amount
of domain-specific expertise it embod-
ies. Much of this expertise is symbolic
and heuristic and is usually not well
formalized It is the knowledge engi-
neer’s task to capture this expertise
and codify it in a form that is usable
by a knowledge engineering tool.
Knowledge acquisition is currently
one of the major bottlenecks in the
building of KBSs (Hoffman 1987).
Although research systems have been
built that aid knowledge acquisition
[Davis 1976; Eshelman and McDer-
mott 19861, similar facilities are
nonexistent in commercial tools.

Causal models specify relations
among actions and events. They use
first principles to provide a detailed
specification of how a complex device
or process functions. EL (Stallman and
Sussman 1979) is an example of a
causal KBS developed as a research
prototype. Given a description of a cir-
cuit schematic, EL analyzes the cir-
cuit and determines the values of volt-
age and current at specified points.
EL’s expertise includes general princi-
ples of electronics (Ohm’s law, Kir-
chaff’s law] and circuit component
characteristics (the functional proper-
ties of transistors). Although research
projects, such as EL, exist in which
causal representations are central,
knowledge of this type is generally dif-
ficult to represent and reason about
using commercial tools.

Spatial models are characterized by
the need to represent and reason about
the size, shape, and position of

82 AI MAGAZINE

objects; a number of design problems
fall into this category. XCON (McDer-
mott 1982), a KBS for configuring
VAX computers from customer
orders, decides which components
must be added to produce a complete
operational system and determines
spatial relationships among these
components. XCON generates dia-
grams of the spatial relationships for
use by technicians in assembling the
VAXen.

Temporal models involve reasoning
about problem domains that vary over
time. Planning, prediction, and prob-
lems that deal with continuous pro-
cesses or continuous flows of data are
examples of domains which require
temporal models. Representations
required by temporal models differ
from those required for static analysis
(Fagan 1980). Temporal models exhib-
it the need for multiple contexts in
order to address the problem of
representing different time intervals.
As is the case with causal models, the
development of KBSs for domains that
require spatial and temporal relations
is difficult to accomplish with current
knowledge engineering tools.

Tools that support the specification
of uncertain knowledge tend to be
designed for specific classes of prob-
lems. Although a few tools utilize
fuzzy logic or Bayesian approaches,
the majority of tools that support the
specification of uncertain knowledge
use certainty factors The calculation
of certainty factors is currently an ad
hoc process that is usually modeled
after the work in MYCIN (Buchanan
and Shortliffe 1984). A need exists for
further research of the representation
and manipulation of uncertain knowl-
edge.

The effectiveness of a KBS can be
improved by the knowledge engineer’s
addition and refinement of knowl-
edge Future generations of tools
should have the ability to assist in the
modification and extension of their
knowledge base These tools should
“learn” as they execute, generating
new rules and objects and modifying
old ones This type of system might
make decisions, such as creating sev-
eral new rules to restrict an overly
general rule; create one rule to replace
several that have been applied in a
sequence; and formulate metarules to

Table 1.
KllOWlC&C
Rcpmcntatiot~.

guide its own behavior. The feasibility
of systems improving their perfor-
mance using metarules and self-modi-
fication has been demonstrated in
research projects (Green and Westfold
1982) but has not progressed to the
point of being supported by commer-
cial tools.

The question of multiple knowledge
representation schemes versus a single
approach presents a trade-off between
the naturalness of representation and
the ease of learning and using a tool
Representational needs are dictated by
the nature of the problems that are
being addressed. Selecting tools that
support multiple representational
schemes for an application adequately
described by a few hundred rules
might be unwarranted. Applications
that are characterized by complex
dependencies among objects such as
spatial and temporal relationships,
however, are difficult to represent
with a tool which only supports rules.
Methodologies are needed to match
representational paradigms to problem
types and evaluate the efficiency of
these representations. Given the cur-
rent state of knowledge representation
and the continuing debate over the
constitution of semantic nets, frames,
and other representational structures
(Brachman and Levesque 1985), these
methodologies appear to be a long-
term objective.

Inferencing and Control
The suitability of a knowledge engi-
neering tool for various classes of
problems is influenced by the infer-
encing paradigms it provides. Tools
intended for building large KBSs pro-
vide multiple paradigms, including
rule-based inferencing, procedural
control, object-oriented programming,
access-oriented programming, truth
maintenance, and knowledge-based
simulation

Rule-Based Inferencing

Among the rule-based inferencing fea-
tures that characterize tools designed
for large KBSs are support for both for-
ward and backward chaining, sophisti-
cated conflict-resolution strategies,
and the ability to compile rules.

Forward chaining and backward
chaining are supported by commercial
tools in varied ways ART,
KnowledgeCraft, and VAX OPS5
adhere to the pure production system
model in their support of forward
chaining This approach makes a rule
eligible to fire whenever its conditions
are matched by elements in a global
store called, working memory KEE
implements forward chaining by mak-
ing rules eligible to fire that have con-
ditions which match asserted facts in
any of the knowledge base’s frames or
in an unstructured facts list. ART
implements backward chaining by
allowing a single backward-chaining
goal pattern as one of the conditions
in a forward-chaining rule. S.l ‘s sup-
port of backward chaining offers a
high level of abstraction, insulating
the user from details such as back-
tracking By contrast, KnowledgeCraft
implements backward chaining by
supporting a version of Prolog This
approach allows the knowledge engi-
neer to control backtracking by using
features such as “cut” and “fail.”

ART, KEE, and KnowledgeCraft sup-
port a mixed-strategy approach by
allowing both forward and backward
chaining to be applied to the same
problem. The transfer of control
between the two strategies is accom-
plished implicitly or explicitly
depending on the tool. Forward chain-
ing is ART’s default inferencing strat-
egy and is executed until a backward-
chaining goal is encountered. The
choice of forward or backward chain-
ing in KEE and KnowledgeCraft is
specified by user function calls.

WINTER 1987 83

Current tools also vary in the man- to be matched against working memo-
ner in which conflict resolution ry. The algorithm is implemented by
(McDermott and Forgy 1978) is sup- compiling rule conditions into a pat-
ported. Conflict resolution is required tern-matching network that enables
when several rules are in the conflict the matching process to factor and
set (that is, are candidates to fire), and share similar tests Timing tests con-
some strategy must be used to select ducted by the National Aeronautics
among them KnowledgeCraft’s CRL- and Space Administration (Riley 1986)
OPS and Digital’s VAX OPS5 imple- exhibited significant advantages for
ment conflict resolution by first forward-chaining tools that use rule
attempting to select the rule that has compilation versus those tools which
been instantiated by the most recent did not support rule compilation.

When compared to the current state of software
engineering, the immaturity of knowledge
engineering is apparent.

data in working memory. If recency
does not resolve the conflict, these
tools select a rule instantiation based
on the number and complexity of con-
ditions that were matched. KEE
allows the user to select a conflict-res-
olution strategy from a number of
options, including least premise com-
plexity, greatest premise complexity,
least weight, or greatest weight ART
selects the instantiated rule with the
highest user-specified priority

Support for rule compilation is a
feature that distinguishes knowledge
engineering tools intended for build-
ing large KBSs from tools oriented
toward smaller problems. The term
compile in this sense refers to a map-
ping from a rule’s external form to an
internal representation. This internal
representation is designed to reduce
the number of pattern-matching oper-
ations required to place rules in the
conflict set. An obvious approach to
building a conflict set is to match
each rule in the knowledge base
against all the working memory ele-
ments on each recognize-act cycle.
This approach is prohibitive for a
large rule base (Forgy 1979).

ART, KnowledgeCraft’s CRL-OPS,
and OPS5 use variations of the Rete
matching algorithm in conjunction
with rule compilation (Forgy and
Shepard 1987). The Rete algorithm
exploits two properties common to
production systems: The contents of
working memory change very little
on each iteration of the recognize-act
cycle, and rules contain a number of
similar conditions and terms that are

Procedural Control

Several tools furnish language con-
structs that enable a knowledge engi-
neer to specify control strategies. S.l
supports a Rascal-like procedural lan-
guage that can be used to create
objects and assign values to their
attributes, query users and display
results, and initiate backward chain-
ing. ART provides constructs such as
“for” and “while” that can be specified
in rules to effect iteration. In addition,
most tools allow the user to escape to
external procedures, either to achieve
functionality not supported by the
tool or to interface with other sys-
tems.

Object-Oriented Programming

ART, KEE, and KnowledgeCraft sup-
port object-oriented programming
The approaches of these tools are sim-
ilar in that objects are represented as
frames with methods attached to spec-
ified slots. Methods are inherited in
the same manner as conventional slot
values. Inheritance allows methods to
be shared by all objects that belong to
a particular class. In many cases,
methods must be developed by the
knowledge engineer to meet specific
needs. Method libraries provided by
current tools are not as extensive as
those supplied by systems such as
Smalltalk (Goldberg and Robson 1983)
and Objective-C (Cox 1986).

Access-Oriented Programming

The basic primitives of access-orient-
ed programming are procedures

(demons, active values) that are acti-
vated as side effects when specified
variables are accessed (Bobrow and
Stefik 1986). Methods and demons are
conceptually very similar. The chief
distinction between them is the way
they are activated Methods are acti-
vated by a message, and demons are
activated when their associated values
are accessed. ART, KEE, and Knowl-
edgecraft support demons. Demons
are particularly useful when the
knowledge engineer wants to make
changes at dynamically determined
points in an execution.

Truth Maintenance

Truth maintenance (Doyle 1982) is a
means of keeping track of beliefs and
their justifications developed during
an inferencing process. If contradic-
tions occur, the lines of reasoning
associated with the contradictions and
all conclusions resulting from them
can be retracted Both ART and KEE
support truth maintenance systems.
ART allows the knowledge engineer
to specify contradiction rules that are
automatically applied whenever the
specified inconsistency exists. KEE’s
truth maintenance system is integrat-
ed with its KEEworlds facility. By
keeping track of the justifications that
lead to a belief being accepted, KEE is
able to determine which KEEworlds
are consistent with the belief.

Knowledge-Based Simulation

Knowledge-based simulation com-
bines knowledge representation and
inferencing with discrete-event simu-
lation (Oren 1985). Several require-
ments have motivated this approach
From the simulation perspective,
many complex problems lend them-
selves to symbolic and object-oriented
approaches. These approaches allow
the construction of models using sym-
bolic programming, object-oriented
programming, and frame-based knowl-
edge representation with inheritance
(Klahr 1985; Middleton and Zancona-
to 1985). From the KBS perspective, a
simulation component, combined
with the various inferencing
paradigms, increases the power of the
reasoning process. Planning problems
in which temporal reasoning is orga-
nized in an event-driven framework

84 AI MAGAZINE

lend themselves to this approach
(Erickson 1985).

Both SIMKIT (Stelzner, Dynis, and
Cummins 1987) and KnowledgeCraft
provide support for knowledge-based
simulation. SIMKIT, which was built
using KEE, supports event creation
and scheduling, generation of random
variables, the manipulation of graphic
icons, and facilities for collecting and
reporting the results from a simula-
tion. KnowledgeCraft supports knowl-
edge-based simulation by providing a
multiqueue event manager that
schedules events to occur using a sim-
ulated clock. This capability is inte-
grated with CRL, KnowledgeCraft’s
knowledge representation language.

Requirements for
lnferencing and Control

As is the case with knowledge repre-
sentation, inferencing paradigms sup-
ported by current tools are adequate
for many of today’s problems. A num-
ber of needs currently exist in this
area, however, including improved
integration of inferencing techniques
in hybrid tools, inferencing approach-
es which provide several levels of
abstraction, and methodologies that
determine the efficiency of inferenc-
ing approaches and furnish guidance
about which combination of
paradigms should be applied to specif-
ic problems.

Tools that support several inferenc-
ing paradigms find it difficult to pre-
sent a user interface that is as easy to
understand and use as tools whose
design is based upon a single
approach. Some hybrid tools support
forward chaining and backward chain-
ing as independent subsystems that
are invoked by user calls, much like a
run-time library in conventional pro-
gramming systems. This approach
sometimes results in two independent
inferencing strategies that are not sen-
sitive to one another and leave to the
user the task of integrating them into
the same problem solution. Another
approach is to treat forward chaining
as the primary strategy and initiate
backward chaining at certain points in
the inferencing process to assist for-
ward chaining, Although this ap-
proach achieves some degree of inte-
gration, current implementations give

Table 2.
IIltC?rCIICC

and
COrltrOl.

the appearance of being developed by
grafting backward chaining upon an
existing forward-chaining system.

Tools that furnish several levels of
abstraction for inferencing are also
needed. At a high level of abstraction,
features such as menus, online help,
online tutorials, and guidance about
which techniques to use based on
problem characteristics are required.
These features allow domain experts
who lack experience with knowledge
engineering tools to develop and
maintain models. A lower level of
abstraction for experienced knowledge
engineers should also be provided
This level would allow the specifica-
tion of metacontrol information to
guide inferencing at various points
during processing.

Methodologies are required for eval-
uating the efficiency of inferencing
approaches and matching them to
problem types. In particular, metrics
are needed which provide information
to be used in assigning multiple infer-
encing paradigms to specific problems
and which guide in partitioning the
problem so that the various strategies
can be applied in an effective manner.

Development Environments
A development environment is
defined here as a set of facilities that
enable a knowledge engineer to create,
test, and validate a KBS. Development
environments are addressed in terms
of knowledge base management and
debugging.

Knowledge Base Management
KBSs are usually built incrementally.
Utilities are required that support the
addition of new knowledge and the
removal of invalid or redundant
knowledge in order to effectively build
and maintain these systems. ART,
KEE, and KnowledgeCraft provide sup-
port for windows and mouse-

selectable menus to aid in the devel-
opment and maintenance of knowl-
edge bases. These tools allow the user
to create and shape windows and spec-
ify their positioning. Windows are
used to enter information into the
knowledge base and display knowl-
edge base entities. In addition, the
execution of knowledge base utilities
from menus is supported. Although a
number of tools provide access to an
editor from within their environment,
the functionality of the editor is usu-
ally dependent on the system that
hosts the tool.

Debugging

Debugging is an area where some
commercial knowledge engineering
tools exhibit a superiority over tradi-
tional software development environ-
ments. This advantage is in part the
result of the Lisp environments in
which many of the tools are imple-
mented. Lisp programmers have tradi-
tionally required extensive develop-
ment and debugging facilities because
of the exploratory nature of the appli-
cations that have been addressed with
the language. Some tools support
facilities such as execution traces, the
ability to halt an execution to exam-
ine and modify values and then
resume, the capability to back up and
reexecute during testing, the ability to
save and retrieve test cases as well as
built-in explanation facilities that
answer questions concerning how and
why specific conclusions are reached.
ART and KEE provide graphic tracing
of rule activity during inferencing.
KEE and KnowledgeCraft support a
graphic display of frames in the form
of an inheritance network. Frames can
be added to, and deleted from, the
knowledge base by manipulating the
displays with a mouse. Graphic dis-
plays can also be used to edit the slots
and values of frames. In addition to

WINTER 1987 85

‘liable 3.
Dcveloprncnt
Enviromnent.

t he interfaces provided for develop-
ment, ART, KEE, and KnowledgeCraft
furnish graphic tool kits that allow
the knowledge engineer to develop
custom interfaces for end users.

useful when several people arc
involved in the maintenance of a large
knowledge base.

Requirements for
Development Environments

As a knowledge base grows, it be-
comes difficult to determine manual-
ly whether new knowledge is redun-
dant or conflicts with existing knowl-
edge. Utilities that “understand” the
semantics of the knowledge base and
perform consistency checking are
needed. Features of this type currently
exist in only a few systems. TEIRE-
SIAS (Davis 1976) is able to analyze
rules, make suggestions regarding
their completeness and consistency,
and help the knowledge engineer
debug them using its own rule heuris-
tics. CHECK [Nguyen et al. 1987) per-
forms static analysis of a knowledge
base and is able to detect redundant,
conflicting, and circular rules. Ver-
sions of CHECK exist that diagnose
knowledge bases for LES [Laffey,
Perkins, and Nguyen 1986) and ART.

Cross-reference utilities that pro-
vide information about relationships
in a knowledge base are needed.
Cross-reference information is valu-
able when there is a need to retrieve
all components that contain or refer-
ence a given entity or when it is nec-
essary to determine which entities in
the knowledge base are affected when
a given instance is added, modified, or
deleted.

Utilities are also needed that main-
tain different versions of the knowl-
edge base and record the updates as
they are made. EMYCIN provides this
type of support. When a rule is
changed, the EMYCIN editor auto-
matically stores the modification date
and user’s name with the rule for later
reference. This feature is particularly

86 AI MAGAZINE

ART and VAX OPS5 are among the
few tools that aid the knowledge engi-
neer in monitoring and evaluating the
performance of KBSs. ART provides
statistics concerning the number of
inferences occurring during a run, pat-
tern memory usage, and rule activa-
tions and firings. VAX OPS5 reports
the number of times a rule fires, the
amount of central processing unit
(CPU) time used to execute the left-
hand side of a rule, and the amount of
CPU time used to execute the right-
hand side of a rule. The identification
of entities that consume large
amounts of resources is required in
order to apply KBSs to time-critical
applications. As KBSs move from
stand-alone environments and become
components of information systems,
performance issues become impor-
tant. Performance monitoring and
evaluation facilities can also be used
to determine the relative efficiency of
the various inferencing methods and
representation approaches. An allied
need exists for standard test case
suites that can be used to evaluate the
relative performance of tools.

For knowledge engineering to
progress beyond an art and truly
deserve the engineering label, a set of
principles and methodologies must be
formulated and adopted. When com-
pared to the current state of software
engineering, the immaturity of knowl-
edge engineering is apparent. The rela-
tive youth of knowledge engineering
has not yet allowed a sufficient base of
experience to be collected, cataloged,
and extrapolated to sound methodolo-
gies. The classic software engineering
approach consists of developing a sys-
tem using a specification of the prob-
lem in conjunction with top-down
techniques. In contrast, most KBSs are

developed incrementally in a bottom-
up approach for applications that are
not well understood. Often, the build-
ing of a prototype system serves as the
specification for the problem. Despite
differences in the two disciplines, it
appears that some software engineer-
ing principles are applicable to KBSs
(Zualkernan, Tsai, and Volovik 1986).
In addition, new methodologies that
address the unique features of knowl-
edge engineering (for example, knowl-
edge acquisition) must be developed.
A necessary step toward achieving
these goals is collecting and cataloging
user experience with the various
knowledge engineering tools.

Delivery Environments
A delivery environment is defined
here as the hardware and software that
enable an end user to execute a KBS. A
problem frequently encountered by
developers of large KBSs is the selec-
tion of cost-effective hardware for the
delivery environment. Candidate
hardware must be supported by the
appropriate knowledge engineering
tool and provide sufficient system
resources to execute the KBS at the
required level of response; its cost
must allow a meaningful return from
the application. Potential delivery sys-
tems for large KBSs include Lisp
machines, mainframes, workstations,
and personal computers.

Most of the tools for building large
KBSs were originally developed for
Lisp machines. These machines are
designed to give single users access to
all the system’s resources. Constraints
that tend to inhibit development, such
as restricting access to the file system,
have been avoided. However, the same
features that aid rapid prototyping in a
development environment can result
in a lack of security in a delivery envi-
ronment. Also, the single-user orienta-
tion of Lisp machines becomes a cost
consideration in delivery environ-
ments when the KBS is distributed to
a number of users. KBSs currently
delivered on Lisp machines tend to be
highly leveraged applications that are
distributed to a small number of users.

KBSs are beginning to appear on
hardware that has traditionally hosted
data processing applications. Tools
such as Aion (Aion Corporation 19861,

Expert System Environment (Intelna-
tional Business Machines 1986) and
S.l support the delivery of KBSs on
IBM mainframes. These tools, written
in languages other than Lisp, are
designed for applications that are inte-
grated with conventional software
systems. The ability to interface with
the host operating system, access
large databases, and be called by other
applications becomes increasingly
important as KBSs progress beyond
stand-alone applications and form
components of large software systems.

Many of the tools developed for
Lisp machines have been ported to
workstations such as the microVAX,
SUN, and Apollo systems. Some of
these tools have remained Lisp based.
Other tools such as S.l and ART have
been rewritten in C in an attempt to
achieve increased run-time per-
formance and easier integration with
existing applications.

A number of tools support develop-
ment and delivery of small and medi-
um KBSs on personal computers
(Teknowledge 1985a; Texas Instru-
ments 1985; Henson 1987). In addi-
tion, IntelliCorp provides PC-HOST, a
delivery option that hosts a run-time
version of KEE on a VAX and executes
the user interface on a personal com-
puter. Several vendors are planning
delivery options that take advantage
of increases in the computational
speed and memory capacity of 32-bit
personal computers. IntelliCorp
IntelliNews (1987) plans a run-time
version of KEE that will execute on
Intel 80386-based personal computers.

Although a number of delivery
options currently exist, tool vendors
continue to search for better solu-
tions. Factors such as hardware price-
performance improvements, very
large scale integration Lisp chips,
improved Lisp compilers, and tools
implemented in conventional lan-
guages will influence future delivery
environments. At present, no single
direction clearly dominates.

Requirements for
Delivery Environments

Features required of a tool in a deliv-
ery environment differ from those
needed in a development environ-
ment. Development environments

require facilities that enhance editing
and debugging as well as the ability to
experiment with different knowledge
representation and inferencing
approaches. Delivery environments
require good end-user interfaces, effi-
cient execution, and the ability to
interface with other systems. A num-
ber of tools (for example, ART, KEE,
and KnowledgeCraft) provide facilities
for building end-user interfaces. The
areas where delivery tools must show
improvement in order to effectively
use KBSs for large applications include
improved execution speed, better inte-
gration with traditional information-

rule firings can theoretically be car-
ried out in parallel. To achieve paral-
lelism, extensive analysis is required
to avoid generating invalid informa-
tion in the knowledge base.

Current KBSs typically operate in a
stand-alone consultation mode. As the
technology matures, there is a need to
support features that allow KBSs to be
incorporated into traditional software
systems and interface with applica-
tions such as database management
systems. A factor that inhibits these
objectives is the lack of adequate exe-
cution-time input-output facilities
furnished by tools. Direct support of

Table 4.
Delivery Systems.

processing systems, improved input-
output, and access to operating-sys-
tem services.

Improvements in execution speed
are needed to effectively address a
number of applications. The feasibili-
ty of using a KBS consisting of several
thousand rules in a critical real-time
application is probably beyond the
current state of the art. Brownston et
al. (1985) estimate that most produc-
tion systems run from one to two
orders of magnitude slower than pro-
cedural programs. Goals for the
Department of Defense-sponsored
Strategic Computing Initiative (Hayes-
Roth 1985) include increasing the size
of KBSs to 10,000 or more rules and
increasing solution speeds by two
orders of magnitude or more. Some of
these required efficiency gains might
result from the use of parallel process-
ing and language-directed architec-
tural approaches (Forgy and Gupta
1986, Blelloch 1986). Production sys-
tems in particular appear to lend
themselves to parallel execution.
Operations such as pattern matching,
rule selection, conflict resolution, and

input-output facilities by current tools
is primitive by most standards. It con-
sists almost entirely of being able to
accept user responses from a terminal
and display results to a terminal. In
order to perform basic input-output
operations [for example, reading or
writing a sequential file], the knowl-
edge engineer must often use Lisp
functions or resort to external proce-
dures.

In order for KBSs to be used effec-
tively in applications on multiuser
computing systems, tools must allow
access to a number of operating-sys-
tem services. In particular, as KBSs
find increased use in real-time applica-
tions, they will need the ability both
to respond to interrupts and to be
scheduled in multitasking environ-
ments that allow a number of cooper-
ating processes to synchronize and
share data.

Summary
Most knowledge engineering tools
that currently dominate the industrial
market are the result of research
efforts which were later commercial-

WINTER 1987 87

. . . a number of unresolved issues exist. . . . knowledge-acquisition needs,
representation of causal models, representation of spatial and

temporal relations, a requirement for improved methods of handling
incomplete and uncertain knowledge, a requirement for tools that
understand and enhance their knowledge base, and a requirement

for methodologies to evaluate knowledge representation issues.

ized. These tools have evolved as
products to the point where they col-
lectively support an impressive set of
knowledge engineering features.
These features include multiple
knowledge representation and infer-
encing approaches, the ability to pur-
sue hypothetical reasoning, object-ori-
ented programming, support of truth
maintenance, extensive debugging
aids, and graphic interfaces. Although
a number of significant KBSs have
been built using these tools, they have
required the efforts of skilled knowl-
edge engineers. The goal of having a
domain expert with minimal comput-
er expertise create and maintain a
KBS is not feasible with this genera-
tion of tools. To reach this goal, a
number of extensions and improve-
ments are required.

First is improved facilities for
acquiring and testing knowledge.
These facilities must simplify the
task of transferring knowledge from
the domain expert to the tool’s
knowledge base and help maintain the
integrity of the knowledge base by
supporting semantic checking, cross-
referencing, and version control.

The next improvement is knowl-
edge representation facilities that sup-
port reasoning from first principles,
allow natural representation of spatial
and temporal relations, and furnish
improved methods for specifying
uncertain knowledge. Third is
improved integration of inferencing
approaches with the flexibility to
allow an inexperienced user to control
inferencing at a high level of abstrac-
tion and a knowledge engineer to
specify low-level metacontrol infor-
mation.

Fourth, methodologies are needed
to evaluate knowledge representation
and inferencing issues and contribute
to the development process in a man-
ner comparable to current software

engineering practices. Then there are
improved execution speeds that allow
the use of KBSs in critical real-time
applications and performance moni-
toring facilities which enable the tun-
ing of a model’s execution. Finally,
features are needed that allow the
seamless integration of KBSs with
existing applications, such as database
management systems and convention-
al language applications. These fea-
tures must include improved input-
output facilities and access to operat-
ing-system services.

It will not be possible to achieve all
these goals in the framework provided
by current tools. Robust and well-
integrated implementations of these
features will require new designs.
These advances will accelerate the
proliferation of KBSs both as stand-
alone systems and as components in
traditional software systems.

Acknowledgments
I wish to thank Digital Equipment Corpo-
ration for funding the tool study and
Knowledge Systems Corporation for spon-
soring my involvement In addition, I
would like to thank the referee for numer-
ous constructive comments.

References
Aion Corporation 1986 Aion Develop-
ment System Reference Manual, Aion Cor-
poration
Blelloch, G E 1986 CIS: A Massively
Concurrent Rule-Based System In Pro-
ceedings of the Fifth National Conference
on Artificial Intelligence, pp 735-741. Los
Altos, Calif.: Morgan-Kaufmann
Bobrow, D. G, and Stefik, M. J. 1986. Per-
spectives on Artificial Intelligence Pro-
gramming Science 231:951-957
Brachman, R J, and Levesque, H J 1985.
Readings in Knowledge Representation
Los Altos, Calif : Morgan-Kaufmann.
Brown, J S 1985. The Low Road, the Mid-
dle Road, and the High Road In The AI
Business, eds P H. Winston and K A
Prendergast, 81-90 Cambridge, Mass.: MIT
Press.

Brownston, L ; Farrel, R ; Kant, E.; and
Martin, N 1985. Programming Expert Sys-
tems in OPS5 Reading, Mass.: Addison-
Wesley
Buchanan, B., and Shortliffe, E 1984 Rule-
Based Expert Systems, The MYCIN Experi-
ments of the Stanford Heuristic Program-
ming Project Reading, Mass : Addison-
Wesley
Carnegie Group 1987. KnowledgeCraft
CRL Technical Manual, Version 3 1,
Carnegie Group
Clayton, B D 1985 ART Programming
Tutorial, Volume Two: A First Look at
Viewpoints. Los Angeles, Calif.: Inference
Corporation.
Cox, B. J. 1986. Object-Oriented Program-
ming: An Evolutionary Approach Reading,
Mass.: Addison-Wesley.
Davis, R 1976 Applications of Meta-Level
Knowledge to the Construction, Mainte-
nance, and Use of Large Knowledge Bases,
Technical Report, STAN-(X-76-552, Dept
of Computer Science, Stanford Univ
Doyle, J 1982 A Glimpse of Tmth-Mainte-
nance. In Artificial Intelligence An MIT
Perspective, eds. P H. Winston and R H
Brown, 119-135 Cambridge, Mass.: MIT
Press
Erickson, S. A 1985 Fusing AI and Simu-
lation in Military Modeling In AI Applied
to Simulation, eds E J. H. Kerckhoffs, G.
C. Vansteenkiste, and B. P Zeigler, 140-
150 San Diego, Cahf.: Society for Comput-
er Simulation.
Eshelman, L, and McDermott, J 1986
MOLE: A Knowledge Acquisition Tool
That Uses Its Head In Proceedings of the
Fifth National Conference on Artificial
Intelligence, 950-955. Los Altos, Calif :
Morgan-Kaufmann
Fagan, L. 1980. VM: Representing Time-
Dependent Relations in a Clinical Setting
Ph D diss., Dept of Computer Science,
Stanford Univ
Fikes, R , and Kehler, T 1985. The Role of
Frame-Based Representation in Reasoning
Communications of the ACM 28(9): 904-
920
Forgy, C L , 1979. On the Efficient Imple-
mentation of Production Systems Ph.D.
diss , Dept of Computer Science,

88 Al MAGAZINE

Carnegie-Mellon Univ.

Forgy, C. L., and Gupta, A 1986 Prelimi-
nary Architecture of the CMU Production
System Machine. In Proceedings of Hawaii
International Conference on System Sci-
ences

Forgy, C. L., and Shepard, S J 1987 Rete:
A Fast Match Algorithm AI Expert 214):
35-40

Goldberg, A , and Robson, D. 1983
Smalltalk-80: The Language and Its
Implementation Reading, Mass : Addison-
Wesley

Green, C , and Westfold, S J 1982 Knowl-
edge-Based Programming Self-Applied In
Machine Intelligence 10: Knowledge-
Based Systems, eds J. E Hayes, Donald
Michie, and Y-H Pao, 339-359 New York:
Wiley

Hayes-Roth, F 1985 Rule-Based Systems.
Communications of the ACM 28(9): 921-
932.

Hayes-Roth, F 1984. The Knowledge-Based
Expert System: A Tutorial. IEEE Computer
17[9]:11-28

Henson, D. G 1987 Gold Works Expert
System User’s Guide Gold Hill Comput-
ers

Hoffman, R. H 1987. The Problem of
Extracting the Knowledge of Experts from
the Perspective of Experimental Psycholo-
gy AI Magazine S(2): 53-67.

International Business Machines 1986.
ESCE/VM User Guide, SH20-9606, Inter-
national Business Machines

Inference Corporation, 1987. ART Refer-
ence Manual, Version 3.0, Inference Corpo-
ration.

IntelliCorp, 1985. KEE Software Develop-
ment System User’s Manual, Version 3.0,
IntelliCorp

IntelliNews 3/3) April 1987. Ed J. Dynis,
IntelliCorp

Klahr, P. 1985 Expressibility in ROSS, An
Object-Oriented Simulation System In AI
Applied to Simulation, eds E. J H Kerck-
hoffs, G. C Vansteenkiste, and B P. Zei-
gler, 136-139. San Diego, Calif.: Society for
Computer Simulation

Knowledge Systems Corporation 1986
Evaluation of AI Languages and Knowledge
Engineering Environments: Phase II,
Knowledge Systems Corporation.

Laffey, T J ; Perkins, W. A ; and Nguyen, T
A 1986 Reasoning about Fault Diagnosis
with LES. IEEE Expert, Intelligent Systems
and Their Applications l(1): 13-20

McDermott, J 1982. Rl: A Rule-Based
Configurer of Computer Systems. Artifi-
cial Intelligence 19: 39-88

McDermott, J., and Forgy, C 1978. Produc-
tion System Conflict Resolution Strate-

gies In Pattern-Directed Inference Sys-
tems, eds. D A Waterman and F Hayes-
Roth, 177-199 New York: Academic
Middleton, S, and Zanconato, R. 1985
BLOBS: An Object-Oriented Language for
Simulation and Reasoning. In AI Applied
to Simulation, eds E J H Kerckhoffs, G.
C Vansteenkiste, and B P Zeigler, 130-
135 San Diego, Calif.: Society for Comput-
er Simulation

Nguyen, T A.; Perkins, W A.; Laffey, T. J ;
and Pecora, D 1987 Knowledge Base Veri-
fication AI Magazine 812): 69-75

Oren, T I. 1985 Artificial Intelligence and
Simulation In AI Applied to Simulation,
eds E. J H Kerckhoffs, G C
Vansteenkiste, and B P Zeigler, 3-8 San
Diego, Calif : Society for Computer Simu-
lation.

Richer, M H. 1986. An Evaluation of
Expert System Development Tools, Techni-
cal Report, KSL 85-19, Knowledge Systems
Laboratory, Dept of Computer Science,
Stanford Univ

Riley, G D 1986 Timing Tests of Expert
System Building Tools, FM7 [86-511, Lyn-
don B Johnson Space Center, National
Aeronautics and Space Administration

Stallman, R M., and Sussman, G J. 1979.
Problem Solving about Electrical Circuits
In Artificial Intelligence: An MIT Perspec-
tive, eds. P H. Winston and R H Brown,
33-91. Cambridge, Mass : MIT Press

Stefik, M, and Bobrow, D. 1986 Object-
Oriented Programming: Themes and Varia-
tions. AI Magazine 614): 40-62

Stelzner, M j Dynis, J ; and Cummins, F.
1987 The SIMKIT System: Knowledge-
Based Simulation and Modeling Tools in
KEE. IntelliCorp

Teknowledge 1985a. M 1 Reference Guide.
Teknowledge.

Teknowledge. 1985b. S 1 Users Guide
Teknowledge

Texas Instruments, 1985 Personal Consul-
tant Expert System Development Tools,
2243763-0001, Texas Instruments

van de Brug, A; Bachant, J; and McDer-
mott J 1986 The Taming of Rl IEEE
Expert l(3): 33-38.

Zualkernan, I ; Tsai, W T; and Volovik, D
1986. Expert Systems and Software Engi-
neering: Ready for Marriage? IEEE Expert
I(4): 24-30

SPANG
ROBINSON

ADVMCEDTECHNOLOGYBUSZNESSRE-
SOURCES:

0 THESPANG ROBINSONREPORTONARTJFI-
CIAL INTELLIGENCE

0 THESPANGROBINSONRE~ORTONSWER-
COMPUTING AND PARALEX hOCESSlNG

0 ANELECTRONICDATABASEOFCOMMER-
~~ALART~cIALINTELLIG~cEA~TIvITY

0 ACOMPREHENXVEEVALUATION OFTHE
HIGH END EXPERT SYSTEM DEVELOPMENT
TOOL.SNOWON THEhMRKE~

- CARNEGIEGROUP'S
KNOWLEDGE
CRAFT

- h=ERENCE'S ART

- INTEuCO~'SKEE

- %CNOWLEEGE'SS1

SPANGROBINSON
The Advanced Technology Business Re.source

P 0. Box 1432
MANC~FSTEER, MA 01944 USA

(617) 526-4820

WINTER 1987 89

