
In recent years, the
use of programmable
and flexible automa-
tion has enabled the
partial or complete
automation of
assembly of products
in smaller volumes
and with more rapid
product changeover
and model transi-
tion. AI is  increas-
ingly playing a key
role in such flexible
automation systems.

This article describes AI tools that facil-
itate reasoning about geometry, mechanics,
and operations for assembly sequence 
planning.

In practice, manual labor, fixed automa-
tion, and flexible automation are often com-
bined in modern manufacturing systems to
take advantage of cost and reliability trade-
offs. Decisions regarding alternative assembly
manufacturing technologies, tools for assem-
bly manufacturing system design, and meth-
ods for assembly system implementation are
key challenges that currently face production
engineers. More systematic approaches to the
analysis, design, and planning of these
assembly systems are needed to enhance their
performance and enable their cost-effective
implementation. The work described in this
article focuses on the representation of
assembly sequence plans and the develop-
ment of assembly sequence planning tools
that form the basis for automated and inter-
active assembly system design methods. The
Pleiades system, or planning environment for
integrated assembly system design, described

Assembly plays a
fundamental role in
the manufacturing
of most products.
Parts that have been
individually formed
or machined to meet
designed specifica-
tions are assembled
into a configuration
that achieves the
functions of the final
product or mecha-
nism. The economic
importance of assem-
bly as a manufacturing process has led to
extensive efforts to improve the efficiency
and cost effectiveness of assembly operations.
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Assembly Sequence 
Planning

Arthur C. Sanderson, Luiz S. Homem de Mello, and Hui Zhang

The sequence of mating operations that can be
carried out to assemble a group of parts is con-
strained by the geometric and mechanical prop-
erties of the parts, their assembled configuration,
and the stability of the resulting subassemblies.
An approach to representation and reasoning
about these sequences is described here and leads
to several alternative explicit and implicit plan
representations. The Pleiades system will provide
an interactive software environment for designers
to evaluate alternative systems and product
designs through their impact on the feasibility
and complexity of the resulting assembly
sequences.
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here, is an effort to develop such
a set of software tools.

Although assembly has impor-
tant applications in manufactur-
ing, the assembly process itself
has attracted scientific interest as
an example of intelligent robotic
manipulation. The mating of
two parts with complex geome-
tries typically requires the inte-
gration of sensory and motor
control information with an
internal representation of parts,
geometries, and relationships.
Humans carry out these manipu-
lation tasks using well-practiced
skills of integration of motor
control and sensory interpreta-
tion with stored models of geom-
etry. The replication of these
skills in automated robotic sys-
tems has proven to be extremely
difficult. Fundamental issues in
robotics, control theory, pattern
recognition, and AI are raised by
this complex task.  A number of
generic assembly problems in manipula-
tion—put the peg in the hole—sensing—find
the part in the bin—and planning—put block
A on block B—have evolved as classical chal-
lenges in the scientific literature and as means
to evaluate and compare approaches and
algorithms. Assembly sequence planning can
also be thought of as a generic scientific prob-
lem in that the fundamental properties of
assembly relations, geometries, and opera-
tions are used to guide the search for correct,
complete, optimal, or desirable sequences.

Blocks world is a simple assembly planning
environment. A goal state in blocks world
specifies the contacts between a set of parts,
and the PUTON(A,B) operation can be
thought of as a mating operation that
requires geometric access to the mating 
surface as well as stability of the resulting
configuration. However, many of the domain-
independent approaches (Fikes and Nilsson
1972; Sacerdoti 1973; Wilkins 1984; Chap-
man 1987; Korf 1987) to planning in blocks
world do not map well into the more general-
ized assembly problem. The use of a proposi-
tional representation for states and subgoals,
such as in Strips (Fikes and Nilsson 1972), has
limitations when faced with the generalized
geometries and mechanisms incorporated in
product assemblies. An alternative approach
to the decomposition of the planning prob-
lem is needed. Although the representation of
state is more complex in the assembly plan-
ning environment than in blocks world, there

are domain-specific ordering constraints for
assembly that can be used to simplify the rep-
resentation of plans.

In this article, we describe the use of the
AND/OR graph for assembly sequence plan
representation. The AND/OR graph provides a
compact representation of assembly plans
and is equivalent to the directed graph of
assembly states. In addition, we define prece-
dence relations that capture the domain-
specific ordering constraints between connec-
tions and assembly states and connections
and connections. The connection-state prece-
dence relations (type 1) require some inde-
pendence assumptions among assembly
operations, can be generated by enumerating
states sequences using the AND/OR graph,
and can be simplified using standard Boolean
simplification routines. The connection-con-
nection precedence relations (type 2) require
more restrictive assumptions, can be generat-
ed more easily from the AND/OR graph, but
are more difficult to simplify. The precedence
relations provide an implicit representation of
assembly sequences when they are used to
locally test for a feasible next step in sequence
generation, but the AND/OR graph is an explic-
it representation of complete and correct
sequences.

Assembly sequence planning is part of 
a hierarchy of steps in assembly system 
design for manual, fixed automation, or pro-
grammable automation systems. One such
hierarchy of design and implementation for a

Assembly
sequence 
planning is
part of a 
hierarchy of
steps in
assembly
system design
for manual,
fixed 
automation, or 
programmable
automation
systems. 

Articles

SPRING 1990    63

Figure 1. Hierarchy of Planning Processes for 
Assembly System Design and Implementation.



system resources, and a model for the coordi-
nation and scheduling of system resources
based on architectural features. The imple-
mentation of the task-level plan is carried out
using a task-level programming approach in
which the detailed control of paths and tra-
jectories, fine motion, grasping, sensing, and
interaction forces is specified. Real-time exe-
cution utilizes this planning structure as a
framework to provide efficient and reliable
performance. Developing a planning and
control framework that can successfully cope
with the uncertainties in design specification
and execution parameters is a major goal in
assembly planning research.

This article is concerned with planning
sequences of assembly operations that satisfy
the conditions of feasibility and yield stable
states. The article provides an overview of an
approach and examples of results. Additional
details can be found in other publications
(Homem de Mello and Sanderson 1986, 1987,
1988, 1989a, 1989b, and 1990;  Homem de
Mello 1989; Sanderson and Homem de Mello
1989; and Zhang 1989). Assembly Sequence
Planning describes the relational graph struc-
ture that we use as the basis for assembly rep-
resentation and abstracts the problem of task
decomposition to identify the cut sets of the
graph of connections. Assembly Sequence
Representation describes alternative assembly
sequence representations and illustrates some
advantages and properties of the AND/OR
graph. Precedence Relations defines two types
of precedence relations that can be generated
from the AND/OR graph. These precedence
relations can be simplified when indepen-
dence properties of the assemblies hold; in
addition, the real-time properties of prece-
dence relations can be guaranteed under cer-
tain conditions. Evaluation and Selection of
Assembly Plans discusses evaluation functions
for assembly sequence plans. The Pleiades
System summarizes the system, which is an
approach to developing an environment for
assembly system planning. The closing sec-
tion presents conclusions and directions for
continuing work. 

Assembly Sequence Planning
An assembly product description consists of
the geometric description of each of the indi-
vidual parts, their geometric tolerances, and
the configuration in which the parts fit
together to form the final product.  In prac-
tice, such a description is often incomplete or
inexact and strongly relies on human experi-
ence and intuition for its full interpretation.
For our  purposes here, we assume that an

programmable assembly system is shown in
figure 1. In this view, task-level planning of
the system is carried out based on a descrip-
tion of the product and its parts; a descrip-
tion of the system and its resources, such as
robots, grippers, fixtures, or sensors; and a
description of the coordination architecture,
including computing and communications
capabilities. The resulting task-level plan
describes the decomposition of the assembly
task, the assignment of assembly subtasks to

Articles

64 AI MAGAZINE

Figure 2. Three Levels of Representation of Assembly Product.
Figure 2a shows the solid model of parts, Figure 2b shows the relational model of
assembly, and Figure 2c shows the graph of connections of assembly.



explicit description of the parts geometry and
the assembled configurations is given or
derived. Our approach to assembly represen-
tation is strongly influenced by previous
experience with relational models (Lieberman
and Wesley 1977; Eastman 1981;  Lee and
Gossard 1985). We do not currently consider
tolerances for planning purposes, although
the geometric modeling system we use incor-
porates them (see The Pleiades System) and
provides access for use in the planning proce-
dures. In addition to the geometric configura-
tion, most assemblies use attachments that
apply physical forces to constrain the relative
motion among parts and stabilize the final
assembly. Although attachments such as
screws and clips are geometrically represented
in the assembly description, it is often impos-
sible to infer from their geometric description
what the physical role of these parts might be
as an attachment for the assembly. Therefore,
we interactively add the attachment descrip-
tion to the relational model.

In our work, three levels of description are
used for assembly product representation. An
example for a simple product is shown in
figure 2. First, as figure 2a illustrates, is a com-
plete computer-aided description (CAD) of
individual parts geometries as output by the
Catia (IBM Corp.) system. Second, from the
CAD-based description of parts, we derive a
relational graph model of the resulting assem-
bly, as shown in figure 2b. This relational
graph extraction is based on an object-orient-
ed geometric modeling system, Geos (see The
Pleiades System), which provides an explicit
representation of parts and contacting sur-
faces in the assembly. We interactively add
attachment entities to explicitly describe con-
straints on the degrees of freedom of contacts

within the structure. In this description, each
attachment has an agent and a contact, where
each contact has its degrees of freedom con-
strained when the attachment agent is pre-
sent. These relationships directly influence
the feasible assembly sequences because an
attachment agent must often be removed
prior to removing a part that breaks a contact.
Third is a simplified relational structure called
the graph of connections, as shown in figure
2c. Although the relational graph contains
specific properties and attributes associated
with each of the entities, the graph of con-
nections is the relational structure that defines
the parts and connections. The three levels of
product description shown in figure 2 are all
necessary for assembly sequence planning,
and this hierarchical organization facilitates
the planning tasks.

Ten different feasible sequences can be used
to assemble the product shown in figure 2.
These sequences are listed in figure 3. From a
planning perspective, each of these sequences
is a series of actions that satisfies the precon-
ditions for each action and that leads to the
goal state. In assembly sequence planning,
the initial state is always the state in which no
parts are interconnected, and the goal state is
always the state in which all parts are inter-
connected in the final unique configuration.
The intermediate system states consist of sub-
sets of mutually interconnected parts called
subassemblies. We assume for this discussion
that the geometric configuration of a sub-
assembly is uniquely specified by its con-
stituent parts; that is, there is only one way
for a given subset of parts to fit together. For
these examples, therefore, if we assemble a
cylinder with a piston, we uniquely specify
the final position of the piston and assume

Articles

SPRING 1990    65

Figure 3. Feasible Assembly Sequences for the Product Shown in Figure 2.



lems. In practice, heuristics can be appropri-
ate and necessary to provide practical solu-
tions to large problems or to deal with the
many specific cases that arise in assembly
relations.

Preconditions on the feasibility of operations
can be broken down into several different
categories: First are resource-independent fea-
sibility conditions: Independent of the specif-
ic robots, grippers, or fixtures that are used in
the assembly, there are geometric constraints
among the parts that restrict the order in
which operations can be carried out. These
restrictions include (1) local geometric feasi-
bility (Is local or incremental translation of
the part feasible from its final assembled
state? This question can be answered for
translational motion using only surface-
normal information that is stored in the rela-
tional graph [Homem de Mello 1989].) and
(2) global geometric feasibility (Is there an
unobstructed path from some remote posi-
tion to the final assembled state given the
geometric obstructions posed by other parts
that are present in the assembly state? This
problem is related to the general path-plan-
ning problem [Lozano-Perez and Wesley
1979] but only requires determination of the
existence of a path and not necessarily the
specification of the path.).

Second are resource-dependent feasibility
conditions: (1) geometric feasibility (Is there
an unobstructed path for mating of parts given
the geometry of the parts plus the geometry
of robots, grippers, and fixtures that can be
used in the operation?), (2) attachment feasi-
bility (Can appropriate forces be exerted by
available tools to attach parts as required by
the mating operation?), and (3) tool availability
(Is there an appropriate robot, gripper, or fix-
ture available to carry out a particular task to
meet geometric and attachment constraints?).

Although such feasibility conditions might
be examined simultaneously, it is often more
efficient to hierarchically structure the plan-
ning approach. As suggested by figure 1, we
can examine assembly sequence plans that
are feasible from a resource-independent
point of view, and these plans subsume all
the feasible plans that incorporate resource
dependencies. The resource-independent plan
reduces the search space for the resource-
dependent planning. In addition, a number
of heuristics related to the complexity of
operations and the desirability of states can
be added at this stage to further reduce the
search space. Figure 3 shows a set of assembly
sequences for the simplified flashlight prod-
uct that are all feasible from a resource-inde-
pendent criterion. An example of an

that it would not have to occupy multiple
discrete states to enable successful assembly.

Assembly Task Feasibility Predicates

An assembly action mates two parts or sub-
assemblies to form a new subassembly. (For
the current discussion, we assume that only
two—and not more—subassemblies are
joined at a given time.) In assembly, the pre-
conditions for such an action can be thought
of as the feasibility conditions for the execu-
tion of the operation and the acceptability of
the resulting state. In this work, we introduce
a hierarchy of such feasibility conditions to
reduce the complexity of the geometric and
physical reasoning that must be carried out
for sequence generation. In practice, the
number of sequences that must be examined
grows exponentially with the number of
parts, and the use of detailed geometric or
physical analysis at each step is computation-
ally unrealistic. We are developing a hierarchy
of feasibility criteria that invoke computa-
tionally efficient necessary conditions early
in the search to prune the tree of possible
sequences.

For example, in the following discussion,
local geometric feasibility is a subset of global
geometric feasibility and, therefore, is unnec-
essary to compute as a separate criterion.
However, local geometric feasibility can be
efficiently computed using only the contact
normal information from the relational
model and does not require full geometric
shapes of parts or general part-shape analysis.
Local geometric feasibility is a necessary but
not sufficient condition for a feasible sequence
and reduces the overall complexity of the
analysis. Similarly, resource-independent fea-
sibility is necessary but not sufficient with
respect to the availability of tools for a given
operation. The benefits of these hierarchies
depend on individual cases, but the approach
is designed to provide a practical approach to
contend with the high combinatorial com-
plexity that arises in real assembly problems.
The hierarchies we describe here are analyti-
cally based; that is, they are based on geometric
and physical relations rather than heuristics.
This approach emphasizes the use of analytic
methods to gain generality for a class of prob-
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In our work, we provide a framework
for assembly sequence planning that
can incorporate many different 
feasibility criteria. 



infeasible sequence for this product would be
sequence A-C-B. In this sequence, the cap and
handle are attached to the receptacle before
the stick is placed inside. It becomes geomet-
rically infeasible to insert the stick into the
receptacle when both ends are attached. Such
a sequence should be rejected early in the
planning process and not considered further.
Once such a sequence has been rejected based
on local geometric feasibility conditions, it is
unnecessary to examine global geometric fea-
sibility or resource-dependent feasibility con-
ditions. Another sequence such as B-A-C
might be geometrically feasible but undesir-
able. In this case, the stick is inserted into the
receptacle resulting in a subassembly state
that might require fixturing to keep the stick
from sliding out. Such a state might be detect-
ed and evaluated as undesirable by an 
appropriate heuristic. Resource-dependent
feasibility constraints could further limit the
set of sequences shown in figure 3. If there
were no gripper available to pick up the stick
or no mechanism available to screw in the
handle, then there might be no remaining
feasible sequences.

In addition to task feasibility conditions,
we consider state feasibility conditions. Again,
several resource-independent and resource-
dependent conditions can come into play.
These include (1) stability (Is there one pose
of the subassembly for which the configura-
tion is stable? This problem is difficult in gen-
eral [Bonenschanscher 1988] and is strongly
influenced by the types of friction and sur-
face-interaction assumptions that are made.)
and (2) rigidity (Is the subassembly stable for
all poses of the subassembly?). Each of these
criteria can be examined under different
assumptions: (1) no gravity or external forces
—in this case, all subassemblies are stable and
rigid—and (2) gravity or other external forces
—in this case, stability can strongly depend
on the orientation of the subassembly, and
rigidity often requires attaching all parts. Fix-
tures or grippers can be added to the configu-
ration to impose stability or rigidity on a
subassembly during the assembly process. All
the assembly sequences presented in figure 3
have at least one stable pose for each state in
the presence of gravity, although the pose
might be changed during the sequence to
ensure stability and enable geometric feasibil-
ity. In general, the assessment of the stability
of a state would also require a description of
the frictional forces that arise.

Assembly Sequence Planning
In our work, we provide a framework for
assembly sequence planning that can incor-

porate many different feasibility criteria. The
same approach to plan generation, plan rep-
resentation, and plan evaluation can be used
for different feasibility conditions. As discussed
earlier, the resource-independent plans sub-
sume the resource-dependent plans and,
therefore, simplify the overall planning process.
In the experiments described here, we imple-
mented two feasibility criteria for the genera-
tion of assembly sequences: (1) resource-
independent local geometric feasibility and
(2) attachment feasibility based on the
assumption that attachment tools are avail-
able and that breaking attached contacts is
infeasible unless the attachment agent is
removed. These two feasibility criteria are suf-
ficiently interesting and complex to illustrate
many of the important problems that occur
in assembly sequence planning.

The problem of generating feasible assembly
sequences for a product can be transformed
into the problem of generating disassembly
sequences for the same product. For many
problems of interest, this transformation
reduces the branching factor of the search
space because often many more options and
deadends occur in assembly than in disassem-
bly. This transformation of the problem is
conceptual rather than physical. Assembly
tasks are not necessarily reversible in the
physical sense, but we impose this reversibili-
ty from a conceptual standpoint to plan cor-
rect sequences. This decomposition approach
to assembly planning maps nicely onto our
relational model of the product and leads to a
recursive decomposition of the task in which
each decomposable subproblem is a proper
subset of the original model. In addition, as
we show in the next section, this decomposi-
tion approach lends itself to the AND/OR
graph representation of assembly sequences.

The basic planning strategy is to recursively
enumerate the decompositions of the assem-
bly and to select the decompositions that are
feasible by imposing a set of feasibility predi-
cates. The decompositions of the assembly are
enumerated by the cut sets of the assembly’s
graph of connections. The feasible operations
and feasible state predicates are evaluated
using the relational model and the geometric
parts models.

Assembly States
The assembly graph of connections can be
represented by a simple undirected graph 
〈P, C〉 in which the parts P = {p1, p2, . . . pN} are
the set of nodes, and the connections C = {c1,
c2, . . . , cL} are the set of edges. A state of the
assembly process is a configuration of the
parts at the beginning or end of an assembly
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assembly task, it must correspond to a cut set
of the graph of connections of the task’s
output subassembly. Conversely, each cut set
of a subassembly’s graph of connections cor-
responds to an assembly task.

Each assembly task must be evaluated by
the operations feasibility predicates described
previously. An assembly task is said to be
resource-independent, geometrically feasible
if there is a collision-free path to bring the
two subassemblies into contact from a situa-
tion in which they are far apart. We further
decompose this geometric feasibility predi-
cate gf into a local predicate and a global
predicate. The local gf predicate tests for the
incremental motion of the designated sub-
assemblies, and the global gf predicate tests
for the existence of a global collision-free
path. An assembly task is said to have attach-
ment feasibility if it is feasible to establish the
attachments that act on the contacts between
the two subassemblies. The attachment feasi-
bility predicate af evaluates this predicate
based on the attachment description that is
incorporated into the relational model. A
local geometric feasibility can also be evaluat-
ed using the contact attributes and properties
established in the relational model. Global
geometric feasibility requires access to the
detailed parts descriptions that are referenced
from the relational model to the parts models.
The computation of these global gf predicates
can be approached in a variety of different
ways. They are complex to compute in gener-
al and incorporate many challenging and
interesting problems in geometric and physi-
cal reasoning. As mentioned earlier, to demon-
strate the overall planning framework, the
experiments described in this article include a
local geometric feasibility predicate and an
attachment feasibility predicate.

Our algorithm for the generation of assem-
bly sequences uses an approach that enumer-
ates the decompositions of the assembly and
then selects those decompositions that are
feasible. As shown in the next section, this
recursive decomposition results in the con-
struction of the AND/OR graph representa-
tion of assembly plans. The procedure GET-
FEASIBLE-DECOMPOSITIONS takes as input
the relational model of an assembly and
returns all feasible decompositions of this
assembly. The procedure first generates the
graph of connections for the input assembly
and computes the cut sets of this graph. The
cut sets are enumerated by looking at all con-
nected subgraphs having the cardinality of
their set of nodes smaller than or equal to
half of the cardinality of the set of nodes in
the whole graph. For each of these subgraphs,

task. The state of an assembly process can be
characterized either by the configuration of
contacts that have been established or the
partitions of the parts that are connected. In
the first case, a state of the assembly process
can be represented by an L-dimensional
binary vector x = [x1, x2, . . ., xL] in which the
ith component of xi is true if the ith connec-
tion is established in this state. For example,
if the first task of the assembly process for the
example shown in figure 2 is the joining of
the cap to the receptacle, the second state of
the assembly process can be represented by
[false, true, false, false, false].

Alternatively, an assembly state can be
characterized by partitioning of parts into
subassemblies. For example, if the first task is
the joining of the cap to the receptacle, the
second state of the assembly process can be
represented by { {CAP, RECEPTACLE},
{STICK}, {HANDLE} }. Given an assembly’s
graph of connections and one of the two rep-
resentations of the assembly state, it is
straightforward to obtain the other represen-
tation. It is also important to observe that not
all partitions and not all L-dimensional
binary vectors can characterize a proper
assembly state. For example, for the assembly
shown in figure 2, the five-dimensional
binary vector [true, true, false, false, false]
does not correspond to a state because if con-
nections c1 and c2 are established, then c3
must also be established. A subassembly pred-
icate sa is defined to determine whether a
subset of parts makes up a subassembly and,
therefore, whether a given binary vector is, in
fact, a proper state vector of the assembly. In
addition, we define a subassembly’s stability
predicate st, which determines whether a sub-
assembly described by its set of parts and
connections is stable. Although we have stud-
ied a subassembly’s stability predicate based
on the stability of parts configuration subject
to gravity and zero friction, many other
assumptions and analysis tools or heuristics
might be implemented here. An assembly-
state representation in which all subassem-
blies satisfy the stability predicate is said to be
a stable assembly-state representation.

Assembly Tasks

Given two subassemblies characterized by
their sets of parts θi and θj, we say that join-
ing  θi and θj is an assembly task if the set θk
= θi ∪ θj characterizes a subassembly. Equiva-
lently, an assembly task can be characterized
by the output subassembly and the set of
connections that are established by the task.
For such a set of connections to represent an
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the set of edges of the whole graph that have
only one end in the subgraph defines a cut
set if their removal leaves the whole graph
with exactly two components. Each resulting
cut set corresponds to a decomposition of the
graph. The procedure GET-DECOMPOSITION
finds this decomposition, and the procedure
FEASIBILITY-TEST is used to check whether
this decomposition is feasible. The procedure
FEASIBILITY-TEST further breaks down into a
set of procedures that implements the indi-
vidual operation feasibility predicates and
state feasibility predicates.

The complexity of the generation of assem-
bly sequences depends on the number of parts,
N, and the interconnections among the parts.
The number of possible decompositions, D
(that is, cut sets of the graphs of connections),
can be used as an upper bound on the com-
plexity of sequence generation. In practice,
sequences are not generated exhaustively,
rather the search tree for desirable sequences
can be pruned during the generation process.
We examined complexity for a strongly con-
nected assembly, where every part is connect-
ed to every other part, and a weakly connected
assembly, where there are N-1 connections
among the N parts.

For a one-part-at-a-time decomposition,
where each cut set results in at least one one-
part subassembly, the order of complexity for
a strongly connected interconnection is D =
O(2N) and for a weakly connected  intercon-
nection is D = O(N2). For a network decom-
position, where all cut sets are feasible
decompositions, the order of complexity for a
strongly connected interconnection is D =
O(3N) and for a weakly connected  intercon-
nection is D = O(N3).

The relative efficiency of the representation
of the resulting plans depends on the nature
of the plan representation that is used. These
complexities are based on the use of the
AND/OR graph assembly sequence represen-
tation that is described in the next section.

Assembly Sequence 
Representation

As described previously, each assembly can
have many different feasible assembly
sequences. Our first objective is to generate
these sequences and represent them in an
efficient manner. Given an assembly that has
N parts, an ordered set of N-1 assembly tasks
τ1 τ2 . . . τN-1 is an assembly sequence if there
are no two tasks that have a common input
subassembly, the output subassembly of the
last task is the whole assembly, and the input
subassemblies to any task are either a one-

part subassembly or the output subassembly
of a preceding task. Such an assembly sequence
can also be characterized by an ordered
sequence of states in which the state s1 is the
state in which all parts are separated, the state
sN is the state in which all parts are joined
forming the whole assembly, any two consec-
utive states are such that only the two input
subassemblies of the task are in si and not in
si + 1, and only the output subassembly of task
τ i is in si + 1 and not in i. An assembly
sequence is said to be feasible if all its assem-
bly tasks and assembly states are feasible.

An assembly sequence, therefore, can be
represented in several different ways: (1) an
ordered list of task representations, (2) an
ordered list of binary vectors, (3) an ordered
list of partitions of the set of parts, or (4) an
ordered list of subsets of connections. For
example, a feasible assembly sequence for the
product shown in figure 2 could be represent-
ed as one of the following:
• A three-element list of task representations:

({{CAP},{RECEPTACLE}}
{{CAP,RECEPTACLE},{STICK}}
{{CAP, RECEPTACLE, STICK},{HANDLE}})

• A four-element list of five-dimensional
binary vectors:

([false,false,false,false,false]
[false,true,false,false,false]  
[true,true,true,false,false]
[true,true,true,true,true])

• A four-element list of partitions of the set of
parts:

({{CAP},{RECEPTACLE},{STICK},{HANDLE}}
{{CAP,RECEPTACLE},{STICK},{HANDLE}}
{{CAP,RECEPTACLE,STICK},{HANDLE}}
{{CAP,RECEPTACLE,STICK,HANDLE}})

• A three-element list of sets of connections:
({c2}{c1, c3}{c4,c5})  .
Because each assembly sequence can be rep-

resented by ordered lists, it is possible to rep-
resent the set of all assembly sequences by a
set of lists. Although this set of lists might
represent a complete and correct description
of all feasible assembly sequences, it is not
necessarily the most compact or most useful
representation of these sequences. In particu-
lar, because many assembly sequences share
common subsequences and common states,
attempts have been made to create more
compact representations that can encompass
all feasible assembly sequences. We intro-
duced the AND/OR graph representation of
assembly sequences as a basis for these repre-
sentations. We developed an algorithm for
the generation of the AND/OR graph and sub-
sequent algorithms that generate equivalent,
complete, and correct representations of the
directed graph and precedence relations.

. . . each
assembly 
can have
many 
different 
feasible
assembly
sequences.
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Definition: The AND/OR graph of feasible
assembly sequences of an assembly whose set
of parts is P = {p1, p2, . . ., pN} is the AND/OR
graph 〈σp,Dp〉 in which

σp = {θ ∈ Π(P) | sa(θ) ∧ st(θ)}
is the set of stable subassemblies, and

Dp = {(θk,{θi ,θj}) | [θi ,θj,θk ∈ σp] ∧[ U({θi,θj})
= θk ]

∧ [ af({θi ,θj})] ∧ [ gf({θi ,θj})]}
is the set of feasible assembly tasks. The nota-
tion Π(P) is used to represent the set of all
subsets of P.

As an example, figure 4 shows the AND/
OR graph for the feasible sequences for the
assembly shown in figure 2. This AND/OR
graph representation is complete and correct
in that it includes all possible feasible assem-
bly sequences and does not include any
infeasible assembly sequences. A given assem-
bly sequence can be defined as a feasible
assembly tree within the AND/OR graph.

The algorithm GENERATE-AND/OR-GRAPH
takes the relational model of an assembly and
returns the AND/OR graph representation of
all assembly sequences for this assembly. The
nodes in the AND/OR graph returned are
pointers to relational models of subassemblies.
The algorithm is not reproduced here because
of space limitations, but it uses the procedure
GET-DECOMPOSITIONS to generate all decom-
positions of the relational models and keeps
track of lists of pointers to determine whether
specific subassemblies have previously been
generated. These procedures can be made
more efficient by linking the evaluation of
feasibility tests between different decomposi-
tions to avoid duplicating the computational
work. An analysis of the completeness, cor-
rectness, and complexity of the AND/OR
graph generation algorithm is discussed in
Homem de Mello and Sanderson (1990).

Given an assembly whose graph of connec-
tions is 〈P,C〉, a directed graph can also be used
to represent the set of all feasible assembly
sequences. The nodes in this directed graph
correspond to stable state partitions of the set
P. These are the partitions Θ of P such that if
θ ∈ Θ, then θ is a stable subassembly of P.
The edges in this directed graph are ordered
pairs of nodes. For any edge, there are only
two subsets, θi and θj, in the state partition
corresponding to the first node that are not
in the state node corresponding to the second
node. Therefore, each edge corresponds to an
assembly task. If all assembly tasks are feasi-
ble, then the graph is referred to as the direct-
ed graph of feasible assembly sequences.
Figure 5 shows the directed graph of feasible
assembly sequences for the assembly shown
in figure 2. A path in the directed graph of

The nodes in this AND/OR graph represen-
tation of assembly sequences are the subsets
of P that characterize stable subassemblies.
The hyperarcs correspond to the feasible
assembly tasks. Each hyperarc is an ordered
pair in which the first element is a node that
corresponds to a stable subassembly θk, the
second element is a set of two nodes {θi,θj}
such that θk = θi ∪ θj, and the assembly task
characterized by θi and θj is feasible. Each
hyperarc is associated with a decomposition
of the subassembly that corresponds to its
first element and can also be characterized by
this subassembly and the subset of all its con-
nections that are not in the graphs of connec-
tions of the subassemblies in the hyperarc’s
second element. This subset of connections
associated to a hyperarc corresponds to a cut
set in the graph of connections of the sub-
assembly in the hyperarc’s first element. This
AND/OR graph can be formally defined as
follows:
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Figure 4. AND/OR Graph of the Product Shown in Figure 2.



feasible assembly sequences corresponds to a
feasible assembly sequence for the assembly P.
In such a path, the ordered sequence of edges
corresponds to the ordered sequence of tasks,
and the ordered sequence of nodes corre-
sponds to the ordered sequence of assembly
process states.

The equivalence of the directed graph and
the AND/OR graph as complete and correct
representations of feasible assembly sequences
has been proven elsewhere (Homem de Mello
and Sanderson 1990). The relative complexity
of the two representations in terms of the
number of nodes in the graphs has also been
addressed in Homem de Mello and Sanderson
(1990). In this analysis, for strongly connect-
ed assemblies, the AND/OR graph had fewer
nodes for all assemblies larger than N = 4, and
at N = 10, it had fewer nodes by more than
two orders of magnitude. Although the list of
sequences, the directed graph, and the AND/
OR graph all represent complete sets of
sequences, the AND/OR graph has the advan-
tage in the efficiency of its representation.
This efficiency can be viewed as a space-time
trade-off, such that given a fixed amount of
space allocated for representation storage, the
AND/OR graph will tend to represent more
feasible sequences and, therefore, can lead to
a more optimal performance and a solution
in shorter time. An example of the use of the
AND/OR graph representation for the oppor-
tunistic scheduling of robotic assembly tasks
is shown in Homem de Mello and Sanderson
(1990).

Precedence Relations
It has been observed that many assembly
problems have inherent ordering constraints
that dominate the selection of feasible
sequences for assembly systems. For the 
example in figure 2, “The stick must be in the
receptacle before both ends are attached” is a
generalization on ordering, which, in itself, is
sufficient to distinguish all the feasible and
infeasible sequences. Intuitive precedence
relations of this type have been used by
assembly designers for many years. The work
of Bourjault (1984), DeFazio and Whitney
(1988), and Lui (1988) has attempted to capture
this intuitive knowledge by formalized sets of
interactive questions provided to the design-
er. In our work, we have shown how to derive
these sets of precedence relations directly
from the AND/OR graph and, therefore, to be
able to automatically generate precedence
relations from the design description.

In this section, we define two types of
precedence relations: type 1—precedence rela-

tions between the establishment of one con-
nection and states of the assembly process—
and type 2—precedence relations between the
establishment of one connection and the
establishment of another connection of the
assembly process. Both types result in logical
expressions on the occurrence of connections
or states. They can both be generated from
the AND/OR graph and are shown to be com-
plete and correct descriptions of feasible
assembly sequences. We also introduce inde-
pendence properties of assemblies that permit
the simplification of these precedence rela-
tions. Type 1 precedence relations require
fewer assumptions than type 2 and are easier
to simplify but are more difficult to generate.
Type 2 precedence relations require more
restrictive assumptions and are more difficult
to simplify but are easier to generate from the
AND/OR graph. The independence properties
used in these derivations provide interesting
insight into the characteristics of assemblies

Articles

SPRING 1990    71

Figure 5. Directed Graph of the Product Shown in Figure 2.



For example, we write ci + cj → Λ(x) when we
mean [ci → Λ(x)] ∨ [ cj → Λ(x)]. An assembly
sequence whose representation as an ordered
sequence of binary vectors is (x1 x2 . . . xN)
and whose representation as an ordered
sequence of subsets of connections is (γ1 γ2 . . .
γN-1) satisfies the precedence relationship ci →
Λ(x) if

Λ(xk ) ⇒  ∃ l [(l < k) ∧ (ci ∈ γ1)]     
for k = 1, 2, . . . , N .

Let ΨS be the set of assembly states that
never occur in any feasible assembly sequence.
These states include the unstable assembly
states plus stable states from which the final
state cannot be reached plus the states that
cannot be reached from the initial state. Let
ΨX = {x1, x2  . . . , xJ) be the set of all L-dimen-
sional binary vectors that represent the
assembly states in ΨS. Every element xj of ΨX
is such that the value of the logical function
G(xJ) is true, where

The sum and the product in this equation
are the logical operations OR and AND,
respectively, and λkl is either the symbol xl if
the l th component of xk is true or the
symbol xl if the lth component of xk is false.
In many cases, the expression G(x) can be
simplified using the rules of Boolean algebra.
Allowing for simplifications but keeping the
logical function as a sum of products, you
can rewrite this equation as

where each term gj(x) is the product of a
subset of {x1, x2, . . . xL, x1, x2,, . . . xL} that
does not include both xi and xi for any i.
Each term gj(x) can be further rewritten,
grouping all the nonnegated variables first
and all the negated variables last, for exam-
ple, gj(x) = xa ⋅ xb ⋅ . . . ⋅xh ⋅ xp ⋅ xq ⋅ . . . ⋅ xz.

Any assembly sequence that includes a
state that is in ΨS is an unfeasible assembly
sequence. Therefore, a necessary condition
for the feasibility of an assembly sequence
whose representation as an ordered list of
binary vectors is (x1, x2, . . . xN) is G(x1) =
G(x2) = . . . = G(xN) = false.

This condition is equivalent to gj(xi) = false
for i = 1,2, . . . ,N and j = 1,2, . . . ,J’. This nec-
essary condition is also sufficient if the
assembly has the following property:

Property 1: Given any two feasible states si
and sj, not necessarily in the same assembly

and the complexity of their resulting
sequences.

Precedence relations are expressed as a set
of logical relations that must be true of every
connection and state in a sequence for the
sequence to be valid. Similarly, a complete
and correct set of precedence relations must
be uniquely satisfied by a complete and cor-
rect set of assembly sequences.

Type 1 Precedence Relations: 
Connection-State

If we represent the states of the assembly 
process by L-dimensional binary vectors, then
a set of logical expressions can be used to
encode the directed graph of feasible assem-
bly sequences. Let  Ξi = {x1, x2, . . ., xKi} be
the set of states from which the ith connec-
tion can be established without precluding
the completion of the assembly. The estab-
lishment condition (Bourjault 1984) for the
ith connection is the logical function that
enumerates these states where the ith connec-
tion can be carried out: 

where the sum and the product are the logi-
cal operations OR and AND, respectively, and
γkl is either the symbol xl if the lth compo-
nent of xk is true or the negation xl if the lth
component of xk is false. Clearly, every ele-
ment xk of  Ξi = {x1, x2, . . ., xKi} is such that
Fi(xk ) = true. If Ξi is a complete set, then any
occurrence of the lth connection in a feasible
sequence must be preceded by a state for
which Fi(xk ) = true. It is often possible to
simplify the expression of Fi(xk ) using the
rules of Boolean algebra. The set of establish-
ment conditions defines a correct and com-
plete set of assembly sequences, and this set
of conditions can be obtained directly from
the AND/OR graph, as described in Zhang
(1989). The establishment conditions do not,
in themselves, correspond to a complete and
correct set of precedence relations. A comple-
mentary set of conditions for the infeasible
assembly states can be used as a basis for
deriving the type 1 precedence relations
described in the following paragraphs.

We use the notation Ci → Λ(x) to indicate
that the establishment of the ith connection
must precede any state s of the assembly pro-
cess for which the value of the logical func-
tion Λ(x) is true. The argument of Λ(x) is the
L-dimensional binary vector representation of
the state s. We use a compact notation for
logical combinations of precedence relations.

. . . many 
assembly
problems 

have 
inherent
ordering 

constraints
that dominate

the selection
of feasible

sequences for
assembly 
systems.
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sequence, let γi and γj be the sets of connec-
tions that are established in assembly tasks τi
and τj from si and sj, respectively. If

〈P, Ci 〉 is the state’s graph of connections 
associated to si,

〈P, Cj〉 is the state’s graph of connections 
associated to state sj,

and 
τj is geometrically and mechanically feasible,

then τi is geometrically and mechanically fea-
sible.

This property corresponds to the fact that if
it is feasible to establish a set of connections
when many other connections have already
been established, then it is also feasible to
establish fewer connections when fewer other
connections have been established. Although
many common assemblies have this property,
there are assemblies that don’t have it. Prop-
erty 1 can be viewed as an independence
property among connections. It assumes that
no mechanisms are present in the assembly,
such that when additional parts are added,
the geometric access for assembly of parts 
is improved. Note that property 1 does not
guarantee that the resulting state will be
stable. In type 1 precedence relations, the
state feasibility is explicitly checked by enu-
merating unfeasible states, and therefore, no
prior assumptions are required. For type 2
precedence relations, an additional indepen-
dence property is required to guarantee state
feasibility of the resulting sequences. An
example of an assembly that does not have
property 1 is shown in figure 6.

Homem de Mello and Sanderson (1989b)
and Homem de Mello (1989) show that if
(x1,x2,. . . xN) is an ordered list of binary vec-
tors that represents an assembly sequence, the
condition gj(xi) = false, i = 1,2, . . . ,N is a
requirement for a feasible assembly sequence
and also corresponds to a precedence rela-
tionship:

cp + cq + . . . + cz → S(x)  ,

where

where

By applying this result to each of the J’ terms
on the right side of the equation, we obtain J’
precedence relationships. Given an assembly
sequence, if it satisfies all J’ precedence rela-

tionships, then it does not include any state
in ΨS and, therefore, is feasible. Conversely, if
the assembly sequence does not include any
state in ΨS, and therefore, it is a feasible
assembly sequence, then it satisfies all prece-
dence relationships. Therefore, the set of J’
precedence relationships is a correct and com-
plete representation of the set of all feasible
assembly states leading to the validation of all
correct and complete sequences. This result is
proven as a theorem in Homem de Mello and
Sanderson (1989b) and Zhang (1989). The fol-
lowing example illustrates the application of
this result. An algorithm for the generation of
these type 1 precedence relations from the
AND/OR graph is given in Zhang (1989).

As an example of the generation of type 1
precedence relations, consider the example
shown in figure 2, which has property 1. In
this example, the infeasible states are

ΨX = {[false, true, false, false, true] , [true, 
false, false, true, false]}.

Therefore, 
G(x) = G(x1, x2, x3 ⋅ x4, x5) = x1 ⋅ x2 ⋅ x3 ⋅ x4 

⋅ x5 + x1 ⋅ x2 ⋅ x3 ⋅ x4 ⋅ x5 .
The resulting precedence relations are

c1 + c3 + c4 → x2 ⋅ x5  ,
c2 + c3 + c5 → x1 ⋅ x4  .

A simpler set of precedence relations can be
obtained if we also set nonstate vectors as
don’t-care conditions for the simplification.
In this case, we obtain the precedence relations

c1 → x2 ⋅ x5  ,
c2→ x1 ⋅ x4  .

These sets of expressions are not unique; that
is, other logically equivalent sets of precedence
relations can be obtained as simplifications of
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Figure 6. Example of an Assembly That Violates Property 1.
The cover of the box is a sliding mechanism, and the blocks are placed on springs.
When either X or Y—but not both—is present, the spring is not completely com-
pressed, the other block prevents the cover from sliding, and Z cannot be inserted.
Adding the other block to the assembly compresses the spring, permits the cover to
slide open, and Z can be inserted. Because inserting Z is feasible with X and Y present
—but not with only X or Y present individually—the assembly violates property 1.



where

Σ and Π again represent logical OR and AND,
respectively.

Although it is often possible to directly
reduce this logical expression, there is anoth-
er interesting simplification that arises using
property 1 and the assumption that all states
are feasible. Under these assumptions, the fol-
lowing simplified set of type 2 precedence
relations holds:

This simplified set of precedence relations
can also be proven for a more general set of
assumptions leading to an independence
property 2. Property 2 will not be discussed
here because of space considerations.

We can illustrate this simplified set of
precedence relations as follows. The assembly
shown in figure 2 has both property 1 and
feasible states. Based on the set of assembly
sequences shown in figure 3, we can write
type 2 precedence relations of the following
form:

c1 ≤  c2c3c4c5 + c2c3c4c5 + c3c4c5 + c3c5  
+ c2c4c5 + c2 + c3c5 + c2 + c2c3c4 + c2

and
true + true + c2c3 + c2c3c4c5 + c2c3 + c2c3c4c5

+ c2c3c4c5 + c2c3c4c5 + c5 + c2c3c4c5
≤ c1 . 

By writing these relations for all i = 1, . . . , 5,
the resulting set of expressions can be simpli-
fied to obtain one nonredundant relation:

c3 ≤ c1c5 + c2c4 .
This type 2 precedence relation also specifies
correctly and completely the set of feasible
assembly sequences for the example in figure
2. It corresponds to our intuitive interpreta-
tion of the precedence that requires that the
connection between stick and receptacle be
established before the ends are connected.

Precedence relations provide an implicit
representation of assembly sequences in the
sense that decisions regarding the next step
in the sequence can be made through local
consideration of the current and previous
states. However, an assembly sequence itself
is an explicit representation of the assembly
sequence, and if a new state is entered, an

this set. All these relations express our intu-
itive understanding of the problem that the
stick must be connected prior to closing the
receptacle and that the stick cannot be joined
to the cap and handle without the receptacle
already present.

Type 2 Precedence Relations: 
Connection-Connection

Type 2 precedence relations establish the
occurrence of one connection prior to, or
simultaneously with, the occurrence of
another connection in the sequence. We use
the notation ci < cj to indicate that connec-
tion ci must precede connection cj, and we
use the notation ci ≤ cj to indicate that con-
nection ci must precede or accompany the
establishment of connection cj. Furthermore,
we use a compact notation for logical combi-
nations of precedence relations; for example,
we write ci < cj ⋅ ck to mean (ci < cj) ∧ (ci < ck),
and we write ci + cj < ck to mean  (ci < ck)  ∨
(cj < ck). An assembly sequence whose repre-
sentation as an ordered sequence of binary
vectors is (x1, x2, . . . ,xN) and whose repre-
sentation as an ordered sequence of subsets of
connections is (γ1 γ2 . . . γN-1)  satisfies the
precedence relationship ci < cj if ci ∈γ a, cj ∈γ b,
and a < b. Similarly, the sequence satisfies ci ≤
cj if ci ∈γ a, cj ∈γ b, and a ≤ b. For example, for
the assembly shown in figure 2, the assembly
sequence whose representation as an ordered
sequence of binary vectors is

([false,false,false,false,false]
[true,false,false,false,false]
[true,true,true,false,false]
[true,true,true,true,true]

and whose representation as an ordered
sequence of subsets of connections is

({c1} {c2, c3} {c4, c5})
satisfies the precedence relationships c2 < c4
and c2 ≤ c3 but does not satisfy the prece-
dence relationships c2 < c3 and c2 ≤ c1.

Each feasible assembly sequence of a given
assembly can be uniquely characterized by a
logical expression consisting of the conjunc-
tion of precedence relationships between the
establishment of one connection and the
establishment of another. Given an assembly
made of N parts whose graph of connections
is 〈P, C〉, let

{(γ11 γ21 . . . γ(N-1)1) , (γ12 γ22 . . . γ(N-1)2) , . . . ,
(γ1M γ2M . . . γ(N-1)M)}

be a set of M ordered sequences of subsets of
connections that represent feasible assembly
sequences. Then a correct and complete logi-
cal expression representing these sequences is

Precedence
relations 

provide an
implicit 

representation
of assembly

sequences . . .
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entire sequence must be generated to guaran-
tee its correctness. This distinction becomes
important in the implementation of assembly
sequence plans in real-time execution. In this
mode of operation, the choice of a next-cor-
rect operation can be made without recourse
to explicit planning of the entire sequence.
However, using the types of precedence rela-
tions we have defined, there is no guarantee
that a next-correct step is also going to be a
step leading to a complete feasible sequence.
Therefore, we have defined a real-time prop-
erty of assembly sequence representations
that requires that all feasible assembly subse-
quences that start at the initial state have a
non-empty set of following subsequences that
reach the goal. Zhang (1989) describes algo-
rithms that generate precedence relations that
guarantee the real-time property to hold.

An example of an assembly in which the
type 1 precedence relations do not provide
the real-time property is shown in figure 7. In
this case, the extended algorithms are
required to generate a set of precedence rela-
tions guaranteeing the real-time property.

Evaluation and Selection of
Assembly Plans

The assembly planning algorithms described
in previous sections generate the set of all fea-
sible assembly sequences. Formally defining
these structures and algorithms that incorpo-
rate feasibility predicates is a necessary step
toward developing techniques that can be
used to evaluate and select plans for particu-
lar applications. In this section, we describe
several approaches to the evaluation and
selection of plans.

In practice, we would like to select a set of
candidate assembly plans that most nearly
meet our needs for a particular purpose. This
selection requires the definition of evaluation
measures and the implementation of search
techniques to select appropriate plans. This
evaluation and selection process would ideal-
ly occur in parallel with the generation of the
plans themselves. The combinatorial explosion
in the number of possible sequences makes it
desirable to limit the search as early as possi-
ble and, therefore, to incorporate these evalu-
ation measures into the search as early as
possible. In this section, we summarize results
for three different evaluation functions.

First, we would often like to choose assem-
bly sequences that both minimize the com-
plexity of the task execution as well as the
complexity of the fixturing and manipulation
to maintain the intermediate subassembly
states. One possibility for such an evaluation

function is a weighted combination of the
complexity of the assembly tasks and the rela-
tive degrees of freedom of the parts in the
intermediate subassemblies:

W(t) = kD ⋅ D(n) + kC ⋅ C(h) + W(t1) + W(t2)  ,
where

D(n) = the measure of the relative degrees of
freedom of the parts of the subassembly, and
n is the number of degrees of freedom.

C(h) = the measure of the complexity of the
assembly task whose corresponding AND-arc
is h.

kD = the weight given to the relative
degrees of freedom of the subassembly parts.

kC = the weight given to the task’s complex-
ity measure.

t1 and t2 are subtrees.
Subassemblies in which the number of rela-

tive degrees of freedom of the parts is high are
more difficult to manipulate because there are
fewer orientations in which they are stable,
and there are fewer options for grasping. A
variety of factors can be included in a mea-
sure of complexity of assembly tasks: time
duration, reliability, fixture requirements, and
cost of resources. As one example, we estab-
lished a ranking of assembly tasks based on
threaded contacts, cylindrical contacts, and
planar contacts. Either exhaustive or heuristic
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Figure 7. Example of an Assembly That Does
Not Have the Real-Time Property for Type 1

Precedence Relations.
Although B and C can be individually inserted at any
time, if B-C are connected early in the sequence, several
additional feasible steps can be taken but do not lead
to a feasible sequence. A deadend is reached when B-C
tries to mate with A-E-D. The real-time precedence
relations for this example are generated by our extend-
ed algorithm (Zhang 1989).



is preferred because it gives more flexibility to
task scheduling. Given an assembly tree, the
number of distinct sequences in which the
assembly task can be executed can be recur-
sively computed. For this evaluation func-
tion, an admissible heuristic can also be
found. The resulting evaluation of alternative
assembly trees from figure 2 suggests that
sequences D-C-A/C-D-A and E-A-C/A-E-C
from figure 3 are each represented by the
same solution tree for the assembly task, and
the other six assembly trees allow only one
sequence.

A third possibility for a metric to assess the
quality of an assembly tree is its depth.
Assuming that the assembly work station
operates in cycles during which one or more
assembly tasks is executed, the depth of an
assembly tree is given by the minimum
number of cycles that are required to com-
plete the assembly. Given an assembly tree,
the depth metric yields an admissible heuris-
tic function that can be implemented as an
efficient search technique. For the example in
figure 2, the assembly trees found using
metric 2 also have depth two because it is
possible to simultaneously execute two
assembly tasks and, therefore, to complete
the assembly in two cycles. Of course, simul-
taneity of assembly tasks requires the avail-
ability of resources, and this metric would
only be used if the required resources are
available.

search techniques can be used to explore the
alternative sequences relative to these evalua-
tion functions. In this case, an evaluation
function W can be defined as an admissible
heuristic function and incorporated into a
heuristic search technique such as the AO*
algorithm. Based on these search techniques,
the resulting ranking of alternative sequences
in terms of these evaluation functions is
shown in table 1.

A second possible metric to assess the quali-
ty of an assembly sequence is the number of
distinct sequences in which the assembly
tasks can be executed. For some applications,
it might be desirable to have one fixed set of
assembly tasks, all of which are executed.
Instead of allowing all possibilities given by
the AND/OR graph, it might be preferable to
allow only the possibilities given by one
assembly tree. The assembly tree that allows
the maximum number of distinct sequences

Articles

76 AI MAGAZINE

Figure 8. Overview of the Pleiades Environment for 
Assembly Sequence Planning.

TREE COST
A-B-C 11
B-A-C 13
B-C-A 13
C-B-A 11
D-A-C 15
D-C-A 14
C-D-A 14
E-C-A 15
E-A-C 14
A-E-C 14

Table 1. Tables of Costs Using the Weighted
Evaluation Function for the Example in Figure 2.
The preferred sequences were those that attached the
cap or handle to the receptacle first, providing a stable
subassembly for insertion of the stick.



The Pleiades System

Although a fully automated assembly system
is one goal of the techniques described here,
many of these approaches will be used first in
an interactive mode, where the user is a critic
for alternative assembly sequences generated
automatically from CAD-based descriptions.
The first generation of such an interactive
assembly planning environment integrates a
set of software modules for parts modeling
and planning. The system, which we call
Pleiades, has been used to demonstrate initial
experiments in transferring a CAD-based parts
description to a fully developed assembly
plan.

Figure 8 illustrates the elements of the
Pleiades system. Catia, a solid modeling and
mechanical CAD design system available
commercially from IBM, is the first element.
Catia uses both constructive solid geometry
and boundary representations and provides
facilities for Boolean operations on solid parts
models. Several parts can be built in the same
model and viewed simultaneously, as shown
in figure 9. However, there is no explicit rep-
resentation for assembly relationships in
Catia, and relative parts positions must be
described to represent assembly relationships.
The partially assembled parts for the same
example are also shown in figure 9. For our
purposes, Catia provides a convenient tool for
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Figure 9. Example of the Sequence of Procedures in the Pleiades System.
Figure 9a shows the output of the Catia system showing the parts solid models, Figure 9b shows the Geos display of
the object-oriented model of assembly relations, and Figure 9c shows the AND/OR graph output of the planning 
procedure.
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additional advantage of the integration of
this commercial system is the availability of
existing designs that have been implemented
using Catia and the opportunity to interact
more directly with practicing designers.

Another element of the system is Geos
(Turner 1989a, 1989b), a variational geomet-
ric modeling system under development at
Rensselaer Polytechnic Institute by Professor
Joshua Turner. It is intended for modeling
parts and assemblies and includes facilities to
incorporate tolerance information. Geos
implements an object-oriented environment,
including classes and methods with inheri-
tance. Geos model data are organized into
data structures called objects or nodes. A
Geos display for the four-part example is
shown in figure 10b. Typical Geos nodes are
point, line, and surface. Geos nodes are
grouped into entities. Entities are the highest
structural level visible to the user. There are
three types of entities: (1) menu, which con-
tains all the menus used by the Geos dialog
manager; (2) drawing, which corresponds to a
paper drawing and contains a collection of
two-dimensional components; and (3) space,
which corresponds to a three-dimensional
world and contains a collection of three-
dimensional components.

In Geos, the space entity can be used to
model the assembly. Each space entity has a
list of region nodes; region nodes contain
body nodes. The body nodes can be used to
model the parts in the assembly. The two
types of nodes used to model the geometric
contacts and mechanical attachment rela-
tionships between the parts are those defined
previously in our relational model (see
Assembly Sequence Planning). A contact
node models the contacts from the relational
model and stores the pointers to the two
body nodes and the pointers to the contact-
ing surfaces. An attachment node includes
the pointer to the agent nodes and the target
nodes. In the current mode of operation,
Geos imports parts models from Catia and
converts them directly to Geos representa-
tion. The assembly relationships are input
interactively.

A third element of the Pleiades system is
the relational model.  This model, which is
used in the assembly planning software mod-
ules, is obtained by data format conversion
from the Geos C environment to a Lisp envi-
ronment. The resulting symbolic relational
model contains all the relational and
attribute information needed for assembly
sequence planning, including evaluation of
feasibility predicates for local geometric feasi-
bility and attachments.

generating and manipulating solid parts models.
It provides sufficient boundary model infor-
mation to generate many assembly relation-
ships and provides good capabilities for
visualization of parts and subassemblies. An
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Figure 10.  Ball-Point Pen Example.



The assembly sequence planner uses the
symbolic representation of the relational
model to generate the AND/OR graph repre-
sentation of all feasible assembly plans based
on the evaluation of local geometric and
attachment feasibility predicates. The
AND/OR graph for the four-part example is
shown in figure 9c. The explicit assembly
sequence lists and the directed graph of
assembly states can be generated from this
representation.

Type 1 and type 2 precedence relations in
the system are generated from the AND/OR
graph representation using implementations
of the algorithms described in Zhang (1989).
For the four-part example in figure 9, these
are, respectively, 

c1 → x3 ⋅ x4        c2 → x1 ⋅ x3        c3 → x2 ⋅ x4
c4 → x1 ⋅ x2

and
c1 ≤ c2 ⋅ c3 + c4 c2 ≤ c1 ⋅ c4 + c3          

c3 ≤ c1 ⋅ c4 + c2        c4 ≤ c2 ⋅ c3 + c1 . 
Another example of the application of

these planning tools is the ball-point pen
shown in figure 10. This example was used 
by both Bourjault (1984) and DeFazio and
Whitney (1988) in their work on interactive
sequence planning. This example has six
parts and five connections, with a resulting
12 feasible sequences for assembly. The AND/
OR graph has 17 nodes, and the directed
graph has 24 nodes. The type 1 and type 2
precedence relations that are generated for
this example are, respectively,

c4 → x1 ⋅ x2 c3 → x4 c1 → x5
and

c1 ≤ c5  c3 ≤ c4 c4 ≤ c2 + c1 ,
where the type 1 precedence relations are
identical to those obtained from the interac-
tive methods in DeFazio and Whitney (1988).
.

Conclusions
This article summarizes work in progress on
the development of a theoretical framework
and implementation of assembly sequence

planning tools. The principal focus has been
the formalization of assembly sequence plan
representations, the proof of equivalence of
different representations, and the implemen-
tation of algorithms to generate and trans-
form these plan representations. These
representation tools and algorithms form the
basis for implementation in a system of soft-
ware modules that provides an environment
for interactive design and evaluation of
assembly system design alternatives.

A number of additions and extensions to
the current system are of both theoretical and
practical importance. First are feasibility pred-
icates. Within the framework we described, a
large number of different resource-indepen-
dent and resource-dependent feasibility predi-
cates can be defined. For practical application,
we need to incorporate a global geometric
feasibility algorithm. There are several candi-
dates here, but many existing algorithms that
plan explicit paths are too computationally
complex. An extended state stability criterion
is also an important extension but will
require additional research.

Second is hierarchy. Many assembly prod-
ucts are designed with natural hierarchies of
subassemblies to maintain the stability of
subunits, resulting in both functional and
manufacturing advantages. Such hierarchies
fit naturally into the AND/OR graph frame-
work and can be used to simplify the search
procedure by enforcing subgoals.

Third are uncertainty and tolerances.
Assembly product designs have specified tol-
erances on the dimensions and shapes of
parts. These tolerances are usually matched to
the functional specification of the parts and
often reflect an implicit assumption by the
designer about assembly sequencing. Incorpo-
ration of tolerance information into feasibili-
ty predicates for sequence planning is an
important extension to our current work. We
expect this analysis to lead to formal methods
to incorporate other sources of uncertainty
resulting from fixtures or manipulators.

Fourth are mechanisms. In our current
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. . . Geos . . . a variational geometric modeling system 

. . . is intended for modeling parts and assemblies and
includes facilities to incorporate tolerance information.



Pleiades-type planning environment would
permit the exploration of parts geometry and
assembly modifications using the Catia
system and an opportunity to evaluate the
impact of design changes on assembly plans.
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