
In a large-scale space, structure is at a sig- 
nificantly larger scale than the observa- 

tions available at an instant To learn the 
structure of a large-scale space from obser- 

vations, the observer must build a cogni- 
tive map of the environment by integrat- 
ing observations over an extended period 

of time, inferring spatial structure from 
perceptions and the effects of actions 

The cognitive map representation of large- 
scale space must account for a mapping, 
or learning structure from observations, 

and navigation, or creating and executing 
a plan to travel from one place to another 

Approaches to date tend to be fragile 
either because they don’t build maps; or 
because they assume nonlocal observa- 

tions, such as those available in preexist- 
ing maps or global coordinate systems, 

including active landmark beacons and 
geo-locating satellites 

We propose that robust navigation and 
mapping systems for large-scale space can 

be developed by adhering to a natural, 
four-level semantic hierarchy of descrip- 

tions for representation, planning, and 
execution of plans in large-scale space 

The four levels are sensorimotor interac- 
tion, procedural behaviors, topological 

mapping, and metric mapping Effective 
systems represent the environment, rela- 
tive to sensors, at all four levels and for- 

mulate robust system behavior by moving 
flexibly between representational levels at 

run time. We demonstrate our claims in 
three implemented models: Tour, the 

Qualnav system simulator, and the NX 
robot 

Benjamin J. Kuipers and Tad S. Levitt 

A person finding a way through a 
building, moving from place to 

place within a city, or navigating over 
open terrain is dealing with a large- 
scale space, a space whose structure 
is at a significantly larger scale than 
the observations available at an 
instant. Thus, to learn the large-scale 
structure of the space, the traveler 
must necessarily build a cognitive 
map of the environment by integrat- 
ing observations over extended peri- 
ods of time, inferring spatial structure 
from perceptions and the effects of 
actions. 

Large-scale space and the corre- 
sponding cognitive map representa- 
tion cannot be defined independent of 
sensory perceptions or motor actions 
used to observe and move about in 
this environment For example, a 
work bench observed by a laser-bear- 
ing robot is not a large-scale space, 
but the moon is a large-scale space 
relative to a land-roving robot. A 
microchip is not large scale relative to 
an optical inspection system, but a 
grasshopper ganglion is a large-scale 
space when observed by an electron 
microscope. 

The cognitive map representation of 
large-scale space must solve two 
closely linked problems: mapping, or 
learning the cognitive map from 
observations, and navigation, or creat- 
ing and successfully executing a plan 
to travel from one place to another. 
These problems are important for 
three reasons. 

First, robot navigation and mapping 
in large-scale space is an important 
practical problem for applications, 
including space and undersea explo- 
ration, automated manufacturing and 
transportation systems, and toxic 
waste cleanup. Second, spatial 
metaphor is clearly an important 

aspect of commonsense reasoning, 
suggesting that the representations for 
the cognitive map are applied to other 
domains by structural analogy. Third, 
because the rate of new observations 
is constrained by the rate of physical 
travel, large-scale space can serve as a 
“cognitive drosophila”-an accessible 
laboratory domain for the investiga- 
tion of perception, learning, and prob- 
lem solving with incomplete knowl- 
edge. 

Because the development of auton- 
omous mobile robots has become an 
increasingly important research area, 
a number of proposals for spatial map- 
ping and navigation algorithms have 
been presented. However, most of 
these have been fragile in the sense 
that they do not build maps or that 
they depend on accurate preexisting 
maps of the robot’s working environ- 
ment; active landmark beacons; or 
geo-locating satellite or other forms of 
absolute, global coordinate systems. 

Robust performance in both map- 
ping and navigation means not only 
that performance should be excellent 
when all resources are plentiful but 
that performance should degrade 
gracefully when resources are limited. 
Several types of resources have limita- 
tions that are relevant to these tasks. 

First is resource-bounded time and 
memory. Because a robot must act in 
real time relative to a task environ- 
ment, it has limited time to assimi- 
late its observations into the map or 
search a complex map before action is 
required. At the same time, its com- 
puting capacity and working memory 
can be shared with other pressing 
tasks. Second is accurate sensory 
information. Highly accurate observa- 
tions of the environment can require 
more computing resources, more 
favorable observation conditions, or 
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Route procedures built from 
scnsotimotor schemns 

TopologicoJ 

Placepath networks; 
boundary relations, regions, 
and skuleral networks. 

Met&Hi 

Local geon1etry at places and 
along paths. Orientation 
frames for dobaJ frame. of 
rl?rercJlce. 

QUALNAV 

J’athn of viewfrao~os: 
rcquences of sets of veclors 
pointing lo JRndmatks 
(hrading and distance, with 
uncertainty). 

Control strategies for crossing 
a virtual bounriary tlcfined by 
two Isndn~arke. 

Network of adjacency 
relations among orianthtiort 
regions defined by virtual 
boundaries. 

The NX Robot 

Ring of range.sensors, varying 
continuously with time. 
Absolute compass. 
Two tractor-typo chains. 

Control strategies fol 
ldll-climbing to dellnc 
distinctivt places, and 
path-following to define 
peth.segmenfs; selection and 
execution of strategies. 

Network of places and 
path-segments, as in the 
TOUI1 model. 

Robust. computation of 
relative position vectors 
between ~IGECS with 
overlapping viewframes 
(tcletivcly insensjtive to 
uncertainty on distance or 
an& cstimatcs). 

Local 6e0metry at places. 
Pathscgments described as 
generrlJzed cyJJndcrs: 
axir.lcngth, axis-shape, and 
cross-section profile. 

Table 1. Three Implementations of the Spatial Semantic Hierarchy. 

more expensive hardware than is 
available to the robot Computational 
capabilities are third Either the 
intrinsic capabilities of the robot or 
the quality of the data can constrain 
the type of operations that can useful- 
ly be applied to data. Inverse trigono- 
metric operations and scalar multipli- 
cation require ratio data, in which a 
numeric value is calibrated with 
respect to a true zero. Trigonometric 
operations can require only interval 
data on angles, where differences are 
well defined, but absolute angles are 
not required. Some control algorithms 
require only ordinal data, and recogni- 
tion can sometimes be performed 
using only nominal data 

How can we achieve robust perfor- 
mance in the face of serious resource 
limitations? It is worth noting that 
human mapping and navigation in 
large-scale space are highly robust 
(Lynch 1960), even in the face of sub- 
stantial resource limitations (Miller 
1985) The psychological literature, 
dealing with developmental sequen- 

ces (Piaget and Inhelder 1967; Siegel 
and White I975), individual varia- 
tions, and the strengths and weakness- 
es of adult spatial mapping and navi- 
gation (Lynch 19601, provide a signifi- 
cant number of useful constraints on 
the structure of human knowledge 
representation. Inspired by these 
empirical results and based on our 
experience with several successful 
mapping and navigation programs 
(Kuipers 1977, 1978, 1979, 1982, 1983, 
1985; Levitt et al 1987a, 1987bj 
Kuipers and Byun 1987), we propose 
the following hypothesis. 

There is a natural four-level seman- 
tic hierarchy of descriptions of large- 
scale space that supports robust map 
learning and navigation: 

1. Sensorimotor The traveler’s 
input-output relations with the envi- 
ronment. 

2. Procedural. Learned and stored 
procedures defined in terms of senso- 
rimotor primitives for accomplishing 
particular instances of place-finding 
and route-following tasks. 

3. Topological. A description of the 
environment in terms of fixed enti- 
ties, such as places, paths, landmarks, 
and regions, linked by topological rela- 
tions, such as connectivity, contain- 
ment, and order. 

4. Metric. A description of the envi- 
ronment in terms of fixed entities, 
such as places, paths, landmarks, and 
regions, linked by metric relations, 
such as relative distance, relative 
angle, and absolute angle and distance 
with respect to a frame of reference. 

In general, although not without 
exception, assimilation of the cogni- 
tive map proceeds from the lowest 
level of the spatial semantic hierarchy 
to the highest, as resources permit. 
The lower levels of the cognitive map 
can be created accurately without 
depending greatly on computational 
resources or observational accuracy. A 
complete and accurate lower-level 
map improves the interpretation of 
observations and the creation of the 
higher levels of the map 

For route planning and navigation, 
the topological and metric levels pro- 
vide the most powerful problem-solv- 
ing capabilities but are also the most 
vulnerable to resource limitations. 
The sensorimotor and procedural lev- 
els are frequently capable of solving 
navigation problems, although per- 
haps providing a less optimal or less 
informative solution. 

Of course, a given person’s cogni- 
tive map consists of many fragments, 
represented in the different levels of 
this semantic hierarchy, and addition- 
al knowledge at one level can compen- 
sate for gaps at another. The semantic 
hierarchy clarifies the underlying 
structures of the knowledge but does 
not correspond straightforwardly to 
distinctions among individuals. 

We applied this semantic hierarchy 
to the design and implementation of 
three programs to solve the mapping 
and navigation problems in large-scale 
space. The three programs-Tour 
model (Kuipers 1977, 1978, 1979), the 
Qualnav model and simulator [Levitt 
et al. 1987a, 1987b, 1988), and NX 
(Kuipers and Byun 1987)-represent 
significantly different instantiations of 
the semantic hierarchy we defined and 
solve different aspects of the problem 
(see table 1). The scope of this article 
does not permit a detailed comparison 
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of our approaches with others (for 
example, McDermott 1980; Davis 
1983; McDermott and Davis 1984) 
that focus primarily on the metric 
level and derive information at other 
levels from a metric map. 

The Tour Model 
The Tour model was primarily devel- 
oped between 1974 and 1979 (Kuipers 
1977, 1978, 1979). Its goal is to 
account for the robust performance 
and wide variety of incomplete 
knowledge exhibited by the human 
cognitive map The cognitive map has 
a number of attractive properties as a 
research domain for the investigation 
of states of incomplete knowledge. 

First, knowledge is acquired over 
significant periods of time because 
observations are constrained by the 
speed of physical travel. Second, cog- 
nitive development takes place over a 
period of a decade or so, and there has 
been extensive study of the develop- 
mental stages of the cognitive map in 
children (Piaget and Inhelder 1967; 
Siegel and White 1975). Third, signifi- 
cant individual variation exists among 
cognitive maps in adults (Lynch 1960), 
leading one to suspect that there are 
distinct pathways for the develop- 
ment of a cognitive style. Finally, 
there is significant variation in cogni- 
tive maps as a function of the physical 
structure of the environment and the 
type of experience with it (Lynch 
1960; Chase 1982), making it easy to 
test knowledge representation 
hypotheses with “thought” experi- 
ments. 

The Tour model was designed to 
factor the issue of image processing of 
sensory input from observation assim- 
ilation into a description of the large- 
scale environment. Accordingly, it 
treats the sensory apparatus as a black 
box, making only the simplest 
assumptions about its internal struc- 
ture. The spatial environment is treat- 
ed as something that is only indirectly 
perceived, whose description must be 
constructed from a person’s egocentric 
sensory input 

The Tour model has been imple- 
mented in Lisp several times over the 
past decade and tested on a variety of 
small simulated environments, as 
many as a few dozen places and paths, 

and perhaps a hundred or so views. 
Locality of access to the knowledge 
base ensures that the program runs 
quickly, and its computational costs 
are not particularly sensitive to the 
overall size of the knowledge base. 
Elliot and Lesk (1982) implemented a 
route finder that generated an internal 
map structure from United States 
Geological Survey data tapes of a large 
region of northern New Jersey and 
demonstrated that cost-effective route 
finding could be done using a version 
of the boundary heuristic discussed 
later. 

The elements of the Tour model 
representation are presented here in a 
declarative, in some cases axiomatic, 
form, following Marr (1982) and 
Hayes (1979) They argue for defining 
the mathematic structure of the 
knowledge prior to its computational 
and procedural implementation. How- 
ever, a little reflection shows that in 
almost all cases, the declarative form 
translates straightforwardly into an 
incremental assimilation rule for 
acquiring the knowledge from obser- 
vations. 

Sensorimotor Interaction 
with the Environment 

The sensorimotor world of an agent, 
in this case, a traveler in a fixed envi- 
ronment, is a purely egocentric 
description of sensory input and 
motor output and contains no refer- 
ences to fixed features of the external 
environment. Models of spatial learn- 
ing in which sensory perception pro- 
vides direct information about places 
or objects in the world are, at best, 
glossing over an important and non- 
trivial inference step, and more likely, 
committing a serious category error. 

The Tour model (Kuipers, 1977, 
1978, 1979) assumes a sensorimotor 
world consisting of views and actions. 
A view represents the traveler’s senso- 
ry input at a given instant. Although 
recognizing that this sensory descrip- 
tion might be arbitrarily complex 
from the point of view of the Tour 
model, it is treated as an opaque 
object that can be matched against 
other views and used as an index for 
associative retrieval of other struc- 
tures. An action represents motion 
that the traveler can take within the 

environment and typically changes 
the current view. An action is mod- 
eled as a change of state, with the cur- 
rent view defined immediately before 
and after an action but not changing 
continuously during it. 

Views are not necessarily visual. For 
a blind traveler, the sensory input at 
an instant can consist of a collection 
of aural, tactile, and olfactory stimuli, 
which are assimilated into a cognitive 
map, much as visual views are by a 
sighted traveler The principal require- 
ment is that views be distinctive 
enough to allow assimilation of the 
environmental structure. Open ocean 
and the neophyte’s view of desert or 
forest might fail to satisfy this 
requirement. 

Views and actions are regarded as 
the internal descriptions provided by 
the sensorimotor system in response 
to (recent) past sensations and actions. 
They are assumed to be correct 
descriptions of the actual experience, 
although possibly quite abstracted and 
incomplete. The sensorimotor input 
for the traveler, from which the Tour 
model constructs a cognitive map, is 
modeIed as an alternating sequence of 
views and actions: V,, AO, V,, A,, 
Vs.. .Vn-1, An-l, V,. This discrete sim- 
plification of the continuous spatial 
world makes the research more 
tractable, of course, but it is also justi- 
fied by observations that people fre- 
quently recall only those places at 
which decisions are made and not the 
continuous paths between them 
(Lynch 1960). 

The Tour model includes only two 
actions, each of which can include 
optional descriptions of quantitative 
parameters. (1) (Turn a), where a 
describes the amount of rotation, and 
(2) (Travel 6, where 6 describes the dis- 
tance of travel. The extent to which 
these descriptions of quantities are 
used and whether they are treated as 
qualitative or quantitative descrip- 
tions varies with the level of the 
semantic hierarchy 

Procedural Behaviors 

The purpose of procedural behaviors 
is to represent a description of senso- 
rimotor experience sufficient to allow 
the traveler to follow a previously 
experienced route through the envi- 
ronment. This function is nontrivial if 
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Table 2. Sensorimotor Schema Performance under Degradation. 

the representation must be robust in 
the face of resource limitations when 
information sensed, stored, or re- 
trieved can be incomplete. 

The basic element of procedural 
behaviors is a production-like schema: 
A sensorimotor schema is a 4-tuple 
<goal, situation, action, result>, where 
action is an action description, and 
goal, situation, and result are all 
views. 

The procedural interpretation of a 
sensorimotor schema is “When 
attempting to reach goal, if the cur- 
rent view is situation, do action and 
expect result.” The declarative inter- 
pretation is “If the current view is sit- 
uation, then doing action will produce 
result ” 

A procedural description of a route 
is a collection of sensorimotor 
schemas describing the fragments of 
the route. For example, suppose that 
the traveler on the way to goal Vn has 
the following sensorimotor experience. 
V,, -%I,, VI, A,, v~.vn-~, A,.~,vn. 

A complete procedural route 
description would be the following set 
of sensorimotor schemas (cVn, Vi, A, 
Vi+l> I i = O,...n-l} . 

A route description can be followed 
as a procedure for navigating in the 
environment based on two factors: I. 
There must be a complete set of 
schemas at least at the <goal, situa- 
tion, action, --> level. 2. The action 
descriptions must be sufficiently well 
specified, given the environment, to 
initiate the appropriate action. (Ter- 
mination can be environment driven 
by activating the next schema, with 
obvious risk of overshoot.) 

Even without being complete 
enough to allow the route-following 
procedure to be successfully executed, 
the route description in terms of pro- 
cedural behaviors is useful for the 
recognition of landmarks and as a 
basis for subsequent assimilation. Pro- 
cedural behaviors are robust because 
many purposes can be effectively 
served by collections of incompletely 

28 AI MAGAZINE 

specified sensorimotor schemas (see 
table 2). The performance of a collec- 
tion of sensorimotor schemas degrades 
gracefully as the schemas become less 
complete. 

While acquiring a route description 
during actual experience traveling in 
the environment, working memory 
holds the current view and, likely, the 
current action. Once an action is initi- 
ated, a time interval occurs before the 
result is observed as the new current 
view. During this time, distractions 
can occur, causing some or all of the 
contents of working memory to be 
lost. It is relatively easy to create a 
sensorimotor schema and fill its situa- 
tion and action components. Howev- 
er, the goal and result components 
depend on information persisting in 
working memory over a significant 
time interval; so, they might freqnent- 
ly be left empty 

The first two uses of sensorimotor 
schemas in table 2 illustrate the grace- 
ful degradation of performance that 
occurs when resource limitations pre- 
vent the schema from being filled. A 
set of complete schemas allows the 
route to be followed or described, 
using the result component as the for- 
ward pointer in a linked list to the 
schema describing the next action and 
its result If the result component is 
missing, the route can still be fol- 
lowed but only within the physical 
environment, where the environment 
will produce the result of the action 
and allow retrieval of the next 
schema. This level of performance 
appears to account for a common state 
of incomplete knowledge of a route, 
frequently described by the following: 
“I could take you there, but I can’t tell 
you how.” 

Preservation of one’s goal in work- 
ing memory during a sequence of 
actions has obvious survival value. 
Nonetheless, it is not uncommon to 
experience capture errors (Norman 
1981), when inattention leads a famil- 
iar procedure to capture the execution 

of a less familiar procedure. For exam- 
ple, I might be driving to do an errand 
on a Saturday morning and inatten- 
tively discover myself arriving at 
work. This phenomenon has a plausi- 
ble explanation in terms of the inter- 
action between sensorimotor schemas 
and working memory. If the current 
goal is dropped from working memo- 
ry, a given situation can evoke several 
~22, situation, action, !!> schemas. 
With no reason to select among them, 
the most common is selected and exe- 
cuted. 

Within procedural behaviors, route 
finding can take place by retrieving 
known routes or searching for con- 
catenations of known routes. Al- 
though this method is adequate for 
many purposes, it does not provide 
any capability to search for novel 
routes, find shortcuts to optimize 
familiar routes, or cope without guid- 
ance with unknown environments. 

The Topological Map 

Where the procedural map is defined in 
terms of the egocentric sensorimotor 
experience of the traveler, the topologi- 
cal map is defined in terms of the fixed 
features of the environment-places, 
paths, and regions-and topological 
relations among them, such as connec- 
tivity, order, and containment. 

Once the procedural map is suffi- 
ciently complete-that is, there is a 
stream of sensorimotor schemas of the 
form < -, situation, action, 
result>--it becomes possible to assim- 
ilate the information in sensorimotor 
schemas into the topological map. 
Because it doesn’t matter whether 
such a schema comes from a goal- 
indexed route description or is simply 
a record of experience while wander- 
ing around, we omit the goal compo- 
nent from our schema notation. 

The different topological relations 
in the map are defined in terms of sen- 
sorimotor experience in such a way 
that the computational structures rep- 
resenting knowledge of these relations 
can be accumulated incrementally 
from the stream of observations (see 
figure 1). Two levels of the topological 
map exist in the Tour model: (1) a 
topological network of places and 
paths and (2) the containment and 
boundary relations of places and paths 
with regions. 



The Network of Places and Paths. To 
build a topological map consisting of a 
network of places and paths, we need 
only consider actions to be described 
as “turn” or “travel,” ignoring any 
associated description of magnitude. 
A turn action leaves the traveler at 
the same place, even though it might 
change the current view. A place is 
identified with the set of views ob- 
tainable at it. The relation at (view, 
place) indicates that view is associat- 
ed with place: 
<V1,Turn,Vz> = s!P[at(V,,P) h at(Vz,P)] 

Because the place associated with a 
given view is unique, we can define 
the function place(V) = place(V) = P. 
(In the real world, similar or identical 
views can be associated with different 
places. A generalization to handle 
such a situation is not difficult but is 
beyond the scope of this discussion.) 

Similarly, a travel action does not 
leave the traveler at the same place 
but on the same path. A path is a 
topologically one-dimensional subset 
of the environment. If a view lies on a 
path, we say path = path(view). When 
a view is on a path, we define the 
function direction(view,path) -> (+I,- 
11, which discriminates between the 
two directions one might be facing 
along a path. The connectivity be- 
tween a place and a path is expressed 
by the relation on(place,path): 
<V,,Travel,Vr> 

= place(Vi) t place (V,) 
- s!path[path = path(V,) = path(V,)] 
on(placeWJ, PaWVJ 

* on(placeW21, path(Vd 
direction(V,,path(V,)) 

= direction(V,,path(V,)) 
We can induce a (partial) order rela- 

tion on the places lying on each path 
by defining the function 
order(placeI,place2,path) + (+l,-l,nil}, 
eV,,Travel,V,> - 

order(place(V,), place(VJ, path(V,)) 
= direction(V,,path(Vl)). 

These relations can be naturally 
translated to rules that respond to a 
stream of <V,A,V’> schemas and incre- 
mentally build a collection of places 
and paths, asserting connectivity rela- 
tions (at, on, place, and path), and 
order relations (direction and order) 
(see figure 1). 

These relations give us a topological 

network of places and paths which 
can be used to find novel routes 
among places using the usual graph- 
search algorithms. The collection of 
known <V,A,V’> schemas could also 
be treated as a graph and searched but 
at a finer granularity and restricted to 
schemas describing experienced 
actions, resulting in less efficiency 
and less success at finding routes. 
Regions, Boundaries, and Contain- 
ment. As we saw, a path defines an 
order relation over the places on the 
path. It also defines a binary classifica- 
tion over the places not on the path: 
those to the right and those to the left 
of the path (see figure 2a). 

A boundary is a sequence of one or 
more directed paths Here, we restrict 
our attention to a single path directed 
in its +l direction, but the concept 
generalizes to sequences of segments, 
including simple closed curves. A 
region is a set of places; a boundary 
region is the set of places defined to be 
on one side bf a boundary. A path is 
associated with two boundary regions. 
right(path) and left(path). 

To extract boundary region informa- 
tion from sensorimotor experience 
and the procedural map, we need a 
slightly more detailed description of 
the turn action, including a qualita- 
tive description of magnitude: (a) 
“Turn 0” indicates do nothing, (b) 
“Turn Around” indicates face the 
opposite direction along the same 
path, (c) “Turn Right” indicates turn 
but not as far as a turn around, and (d) 
“Turn Left” indicates turn but not as 
far as a turn around. 

Now, suppose we observe a se- 
quence of sensorimotor schemas 
matching the following pattern: 

cV,,Travel,Vz7 
<Vz,Turn Right,V,> 
<V3,Travel,V47 
The rules for the place-path net- 

work would define the following 
places and their relations with the 
observed views (see figure 2b): 

Pi = place(V,) 
P, = place(V,) = place(V,) 
P, = p2ace(V,) 
path, = path(V,) = path(V,) 
path, =path(V,) = path(V,) 
direction(V,,path,) = direction(V,,path,) 
direction(V3,pathz) = direction(V,,path,) 

Figure 1 Places and Paths Form a 
Network of Topological Relations. 

lcft(pathl) 

PC 

right(paihf) 

1 

(a) 

path1 

PI 

Figure 2 
Boundary regions 
(a) Each Path Divides Space into 
Right and Left Boundary Regions; 
(b) Boundary Relations between 
Places and Paths Can Be Acquired 
Incrementally during Travel. 
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Membership in the boundary re- 
gions is then defined by 
direction(V,,path,) = +1 qP3~ rightipath,) 
direction(V2,path,) = -1 *Psc lefupath,) 

mon coordinate frame of reference, 
supporting the use of two-dimension- 
al vectors to define relative position 
and orientation. 

A similar rule can place P, to one 
side or the other of path,. 

Clearly, for each place and path, the 
place lies either on the path or in one 
of its boundary regions. The actual 
exploration history of the traveler 
determines which boundary relations 
are actually observed and assimilated. 
Once a sufficient number of boundary 
relations have been accumulated, they 
provide a useful topological route- 
finding heuristic. To illustrate, an 
example boundary heuristic is as fol- 
lows. To find a route from A to B, if 3 
path such that A E right(path) and B E 

left(path), look for routes from A to 
path and from path to B. 

Local Geometry. The conceptual pre- 
requisite for the local geometry level 
of the metric map is the network level 
of the topological map, not the topo- 
logical map as a whole. The directions 
radiating from a given place are asso- 
ciated with views. If we can deter- 
mine the relative angles between 
views from the magnitudes of particu- 
lar turn actions, we can incrementally 
associate an absolute heading with 
each view, using coordinates locally 
meaningful at each place. 
<V,,(Turn a), VZ> 

= localheading( (V,),place(V,)) 
= a + localheading( (V, ),place(V,)) 

Chase (1982) and others have 
observed that many human cognitive 
maps are organized around a “skele- 
ton map” of major streets, within 
which most problem-solving takes 
place, with final links from the origi- 
nal start and goal points to the nearest 
point on the skeleton. The statistical 
frequency with which routes follow a 
minority of streets should give these 
streets a preponderance of the bound- 
ary relations and thus determine 
which streets are treated as part of the 
skeleton for a given problem 

The assignment of local headings 
can take place incrementally if the 
first request for a local heading of a 
view at a place assigns this view the 
arbitrary heading of zero This associ- 
ation of local headings with views 
automatically induces an association 
of local headings with directed paths 
at each place: 

localheading(path(V), 
direction(V,path(V)),place(V)) = 

localheading(V,place(V)) . 

The Metric Map 

Metric descriptions can be added to 
the map if we consider the quantita- 
tive components describing the mag- 
nitude of actions: (Turn a), where a 
describes the amount of rotation, and 
(b) (Travel s), where s describes the dis- 
tance of travel For the metric map, 
the Tour treats these descriptions of 
magnitude as numbers or intervals. 

An analogous relation allows us to 
assimilate the relative distance 
between two places and incrementally 
create a one-dimesional coordinate 
system associated with each path, giv- 
ing an absolute one-dimensional coor- 
dinate to each place. 
<V,,(Travel 6 ), Vz> 

Zlocalposition(place(V,),path(V~)) 
= localposition(place(Vi),path(V,)) 

+ s * direction(V,,path(Vi)) 
(Recall that path(V,) = path(V,).) 

places and paths whose local geome- 

The metric map extracts this quan- 
titative information acquired during 
travel and assimilates it into two lev- 
els of metric description: (1) local 

try has a known relation with a com- 

geometry and (2) orientation frames. 
Local geometry includes the locally 
defined headings of paths radiating 
from a place and the position of places 
within a locally defined one-dimen- 
sional coordinate system of each path. 
Orientation frames include sets of 

From local one-dimensional coordi- 
nates, we can compute relative dis- 
tances between places independently 
of having actually traveled between 
these two maces: 

I 

Orientation Frames. 

pathdistance(placel,place2,path) 
= llocalposition(placel,path) 

It is useful for 

- localposition(place2,path)l . 

route finding to be able to estimate 

Local geometry information is use- 
ful in problem solving, making it pos- 
sible to estimate the lengths of routes. 

the distance and direction from one 
place to another by integrating the 
distances and turns along the seg- 
ments of a route leading from one to 
the other. This integration requires 
that relative distances and directions 
be in a common frame of reference to 
allow vector addition Unfortunately, 
in the local geometry, headings are 
strictly local to individual places; so, 
comparisons are impossible. 

However, a global orientation 
frame, such as compass directions, 
can serve as a common frame of refer- 
ence for multiple local coordinate sys- 
tems at individual places. Globally 
meaningful headings at heading(V,OF) 
can be defined with respect to an ori- 
entation frame OF, with the con- 
straint that the headings are compati- 
ble with observed turn information: 

<V,(Turn a),V’>=bOF[heading(Vz,OF) 
= a + heading(V,,OF)] 

Note that orientation frames need 
not be genuinely global frames of ref- 
erence such as the compass direc- 
tions Frequently, an orientation 
frame is associated with a region of a 
city that has a regular rectangular pat- 
tern of streets, such as Back Bay in 
Boston, Mass., and ceases to apply at 
the boundaries of this region. In such 
cases, the regional orientation frame 
can be created by local propagation 
along paths, as neighboring places 
bring their local coordinate systems 
into correspondence. 

This type of propagation is most 
likely to take place along straight 
streets. Incorporating a feature devel- 
oped for the NX robot, we can gener- 
alize the quantitative information in a 
travel action description to include a 
description of the net change in head- 
ing ~0 experienced during the follow- 
ing action. (Travel 6 me). For a straight 
street, of course, Ae = 0 This informa- 
tion imposes a second constraint 
source on the headings asserted by an 
orientation frame: 

<V,(Travel s~e),V,-aOF[heading(V,,OF) 
= 88 + heading(V,,OF)] 

It is natural here to use an interval 
representation for incomplete knowl- 
edge of be Travel along a straight 
street would yield Ae = [O,O], but a 
twisty mountain road might give Ai3 = 

[-180, +180]. 
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Vector Addition. It would be useful 
to be able to manipulate two-dimen- 
sional relative position vectors, as 
people clearly do in some cases. How- 
ever, the extent of human capabilities 
along these lines is not at all clear; so, 
the Tour model takes no firm position 
on this topic, although several vector 
addition schemes have been imple- 
mented at various times The problem 
is to define the functions distance 
(placel,place2) and direction (placel, 
place2,OF) whose values represent the 
vector from place1 to place2 within 
the orientation frame OF and to pro- 
vide axioms corresponding to appro- 
priate assimilation rules. 

An assimilation process should 
yield two-dimensional distance and 
direction relations from experience 
such as 

<V,,(Travel 61 Ael),Vp 

<V,,(Turn CZ), V3> 
<Vs, (Travel 62 Ao2), V,> 

Where AC31 = A82 + 0, this vector addi- 
tion is straightforward Where Aei, Ae2 t 
0, the quantitative description of trav- 
el requires more detail to capture the 
net straight-line distance covered by a 
curved path. It remains unclear 
whether this kind of knowledge is 
realistic for a person to accumulate, 
how the knowledge is inferred, how it 
is represented, and what its states of 
partial knowledge are. 

Psychological studies of behavior 
related to vector addition have 
aroused considerable discussion about 
the existence of special-purpose spa- 
tial analog computational mecha- 
nisms in the brain or, at least, in the 
mind. Part of this discussion was 
sparked by the dramatic results of 
Shepard and Metzler (1971) on mental 
rotation, leading to widespread inter- 
est in the properties of mental 
imagery (see Kosslyn 1980). Another 
part of this discussion arises from 
interest in the properties of the hip- 
pocampus, a portion of the brain with 
regular anatomical structures that is 
closely tied with spatial reasoning and 
working memory, as shown by studies 
of cognitive deficits resulting from 
brain injuries (O’Keefe and Nadel 
1978). 
Distorted Cognitive Maps. The val- 
ues of heading(V,OF) are undercon- 
strained by local observations in turn 

and travel actions. Not surprisingly, assume it is exactly a right angle. (2) 
then, it is widely observed that In (Travel &Ae), assume that Ae = 0. (3) 
human cognitive maps have “rubber Given <V,,(Travel 6 Ae), VZ>, assume 
sheet” distortions when compared that distance(place(V,),place(V,)) = 6 
with the actual environment, nreserv- * 
ing topological and local metric prop- 
erties but possibly grossly distorting 
global metric distance and direction 
relations (Lynch 1960). 

As these relations are implemented 
with incremental assimilation rules, a 
number of heuristics, especially for 
dealing with quantitative observa- 
tions, can predictably lead to these 
distortions: (1) In (Turn a), if a is 
approximately equal to a right angle, 

The Qualnav Model 
The Tour model has a built-in bias 
toward environments that have 
approximate network-like structures 
such as urban networks of places con- 
nected by streets Qualnav takes a 
substantihlly different point of view, 
considering the environment as open, 
possibly mountainous terrain with 
significant perceptual events, called 

LOCAtiiN 

Figure 3. Cross-Country Inference Example 
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landmarks, scattered throughout this 
two-dimensional space. The theory 
also extends to three dimensions. The 
spatial semantic hierarchy is success- 
ful in providing a robust structure for 
exploration, mapping, and navigation. 

Qualnav is a multilevel representa- 
tion theory of large-scale space based 
on the observation and reacquisition 
of distinctive visual events, that is, 
landmarks. The representation pro- 
vides the theoretical foundations for 
visual memory databases and path 
planning and guidance algorithms, 
including coordinate-free, topological 
representation of relative spatial loca- 
tion and smoothly integrating avail- 
able metric knowledge of relative or 
absolute angles and distances. Rules 
and algorithms have been developed 
that under the assumption of correct 
association of landmarks on reacquisi- 
tion (although not assuming land- 
marks are necessarily reacquired) pro- 
vide a robot with navigation and exe- 
cution capability. The ability to 
deduce or update a map of large-scale 
space a posteriori is a by-product of 

the inference process. In order to 
demonstrate our claims, we built a 
qualitative navigation simulator, 
called the Qualnav model, that pro- 
vides a software laboratory for experi- 
menting with spatial relationships in 
visual memory and their relationship 
to path planning and execution. 

Robot navigation and guidance has 
traditionally been quantitative, rely- 
ing on accurate knowledge of dis- 
tances, directions, paths traveled, and 
similar metric data to get from place 
to place. Existing robot navigation 
techniques include triangulation 
(Matthies and Shafer 1986), ranging 
sensors (Hebert and Kanade 1985), 
auto-focus capability (Pentland 1985), 
stereo techniques (Lucas and Kanade 
1984; Eastman and Waxman 1985), 
dead reckoning, inertial navigation, 
geo-satellite location, correspondence 
of map data with the robot’s own loca- 
tion, and local obstacle avoidance 
techniques (Moravec 1980; Chatila 
and Laumond 1985). 

These approaches tend to be brittle 
(Bajcsy, Krotkov, and Mintz 1986; 

Figure 4. Multiple Levels of Spatial Representation. 

Brooks 1987), accumulate error (Smith 
and Cheesesman 1985), are limited by 
the range of an active sensor, depend 
on accurate measurement of distance 
and direction perceived or traveled, 
and are nonperceptual or only utilize 
weak perceptual models. Furthermore, 
these theories are largely concerned 
with the problem of measurement and 
do not centrally address issues of map 
or visual memory and the use of this 
memory for inference in vision-based 
navigation and guidance. 

The Qualnav model provides a com- 
putable theory that integrates qualita- 
tive, topological representations of 
large-scale space with quantitative, 
metric ones. We contrast traditional 
robotic spatial reasoning with the 
qualitative techniques in the follow- 
ing example of a cross-country sce- 
nario of figure 3 drawn from the Qual- 
nav model. Here, our solar-powered 
robot has wandered the long way 
around the forest (off the left side of 
the figure] without a map and wants 
to get home before the sun goes down. 
The robot sights and recognizes the 
forest ranger’s watch tower and the 
mountain. 

Searching its memory of landmarks 
viewable from the robot laboratory 
(the goal location), the robot knows 
that a watch tower and a mountain 
can be viewed from there. A tradition- 
al triangulation approach to path plan- 
ning would require that our robot 
move in a straight line, keeping track 
of the “crow’s flight” distance 
between its start and end points in 
order to form a base for a triangle 
relating its locations with the sighted 
landmarks. However, the irregular 
field terrain makes this a difficult and 
inaccurate task because the robot 
must constantly avoid local rocks, 
bushes, ruts, hills, and so on, to tra- 
verse the ground. 

However, the Qualnav model per- 
ceives a hypothetical line joining the 
landmark pair of watchtower-moun- 
tain as a virtual boundary between 
itself and the robot laboratory. In gen- 
eral, if we draw a line between two 
(point) landmarks and project this line 
onto the (possibly not flat) surface of 
the ground, then this line divides the 
earth into two distinct regions. If we 
can observe the landmarks, we can 
observe which side of this line we are 
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on. The virtual boundary created by 
associating two observable landmarks 
together thus divides space over the 
region in which both landmarks are 
visible. We call these landmark-pair 
boundaries (LPBs) and denote LPB 
constructed from the landmarks L, 
and L, by LPB(L,,L,). 

maps, we show how these metric and 
topological concepts relate to visual 
memory to produce navigation and 
guidance capability. 

Sensorimotor Interaction 
with the Environment 

The robot can draw the inference of 
which side of the LPB it is on because 
the watchtower is on its left and the 
mountain on its right, whereas it 
recalls that this relationship was 
reversed when it viewed these land- 
marks from the robot laboratory. The 
robot now sets a goal to cross this LPB 
and executes it by a control feedback 
procedure depending on continuous 
sighting and tracking of the land- 
marks. Based on vision, this algorithm 
is insensitive to local obstacle avoid- 
ance and does not require any numer- 
ic estimates of distances to land- 
marks. Approach to the boundary is 
assured by measuring the angle 
between the landmarks; when it 
reaches 180 degrees, the robot knows 
it is crossing the LPB. In our example, 
the robot can now sight and head 
directly toward the laboratory. Gener- 
ally, this reasoning is applied recur- 
sively to achieve hierarchical, senso- 
ry-based, qualitative navigation and 
guidance. 

The Qualnav model simulates a land- 
roving robot equipped with an 
omniview visual sensor that produces 
a continuous, two-dimensional, 360- 
degree image of the surrounding envi- 
ronment. The Qualnav simulation of 
the world is an elevation grid that the 
robot moves over. Vision of land- 
marks is simulated by marking or 
numbering discrete points in the ele- 
vation grid. 

The robust, qualitative properties 
and formal mathematic basis of this 
representation and inference processes 
are suggestive of the navigations and 
guidance behavior in animals and 
humans (Schone 1984). However, we 
make no claims of biological founda- 
tions for this approach. 

Research by cognitive psychologists 
(Kozlowski and Bryant 1977; Shepard 
and Metzler 1971; Pylyshyn 1984) and 
zoologists (Schone 1984) has clearly 
demonstrated that humans and ani- 
mals record distinctive visual land- 
marks and use the structure inherent 
in local and temporal relationships 
between landmarks relative to observ- 
er paths of motion to predict and iden- 
tify places in the world and plan and 
execute paths between locations. 
Recent work to close the gap between 
memory structure and neurobiology 
for spatial understanding and percep- 
tion is presented in Foreman and 
Stevens 11987). Even these prelimi- 
nary advances strongly support the 
notions of landmark-based under- 
standing of local environments. Fur- 
thermore, humans and animals per- 
form navigation and guidance tasks 
quite reliably with poor range esti- 
mates and coarse angular information. 

In the following paragraphs, we dis- 
cuss the sensorimotor assumptions of 
the Qualnav model and present the 
procedural (tracking) behavior of the 
robot simulator. We then develop the 
mathematic theory of the viewframe 
(metric map) representation and the 
orientation region (topological map) 
representation. A viewframe is a data 
structure that encodes the observable 
landmark information in a stationary 
panorama. An orientation region is a 
data structure representing the area 
on the ground defined by the set of 
LPBs in a viewframe. The relationship 
between the levels of mapping are pic- 
tured in figure 4. For each of the 
viewframe and orientation region 

Ideal landmarks for navigation and 
map building are uniquely distin- 
guishable points that are visible from 
anywhere with precisely determined 
range. The real world, of course, con- 
sists of objects that occlude each 
other and look different under varying 
viewing conditions. Significant per- 
ceptual and cognitive inference is 
required to recognize the same objects 
from different places and environmen- 
tal conditions. For navigation and 
map building in particular, the 
changes in object appearance can be 
considerable because the location- 
refining power of landmarks depends 
on relating landmarks from highly 
separated points of observation. 

The Qualnav simulator currently 
assumes that a landmark will be per- 
ceived whenever the robot has a line 
of sight to it. In the current imple- 
mentation, all landmark sightings are 
correctly recognized as having been 
seen or not seen before. Error in angle 
and range estimates are randomized 
around tunable parameters in the sim- 
ulator. For example, we can set the 
worst-case range error to 500 percent, 
with range values to landmarks being 
randomly generated with 10 percent 
to 500 percent error. Work is in 
progress to extend the Qualnav theory 
to handle mismatched or unobserved 
landmarks. 

Procedural Behaviors 

In the Qualnav model, route headings 
are world states that can be created by 
a robotic action, namely, that of fol- 
lowing the heading direction specifier. 
While a heading is being executed, the 
vision system builds metric and topo- 
logical representations of the environ- 
ment it is passing through. These rep- 
resentations must be sufficient to sup- 
port future inferencing to plan and 
execute a path back through this envi- 
ronment or through geographic 
regions that share common landmarks 
in view. Termination conditions cor- 
respond to computable changes in our 
location in space, triggering additional 
spatial inference processes if we have 
not reached our destination goal. 

We define different types of head- 
ings and the associated termination 
conditions. We use visual memory 
and heading structures to create algo- 
rithms that can guide a robot through 
the world based on visual informa- 
tion. A heading consists of a type, 
destination goal, direction function, 
and termination criteria. 

The type of heading specifies the 
coordinate system that the direction 
conditions are computed in. An abso- 
lute heading type corresponds to an 
absolute coordinate system. An abso- 
lute heading can be induced by a cor- 
respondence of sensor position to an a 
priori map or grid data from an iner- 
tial navigation system, geo-satellite 
location, a dead reckoning from a 
known initial position, and so on. A 
view-frame heading type refers to 
headings computed between local 
coordinate systems that share com- 
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Table 3. Heading Specifications. 

mon visible landmarks. An orienta- 
tion heading type is a heading that is 
continuously updated based on 
observed relationships between pairs 
of landmarks. View-frame and orienta- 
tion headings are explained in more 
detail in the following subsections. 

Destination goals are descriptions 
of places that the heading is intended 
to point the robot or vision system 
platform toward. A destination goal 
can be specified, in order of increas- 
ingly topological (more qualitative) 
representation, as a set of absolute [for 
example, universal transverse merca- 
tor [UTM]) world coordinates, a view- 
frame localization, an orientation 
region, or a set of (simultaneously vis- 
ible) landmarks. 

Direction functions are functions 
that accept run-time data at either 
metric or topological levels of repre- 
sentation and return true if the head- 
ing is being maintained and false oth- 
erwise. Direction functions are essen- 
tially predicates except that they can 
have side effects, such as updating 
heading error parameters. Direction 
functions for absolute headings simply 
compare the desired heading vector 
against that returned from direct sen- 
sor readings. Directions for view- 

frame headings are given as relative 
angles between the heading vector in 
the sensor-based coordinate system 
and the observed landmarks. Orienta- 
tion directions specify a set of simul- 
taneously true conditions indicating 
passage to the right, left, or between 
pairs of landmarks. 

Termination criteria are run-time 
computable conditions that indicate 
that if the heading continues to be 
maintained, its direction function can 
no longer return true. This situation 
can occur because the heading has 
been fulfilled, meaning that we have 
reached the destination goal implicit 
in the direction function. For example, 
termination occurs if we are at the 
desired absolute world-coordinate 
location specified in an absolute head- 
ing, we recognize the set of landmarks 
corresponding to a view-frame head- 
ing destination, or we cross the LPBs 
given in the direction function of an 
orientation heading. A heading fails if 
we accumulate too much error in an 
absolute coordinate system tracking 
scheme or we lose sight of the set of 
landmarks required to maintain a 
view-based or orientation-region head- 
ing. Termination criteria can also 
include feedback conditions from 
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modules outside the vision system, 
such as a path-planning module that 
reasons about obstacles, traversability 
of the ground surface, strategic con- 
cealment, and so on. Heading types, 
destination goals, direction functions, 
and termination criteria are summa- 
rized in table 3. 

The top-level loop for landmark- 
based path planning and following is 
to (1) determine a destination goal, (2) 
compute and select a current heading, 
and (3) execute the heading while 
building an environmental representa- 
tion. The destination goals are typi- 
cally determined recursively, imple- 
menting a recursive goal-decomposi- 
tion approach to perceptual path plan- 
ning. 

The Metric Map 

Robot memory consists of sequences 
or paths of viewframes and relation- 
ships between viewframes that have 
landmarks in common. Because a 
viewframe encodes observable land- 
mark information in a stationary 
panorama, we assume the sensor plat- 
form is stationary long enough for the 
sensor to pan up to 360 degrees, tilt 
up to 90 degrees (or to use an omnidi- 
rectional sensor [Cao, Oh, and Hall 
198611, recognize landmarks in its 
field of view, or buffer imagery and 
recognize landmarks while in motion. 

We can pan from left to right, recog- 
nizing landmarks, Li, and storing the 
solid angles between landmarks in 
order, denoting the angle between the 
ith and jth landmarks by Angij. The 
basic view-frame data are these two 
ordered lists: (L,,L,,.. ) and 
bg&ng23,... ). The relative angular 
displacement between any two land- 
marks can be computed from this 
basic list. An error in computing 
these relative angles is at least as 
great as the resolution of the vision 
system and can include cumulative 
pan-tilt error, angular ambiguity in 
landmark point localization, or other 
error sources. The angular error is 
measured by eij between landmarks i 
and j. Finally, range estimates are 
required for landmarks recorded in 
viewframes. These estimates can be 
arbitrarily coarse but finite. We only 
require that the true range lie 
between the bounds specified for the 

VIEWFRAME 1 VIEWFRAME 2 

Figure 7 Viewframe Heading 

estimate. We denote the range interval 
associated with landmark L, by [rlr,rJ 
We now explain how it is possible to 
make computable local coordinate 
systems in space relative to these 
observed landmarks. 

We begin by noting that the set of 
points in three-space from which we 
can observe an angle of oij between 
landmarks Li and Li is constrained to a 
closed toruslike surface; a cutaway of 
this surface is pictured in figure 5 
This toruslike surface is more easily 
observed in a planar cross-section, 
where the shape is the figure eight 
cross-section in figure 6. 

Now, if the robot observed two 
landmarks separated by angle e, then 
it must be on a circle determined by o 
and the distances to the landmarks. 
Because of angular error, the circle of 
possible locations is thickened to a 
band. If more than two landmarks are 
simultaneously observed, then the 
robot’s actual location must be in the 
intersection of multiple fattened cir- 

cles. This intersection is called a 
viewframe localization 

Having formulated the view-frame 
localizations for two viewframes in 
the common local coordinate system 
defined by two landmarks and the sen- 
sor, we now have two regions 
expressed in the same coordinate sys- 
tem. Any (affine linear) transforma- 
tion that maps one viewframe approx- 
imately onto the other can be taken as 
a heading. For example, we can trans- 
late the centroid of the first viewframe 
to the centroid of the second. This 
translation defines a viewframe head- 
ing as a vector pointing between the 
viewframes and supplies the vision 
system with an intuitive notion of 
“head that away.” A viewframe head- 
ing is generally not the same as an 
absolute heading because the points in 
space that the sensor occupied when 
the viewframes were collected might 
not be mapped onto each other by the 
viewframe heading transformation. 
Figure 7 illustrates the generic situa- 
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tion in which we can compute a 
viewframe heading. One viewframe 
contains the landmarks L, to L,, and 
the other viewframe contains land- 
marks L, to La. Range estimates to L,, 
L,, L,, and L, might be different in the 
two viewframes. Using the LPB con- 
necting L, and L,, we can assign a 
local orientation to the vector point- 
ing from L, to L,. This vector, with 
the implied orientation of the ground 
plane, defines a local two-dimensional 
coordinate system. 

Inference over viewframes performs 
path planning and following over a 
visual memory and, therefore, 
assumes that viewpaths-that is, the 
visual memory-have already been 
collected. If they have not, paths must 
be planned and followed based on 
metric data and viewpaths collected in 
the course of following these paths. 
A+ is used to search along view paths 
to find a path between start and goal. 
We show some path planning and exe- 
cution results in the Qualnav simula- 
tor. 

The simulator interface defaults to 
representing a mouse-sensitive menu 
of options, four three-dimensional-per- 
spective windows capturing the omni- 
directional view of the world from the 
robot’s current position, an overhead 
view of the world, and a zoom win- 
dow chained to the overhead view. In 
figure 8, the simulator is also config- 
ured with a duplicate, zoomed per- 
spective window of the heading direc- 
tion. 

Because landmarks can be chosen 
from the perspective display windows, 
it is especially easy to choose peaks, 
valleys, ridges, and critical horizon 
points as landmarks. These distinctive 
geographic features correspond to nat- 
urally occurring landmark choices in 
cross-country environments. 

Figure 8 (top). Automatic Viewpath Formation. 
Figure 9 (middle) Linkages in Visual Memory 

Figure 10 (bottom). Initial Plan. 

The menu command to create a 
new viewpath allows the user to click 
along an arbitrary path. The simulator 
then automatically moves along the 
path, computing and storing the 
viewframes at each clickpoint, as 
shown in figure 8. The dark (and dim) 
blue line corresponds to the user-spec- 
ified path. The system is midway 
through calculation of viewframes 
along the path. The light blue line 
indicates the current heading along 
the viewpath. 
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Building visual memory computes 
linkages between viewpaths that have 
view frames with commonly visible 
landmarks and accounts for a user- 
specified maximum estimated range 
between linked viewframes [see figure 
9). Here, the dark blue lines are view- 
paths in visual memory, and the light 
blue lines represent linkages between 
viewpaths built in memory. 

Constructing a plan allows the user 
to specify a start and an end point in 
the overhead display. The simulator 
computes a viewframe at these points 
and searches visual memory for 
viewframes that shared common land- 
marks. It uses the recalled range esti- 
mates and its current observations 
(including error) to guess, using 
viewframe headings, the closest 
viewframe. A* algorithm is then used 
over visual memory to get to the 
viewframe closest to the goal point 
(computed similarly) (see figure 10). 

There is a “step plan” that incre- 
mentally executes the following 
viewframe plan. Figures lla and lib 
show the beginning and end of execu- 
tion of the plan begun in figure 10. 
The original plan, created before mov- 
ing from the start point, is indicated 
in green. The current plan is in yel- 
low, and the executed path is in 
white. The robot’s current location is 
shown by a red circle. Its planned 
heading, that is, the direction it 
observes its path to be, is indicated by 
a light blue circle. Dark blue paths 
(faint in these photos) are viewpaths 
in memory, and landmarks are shown 
by red squares. Notice that the exe- 
cuted path is usually much smoother 
than it is in memory because the 
robot actually uses the landmarks 
(with 100 percent range error) to navi- 
gate by. Figure llb highlights the 
shortcut found by the robot, where its 
original path took a sharp bend. 

The Topological Map 

As mentioned earlier, the LPB is con- 
structed from the landmarks L, and L, 
by LPB(L,,L,). Figure 12a shows LPBs 
that are implicit in a view frame 
where landmarks L,, L,, L,, L,, and L, 
are simultaneously visible. The solid 
lines are the virtual boundaries creat- 
ed by the landmark pairs. Figure 12a 
can be misleading in that it seems to 
imply that the LPBs contain the data 

Figure 11 View Fram Plan Execution 

to compute the angle-distance geome- 
try of the sensor location relative to 
the landmarks. Figure 12b shows a 
representation of the same viewframe. 
Here, the ranges to the landmarks 
have been changed, but the ordinal 
angular relationships between land- 
marks have not. The angle-distance 
geometry of our apparent location rel- 
ative to the landmarks is completely 
different; however, the topological 
information, that is, the number of 
regions, their number of sides and 
adjacency relations, are preserved. 

Roughly speaking, if we observe 
that landmark L1 is on our left hand 
and landmark Lz is on our right, and 
the angle from L, to L, (left to right) is 
less than radians, then we denote 
this side of-equivalently, this orien- 

tation of-the LPB by (LiL,). If we 
stand on the other side of the bound- 
ary, LPB(L,,L,), facing the boundary, 
then L, is on our left and L, on our 
right and the angle between them less 
than li radians; we can denote this 
orientation, or side, as L,L, (left to 
right): 

+l if 012 < x 
= sig& - 012) = 0 if 012= n 

- 1 if 012 > 77 

where or2 is the relative azimuth angle 
between L, and LZ measured in an 
arbitrary sensor-centered coordinate 
system. Here, an orientation of +l cor- 
responds to the [L,L,] side of LPB 
(L,,L,), -1 corresponds to the [L,LJ 
side of LPB(L,,L,), and 0 corresponds 
to being on LPB(L,,L2). It is straightfor- 
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ward to show that this definition of 
LPB orientation does not depend on 
the choice of the sensor-centered 
coordinate system 

LPBs give rise to a topological divi- 
sion of the ground surface into observ- 
able regions of localization, the orien- 
tation regions Grossing boundaries 
between orientation regions leads to a 
qualitative sense of path planning 
based on perceptual information. 

As a landmark-recognizing vision 
system moves through large-scale 
space, it builds a visual memory of 
the interlocking sequences of orienta- 
tion regions it has traversed through. 
Adjacency of orientation regions in 
visual memory can be determined by 

Sl raring a common but opposite orien- 
tation LPB If two regions have a com- 
mon boundary, it is possible to move 
between them by tracking the land- 
marks as we move toward the bound- 
ary. Thus, visual memory is an undi- 
rected graph where nodes are orienta- 
tion regions, and arcs join adjacent 
regions. 

Figure 13 
Planning Algorithm Qualitative 

The path-following algorithm for 
qualitative path planning assumes 
that we carry a compass as we move 
through the environment and mark 
the direction north relative to 
observed landmarks before and after 
we cross each LPB Note that this sen- 
sor reading is purely local. It is not 
necessary to record changes in bearing 

as the sensor moves. Now we have at 
each node the compass heading of 
each landmark. 

The start and goal points are orien- 
tation regions We want to plan a path 
in our memory of large-scale space 
between these regions. We accomplish 
this task by propagating paths out- 
ward from each of the start and goal 
regions. Each adjacent region to the 
start or goal region is an approximate 
compass heading away from the start 
or goal region, respectively. We store 
this initial direction for each adjacent 
region. From each adjacent region, we 
now choose the single region adjacent 
to it that is a relative compass heading 
closest to the initial step from the 
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Figure 14 Qualnav Results (Clockwise from right to left.) 
(a) Start, Goal, and Path of Observation Stored in Visual Memory; (b) Path Planned in Visual Memory; 

(c) LPBs Planned versus LPBs Crossed during Execution; (d) Vision-Based Shortcut to Goal 

start or goal. Thus, we propagate a 
single path for each region adjacent to 
the start or goal region 

Because we minimize the compass 
difference from the original step from 
start or goal as we propagate a path, 
an approximately straight path propa- 
gates from each region adjacent to the 
start or goal node. Because more than 
one region is adjacent to the start and 
goal modes, at least four paths exist, 
not all of which can be parallel. It fol- 
lows that at least two of these paths, 
one from the start and one from the 
goal, must cross in visual memory. 
We check for crossing at each step by 
checking (but not propagating a path 
from) each adjacent region to see if a 
start or goal path has already crossed 
there. 

This algorithm is illustrated in fig- 

ure 13 Figure 13a shows the visual 
memory representation of large-scale 
space, with start and goal nodes. Fig- 
ure 13b shows the adjacent regions 
propagated to, and figure 13c shows 
the choice from each adjacent region 
to one that minimizes the heading dif- 
ference from the initial step. Finally, 
figures I3d, 13e, and 13f show propa- 
gation until path crossing is detected 

This algorithm is clearly order lin- 
ear in the graph diameter of visual 
memory of large-scale space. A plan in 
visual memory is now a sequence of 
adjacent orientation regions In path 
execution, we cross LPBs by tracking 
landmarks of the boundary LPBs 
between adjacent orientation regions 
If we see landmarks further along our 
plan, we jump ahead to cross through 
them, thereby shortcutting the path- 

following process opportunistically. 
Figure 14 shows a typical run of the 

Qualnav simulator for orientation 
region-level planning and execution. 
Figure 14a shows the start and the 
goal locations and the path already 
recorded in visual memory. Note that 
because of the path taken earlier, the 
robot does not plan a more direct 
route to its goal but instead computes 
the viewframe plan of figure 14b. 

Figure 14c shows both LPBs 
planned and observed and crossed in 
the course of executing the plan of fig- 
ure 14b. Notice that because land- 
marks 54 and 55 are not visible from 
the same view frame as the goal loca- 
tion (near landmark 50), the plan did 
not cross LPB (54,55). However, in 
plan execution, the robot opportunis- 
tically observed that it would have to 
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Figure 15 The NX Robot Exploration of an Environment. 

be on the (5455) side of LPB (54,55) to 
be at its goal location because the last 
view frame in the plan was on this 
side of the LPB. 

After the robot crosses LPB (54,55), 
it happens that its goal location is vis- 
ible; so, it heads directly toward it. 
Figure 14d shows the vision-based 
shortcut between the planned and 
executed paths. 

The NX Robot 
The NX robot (Kuipers and Byun 
1987) extends the basic approach of 
the Tour model, handling continuous 
sensory input and continuous motion 
through the environment. The central 
problem is to define the places and path 
segments that allow a discrete, qualita- 
tive, network structure to be imposed 
on a continuous environment. 

Figure 15 shows the result of the 
exploration of a room-and-corridor 

world by NX. The large dots (labeled 
Pl through P18) show the points at 
which places are described in the map, 
and the thin lines (labeled El through 
E21) show NX’s track as it followed 
the path segments. 

NX still follows the basic Tour 
model approach, oriented toward find- 
ing places and paths in the environ- 
ment rather than including regions as 
a primary representational element, as 
in Qualnav 

Sensorimotor Interaction 
with the Environment 

NX is a simulated robot running on 
the Symbolics 3600 but with a design 
similar to several laboratory and com- 
mercial mobile robots (Brooks 1986; 
Denning Mobile Robotics 1988). Sen- 
sory input comes from a symmetrical- 
ly arranged ring of 16 range sensors 
inspired by the Polaroid ultrasonic 

range finder (Elfes 1986). The simulat- 
ed range sensors sense actual distance 
to the nearest obstacle, optionally 
imposing a specified degree of random 
error rather than simulating the com- 
plex acoustical properties of actual 
sonar. NX also uses a compass to 
sense absolute orientation, although 
dependence on this sense is being 
eliminated in current work. The block 
in the upper-right corner of figure 15 
shows the current range-sensor input 
with the robot at P18, including ran- 
dom error 5 10 percent. Motor control 
is by energy sent to two tractorlike 
chains, permitting straight or curved 
motion or turning in place. 

Procedural Behaviors 

In the continuous world, the difficult 
problem to be solved during explo- 
ration is determining where the signif- 
icant places and paths are and finding 
them again on returning to the general 
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neighborhood. In NX, these problems 
are solved at the procedural level by 
selecting and executing control strate- 
gies defined in terms of locally avail- 
able sensory inputs. 

Define a place as the point in the 
environment that is the local maxi- 
mum of some distinctiveness measure 
defined over its neighborhood AS a 
consequence, once the exploration or 
navigation strategy brings us into the 
neighborhood of a place, a simple hill- 
climbing control algorithm brings us 
to the place itself, in a way that is rel- 
atively insensitive to sensory and 
motor errors, or to the point in the 
neighborhood where we began. In fig- 
ure 15, the upper-left block shows a 
time-series history graph of the dis- 
tinctiveness measures (scrolling hori- 
zontally) 

Exploration of a neighborhood con- 
sists of physical motion and analysis 
of sensory input to determine the best 
distinctiveness measure defined in 
this neighborhood. In many cases, a 
particularly useful distinctiveness 
measure counts the number of nearby 
objects and attempts to maximize the 
similarity [that is, minimize the dif- 
ferences) among their distances A 
simple rule-based system examines 
the qualitative properties of the 
stream of sensory input to select the 
appropriate distinctiveness measure. 

Define an edge (or path segment)-as 
the control strategy (for example, fol- 
low corridor midline) required to 
move from the neighborhood of one 
place to the neighborhood of another. 
Again, the use of control algorithms 
makes this step relatively insensitive 
to sensory or motor errors. During 
exploration, another rule-based sys- 
tem selects the appropriate control 
strategy for a particular part of the 
environment based on local sensory 
cues, determines when the control 
strategy has failed, and decides 
whether a different path-following 
control strategy is appropriate or if the 
robot is likely to be in a new neigh- 
borhood. 

Overall exploration is controlled by 
an agenda of unexplored edges. There 
are several exploration methods for 
testing whether a newly encountered 
place matches a previously known 
place. These methods are capable of 
distinguishing places whose sensory 

image is identical by hypothesizing 
and testing predictions about the 
topological connectivity of the place. 

The Topological Map 

As places and edges are identified and 
defined in terms of their distinctive- 
ness measures or control strategies, a 
topological map is created to repre- 
sent their connectivity, very much 
like the Tour model’s network of 
places and paths. This topological 
map is used by NX to plan routes to 
places that still have unexplored 
directions on the agenda and to plan 
routes to test place-match hypotheses 

The Metric Map 

The metric map for NX extends the 
local geometry portions of the Tour 
model metric map The local headings 
at a place are defined to specify direc- 
tions of edges to explore and the direc- 
tion and range of nearby objects. 
When the global compass is used, all 
headings are defined with respect to 
the global orientation frame As we 
move to a version without a global 
compass, an orientation frame will be 
propagated throughout the region dur- 
ing travel. Headings at different places 
will become tightly coupled with 
more travel experience between them, 
as the AI3 for each edge becomes pre- 
cisely known. 

Each edge can be described as a gen- 
eralized cylinder (Binford 1971) in 
terms of the length (F), net orientation 
change (Ae), and shape of the axis and 
the profile of cross-sections as a func- 
tion of position along the axis. This 
representation allows passability 
information to be used for route find- 
ing with a nonpoint-sized robot and 
provides additional information for 
place and edge recognition. 

Conclusions 
We have described a four-level spatial 
semantic hierarchy that provides a 
framework for robust map learning 
and navigation in large-scale space. 
The levels are (1) sensorimotor inter- 
action, (2) procedural behaviors, (3) 
topological map, and (4) metric map. 
Three programs with different ap- 
proaches to large-scale space-the 
Tour model, the Qualnav model and 
simulator, and the NX robot-demon- 

strate the successful application of 
these concepts to the representation 
of spatial knowledge. 

From the perspective of the spatial 
semantic hierarchy, we can see why 
the purely metric approach to map- 
ping is often fragile. First, even when 
only the procedural level representa- 
tion is immediately required, the full 
effort to use the metric-level represen- 
tation, including expensive metric 
matching between observations and 
the map, is always necessary. Second, 
during mapping, when there is insuffi- 
cient information to specify a unique 
match between observations and the 
metric map, either the match must be 
abandoned (losing an opportunity for 
knowledge acquisition), or a heuristic 
assumption is added to force a unique 
match (causing a certain frequency of 
serious errors in the map). 

When considering human mapping 
and navigation in real environments, 
we notice that individual variants 
exhibiting different subsets of the full 
semantic hierarchy are easy to identi- 
fy. One person learns a few important 
route-following procedures and never 
creates a topological or metric map at 
all. Another forces all observations 
into a preexisting metric framework 
and is troubled by the incoherence of 
nonrectilinear environments (for 
example, Boston Common or Embar- 
cadero in Palo Alto, California). Yet 
another person moves robustly about 
in unmarked, cross-country environ- 
ments, using a compass and distant 
peaks as landmarks. 

The theory and implementation of 
Tour, Qualnav, and NX demonstrate 
that these human capabilities are 
modelable and can lead to practical 
results in robotics and automation. 
There is much left to be done, but we 
claim that the spatial semantic hierar- 
chy offers a coherent organization to 
guide the development of effective, 
robust strategies for acquiring and 
using knowledge of large-scale space. 
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