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In his new book Alternate Realities:
Mathematical Models of Nature and
Man (New York: John Wiley and Sons,
1989, 493 pages, $34.95), John L.
Casti gives us an impressive, up-to-
date look at several areas of mathe-
matics that are being applied to the
study of biological and sociological
systems. These areas, including cellu-
lar automata theory, catastrophe
theory, nonlinear dynamics and chaos,
game theory, and control theory, are
finding use on the frontiers of scien-
tific research. Although these areas
and their applications are described
in various other sources, both on the
level of a scientist and a layperson, I
know of no other book that brings
them all together to show how they
can be used in scientific research.
However, this book suffers from being
written for mathematical specialists
and, therefore, limits the potential
readership. An opportunity to educate
more scientists in the use of mathe-
matical models is regrettably missed.

Each chapter of this well-organized
book deals with a different class of
models and includes examples to illus-
trate the author’s points. Substantial
sections of discussion questions and
problems and exercises can be found
at the end of each chapter. This is a
nice feature that many related books
lack. The discussion questions are
interesting and thought provoking if
somewhat frustrating because they
really do require discussion instead 
of just personal reflection. The prob-
lems are typically mathematical
(show, prove, and so on) rather than
computational (calculate, write, and
algorithm or program), and no solu-
tions are provided. My preference
would have been for more computa-
tional problems to help the reader
understand how to directly apply the
concepts.

In the final chapter, Casti provides

a brief discussion of how the theory
of models fits with the broader theory
of representations. Unfortunately,
the mathematical models covered in
this book are not directly tied to AI,
where the issue of representation is
premier. In the chapter on brains,
minds, and mechanisms, the author
states that he deliberately “omits any
consideration of intelligence,” choos-
ing instead to focus on properties of
observability and reachability and
models based on cognitive and behav-
iorist schemes. A separate chapter dis-
cusses the use of cellular automata
models but omits any mention of the
use of these models to study systems
of excitable cells (for example, neural
tissue, cardiac tissue) or of the simi-
larities and differences between cellu-
lar automata, interacting particle
systems, and neural network models.
Neural networks, a topic of much
current interest, are not discussed in
this book.

Although it would have made the
book somewhat longer, it would have
been useful to include both a begin-
ning section on general system
theory and a liberal sprinkling of dis-
cussions on computer simulation. It
seems to me that without the former,
it is difficult to appreciate the impor-
tance of models, and without the
latter, it is difficult to apply them.
The successful system scientist needs
to know not only the mathematical
models available but also the philos-
ophy behind the use of models (of all
kinds) and how the behavior of a
model is studied through simulation.
Those models whose behavior can be
analytically studied without simula-
tion are few and far between. It
would have been helpful as well to
include some explanation of the rela-
tionships between the different kinds
of models and how one goes about
choosing an appropriate model for a
selected problem. Such an explana-
tion would have improved the cohe-
siveness of the author’s presentation.

Although they are not part of the
focus of this book, Casti’s remarks on
the function of the system scientist

are nevertheless notable. This func-
tion, he says, is to be the holder of
the magic keys, “the abstract encod-
ing/decoding operations” that enable
us to connect the mathematical
world back to the real world through
prediction and connect the real
world back to the mathematical
world through observation and mea-
surement. The system scientist need
not be an expert in mathematics or a
particular scientific discipline; the
scientist instead bridges the gap
between the two.

Thus, I arrive at the major obstacle
with this book. I expected the book
to be written for the system scientist
or a scientist who wishes to use sys-
tems methods, such as modeling and
simulation. However, it seems to be
written for mathematicians instead.
In conflict with his statement that
the systems scientist need not be an
expert in the mathematical world or
in the real world, Casti states in his
preface that the reader is assumed to
have a working (note, not passing)
knowledge of ordinary differential
equations, linear algebra, matrix
theory, and abstract algebra. (I suggest
that a background in differential
geometry and algebraic topology
would be helpful as well.) The book is
indeed written for someone with
such knowledge, but few readers
other than mathematicians will have
this training.

It is disappointing that this text
makes use of a high level of mathe-
matical detail; it will be a formidable
obstacle to its use and will unneces-
sarily restrict the size of the book’s
potential readership. The reader must
be exceptionally knowledgeable in
mathematical terminology and meth-
ods and must be prepared to wade
through pages of esoteric notation.
The value of some of the extensive
mathematical developments is not
clear, whether it is in support of an
understanding of a method or in its
application. Casti presents material
that is so technically dense that it
would be difficult to take it and apply
it to real-life (dirty) problems. The
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use of probab l ty and the theory of
stochastic processes, an example of
material that would be helpful in
handling real-life problems, is given
virtually no attention.

Restricting the number of potential
readers is unfortunate because an
interdisciplinary view of the world
around us must be developed. This
book should have been written to
show a scientist with a good mathe-
matics background how to do model-
ing and simulation. Scientific research
needs more people trained in system
concepts, people trained to under-
stand and apply the Weltanschauung
of system theory. Indeed, the recent
recommendation for science educa-
tion that came out of the Science for
All Americans study, sponsored by
the American Association for the
Advancement of Science, emphasized
an interdisciplinary approach to sci-
entific concepts. By limiting the
technical accessibility of this book,
the author has not helped us address
the need for training scientists in the
use of interdisciplinary tools in scien-
tific research.

The text will be difficult to use in
self-study; a great deal is expected of
the reader. Explanations of the
models are frequently difficult to
follow. A lack of answers for the exer-
cises makes assessing what one has
learned difficult. For a graduate-level
course for well-prepared students
learning from a well-trained professor,
though, this text might be useful. It
has no real competition among
books on applications of mathemati-
cal modeling. However, in my opin-
ion, there is still a need for a book on
mathematical models that is accessi-
ble to a wider readership.
Mark E. Lacy is manager of computational
biology at Norwich Eaton Pharmaceuticals,
Inc., NY 13815.
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Sparse Distributed Memory (Cambridge,
Mass.: MIT Press, 1988, 155 pages,
$24.95, ISBN 0-262-11132-2) is an
interesting little book in which Pentii
Kanerva describes a fascinating
theory of human memory. Almost 
as surprising as the elegance of the
theory is the length of the presenta-
tion: He uses only 120 pages to
describe the theory, with the more
formal mathematical results given in
25 pages of appendixes. With consid-

erat on to the ns ght requ red to
develop these ideas, the brevity of
the description is remarkable. This
issue of brevity is important because
it makes accessible a number of ideas
that many people will find interesting.

Sparse distributed memory (SDM)
(I use the initials to distinguish the
theory from the book) is an idea that
has been developing for some time.
Kanerva published his dissertation in
1984. Since then, the basic theory
has been used in a variety of ways as
a model of human memory and a
model for a new style of computer
memory. Publication of this book
will bring the theory to the attention
of a much wider audience. For this
audience, there are two important
aspects to the theory: It is inspired
by the study of brain physiology 
and is able to explain many of the
observed functions and behaviors of
the human brain. Unlike other neural
models, SDM easily scales to large
vector sizes.

At various points in the book, Kan-
erva describes how he developed his
ideas in an attempt to provide a
computational description of struc-
tures in the brain. This effort seems
to have been successful: SDM can be
mapped onto physiological struc-
tures, a feat that many alternatives
cannot duplicate. Many neural models
only duplicate a style of computa-
tion and are not intended as models
of brain functions. Kanerva admits
that SDM does not begin to capture
the complexity of the brain, but it is
at least a closer approximation than
many other such efforts.

A problem with many neural
models is their computational
expense. They work fine with small
networks but do not scale well with
an increase in the number of nodes.
Hardware implementation does not
help because there in no obvious
way to provide communications paths
for a fully connected network. SDM,
however, does not perform well with
small numbers of nodes. It requires a
million nodes to realize the beauty of
the system. Kanerva describes how
hardware implementation can be
achieved with the use of numerous
counters. Because each counter loca-
tion does not need information from
other nodes, there is no communica-
tions bottleneck, and hardware
implementation is much simpler
than for other neural models.

SDM uses vectors in n-space as
input. Although the vectors could be

n other bases, n-b t b nary vectors
are used in the book. Input are
matched to target vectors by simply
finding the target closest (in terms of
Hamming distance) to the input
vector. If n is sufficiently large (thou-
sands or even millions of bits long),
this vector space exhibits some inter-
esting properties. Most important,
the bulk of the vector space will be
clustered around the midpoint
between any two vectors, in much
the same way that most of the sur-
face of a sphere is located midway
between any two opposite points on
the sphere.

To directly implement such a
scheme would require 2n memory
locations. For the large n required,
such an implementation is impossi-
ble. To avoid this problem, Kanerva
proposes using only memory loca-
tions that actually have values stored
in them. As he points out, a century
has fewer than 232 seconds; thus, it
seems likely that only a small frac-
tion of vectors in a 1000-bit vector
space will actually be stored. There-
fore, we can use many fewer locations
than the size of the vector space.
Such a sparse memory could feasibly
be implemented and, depending on
the interpretation of the input, used
as an associative memory, for best
matching, or for any of a variety of
other applications.

A separate and interesting part of
this book is a critique of perceptron
convergence learning. Many connec-
tionist models rely on the perceptron
convergence theorem. Kanerva out-
lines one problem with perceptron
convergence to show why he rejected
this approach. Briefly, perceptron
learning requires an outside reference
to discriminate between different
classes that are being learned. Thus,
the discrimination has already been
made, which is counter to most
physiological models of neuron func-
tion. Many perceptron conver-
gence–based algorithms are used for
classification applications for which
training data do exist. In these cases,
Kanerva’s critique does not apply. It
does, however, make it clear why he
rejects convergence learning as the
basis of a physiological model.

SDM’s strength as a physiological
model rests in part on its simple, ele-
gant theory. Its ability to scale well
and the lack of any complex imple-
mentation requirements also lend
strength to its claim as a model.
Brain physiology is notorious for the




