
Articles

WINTER 1990 59

Design Problem Solving:
A Task Analysis1

B. Chandrasekaran

Design problem
solving is a complex
activity involving a
number of subtasks
and a number of
alternative methods
potentially available
for each subtask. The
structure of tasks has
been a key concern
of recent research in
task-oriented method-
ologies for knowl-
edge-based systems
(Chandrasekaran
1986; Clancey 1985;
Steels 1990; McDer-
mott 1988). One way
to conduct a task
analysis is to develop a task structure (Chan-
drasekaran 1989) that lays out the relation
between a task, applicable methods for it, the
knowledge requirements for the methods, and
the subtasks set up by them. The major goal
of this article is to develop a task structure for

design as a knowl-
edge-based problem-
solving activity.

Design as
Search in a

Space of Sub-
assemblies

Designing artifacts
that are meant to
achieve some func-
tions within some
constraints is an
important class of
design with charac-
teristic properties
(Goel and Pirolli

1989). I concentrate on this class of design
problems in this article.

For sufficiently complex versions of the
design problem, a common theme emerges for
design as a process: It involves mappings from
the space of design specifications to the space

I propose a task structure for design by analyzing
a general class of methods that I call propose-
critique-modify methods. The task structure is
constructed by identifying a range of methods
for each task. For each method, the knowledge
needed and the subtasks that it sets up are iden-
tified. This recursive style of analysis provides a
framework in which we can understand a
number of particular proposals for design prob-
lem solving as specific combinations of tasks,
methods, and subtasks. Most of the subtasks are
not really specific to design as such. The analy-
sis shows that there is no one ideal method for
design, and good design problem solving is a
result of recursively selecting methods based on a
number of criteria, including knowledge avail-
ability. How the task analysis can help in
knowledge acquisition and system design is dis-
cussed.

Copyright, ©1990 American Association for Artificial Intelligence. All rights reserved. 0738-4602/90/$4.00

AI Magazine Volume 11 Number 4 (1990) (© AAAI)

domain. An example of an implicit function
in many engineering devices is safety: For
example, a subsystem’s role might only be
explained as something that prevents the
leakage of a potentially hazardous substance,
and this function might never be explicitly
stated as part of the design specification
(Keuneke 1989).

In addition to desired functionalities,
design specifications will usually mention a
number of constraints.2 The distinction
between functions and constraints is hard to
formally pin down; functions are constraints
on the behavior or properties of the device.
However, it is useful to distinguish functions
from other constraints because functions are
the primary reason that the device is desired.
Design constraints can be on the properties
of the artifact (for example, “It should not
weigh more than . . .”), the process of making
the artifact from its description (manufac-
turability constraints), the design process
itself (for example, “I want a design within a
week”), and so on. A computationally effec-
tive process of design is to generate a candi-
date design based on functions and then
modify it to meet the constraints.

Definition of the Design Task

Consider the following definition of the
design task:

Definition: The design problem is specified
by (1) a set of functions (those explicitly
stated by the design consumer as well as
those implicitly defined by the domain) to be
delivered by an artifact and a set of con-
straints to be satisfied and (2) a technology,
that is, a repertoire of components assumed
to be available and a vocabulary of relations
between components. The constraints might
pertain to the design parameters themselves,
the process of making the artifact, or the
design process. The solution to the design
problem consists of a complete specification
of a set of components and their relations
that together describe an artifact that delivers
the functions and satisfies the constraints.
The solution is expected to satisfy a set of
implicit criteria as well; for example, it is not
much more complex or costly than plausible
alternatives (ruling out Rube Goldberg
devices).

The preceding definition also captures the
domain-independent character of design as a
generic activity. Planning, programming, and
engineering design all share this definition as
well as many of the subprocesses to a signifi-
cant degree. Nevertheless, there are versions
of the design problem for which this defini-

of devices or components (often referred to as
mapping from behavior to structure), typical-
ly conducted by means of a search or explo-
ration in the space of possible subassemblies
of components. This accent on assembly is in
fact the origin of the frequent suggestion that
design is a synthetic task.

The design problem is formally a search
problem in a large space for objects that satis-
fy multiple constraints. Only a vanishingly
small number of objects in this space consti-
tute even satisficing, not to mention optimal,
solutions. What is needed to make design
practical are strategies that radically shrink
the search space.

Set against the view of design as a delibera-
tive problem-solving process is the view of
design as an intuitive, almost instantaneous,
process where a design solution comes to the
mind of the designer. Artistic creations and
scientific theories are often said by their cre-
ators to have occurred to them in this
manner. Even when a plausible solution
occurs in this way, the proposal still needs to
be evaluated, critiqued, and modified by
deliberatively examining alternatives. That is,
except in simple cases, deliberative processes
are still essential for real-world design.

Functions, Constraints, Components,
and Relations

A designer is charged with specifying an arti-
fact that delivers some functions and satisfies
some constraints. For each design task, the
availability of a (possibly large and generally
only implicitly specified) set of primitive
components can be assumed. The domain
also specifies a repertoire of primitive rela-
tions or connections that are possible
between components. An electronics engi-
neer, for example, might assume the avail-
ability of transistors, capacitors, and other
electrical components when designing a
waveform generator. Primitive relations in
this domain are serial and parallel connec-
tions between components.

Of course, design is, in general, recursive: If
a certain component that was assumed to be
available is in fact not available, the design of
this component can be undertaken in the
next round. However, the vocabulary of
primitive components and relations can be
different from that for the original device.

Functions can be expressed as a state or a
series of states that we want the device to
achieve or avoid under specified conditions.
Functions can be explicitly stated as part of
problem specifications, or they can be implic-
it in the designer’s understanding of the

Articles

60 AI MAGAZINE

tion needs to be modified or extended, as in
the following examples: First, at the start of
the design process, only a minimal statement
of functions and constraints might be avail-
able, and additional ones might be developed
in parallel with the design process itself.
Second, some design problems involve exten-
sive trade-off studies, where a part of the
design process is a search for ways in which
the functions or the constraints can be
relaxed or otherwise modified. Third, tinker-
ing is a time-honored method of invention,
where the design space is explored without
any specific set of functions in mind. Func-
tions can be identified for structural configu-
rations that arise during exploration. Fourth,
the world of primitive objects can be open
ended and only implicitly specified. The
design framework that I present can be
extended to cover these variations.

The Task Structure
Let us say we have a problem-solving task T,
and let M be some method suggested for the
task.3 A method can be described in terms of
the operators it uses, the objects it operates
on, and any additional knowledge about how
to organize operator application to satisfy the
goal. At the knowledge level, the method is
characterized by the knowledge the agent
needs to set up and apply the method. Differ-
ent methods for the same task might call for
knowledge of different types.

To take a simple example, for the task of
multiplying two multidigit numbers, the log-
arithmic method consists of the following
series of operations: Extract the logarithm of
each of the input numbers, add the two loga-
rithms, and extract the antilogarithm of the
sum. (The operators appear in a typewriter-
like font.) Their arguments, as well as the
results, are the objects of this method.)

Note that one does not typically include (at
this level of description of the logarithmic
method) specifications about how to extract
the logarithm or the antilogarithm or how to
do the addition. If the computational model
does not provide these capabilities as primi-
tives, the performance of these operations can
be set up as subtasks of the method. Thus,
given a method, the application of any of the
operators of a method can be set up as a sub-
task. Some of the objects a method needs can
be generic to a class of problems in a domain.
As an example, consider hierarchical classifi-
cation using a malfunction hierarchy, a
common method of diagnosis. Establish-
Hypothesis and Refine-Hypothesis operations
are applied to the hypotheses in the hierar-

chy. These objects are useful for solving many
instances of the diagnostic problem in the
domain. If the malfunction hypotheses are
not directly available, the generation of such
hypotheses can be set up as subtasks. A
common method for the generation of such
objects is compilation from so-called deep
knowledge. Structure-function models of the
device that is being diagnosed have been pro-
posed and used as deep models to generate
malfunction hypotheses (Chandrasekaran,
Smith, and Sticklen 1989). There is no finite
set of mutually distinct methods for a task
because there can be numerous variants on a
method. Nevertheless, the term method is a
useful shorthand to refer to a set of related
proposals about organizing computation.

Types of Methods

One type of method is of particular impor-
tance in knowledge-based systems: methods
that can be viewed as a problem space search
(Newell 1980). Designer-Soar (Steier 1989)
and Air-Cyl (Brown and Chandrasekaran
1989) are examples of design systems that
explore search spaces. For example, Air-Cyl
can be understood as searching in a space of
parameters for the components of an air
cylinder by using design plans that propose
and modify parameter values.

Another class of methods consists of algo-
rithms that directly produce a solution with-
out any search in a space of alternatives, for
example, producing a set of design parame-
ters by numerically solving a set of simultane-
ous equations. Such algorithms are only
available for so-called well-structured prob-
lems.4 Most real-world problems are ill struc-
tured, and the role of domain knowledge is to
help set up spaces of alternatives and help
control the search in these spaces.

A task analysis of this type can be recursive-
ly continued until methods whose operators
are all directly achievable (within the analysis
framework) are reached. In the following task
analysis for design, I explicitly indicate as
subtasks only those to which I want to draw
specific attention. Other operators might exist
that also require additional problem solving.

Articles

WINTER 1990 61

. . . a task structure. . . lays out the
relation between a task, applicable
methods for it, the knowledge requirements
for the methods, and the subtasks set up
by them

Articles

62 AI MAGAZINE

A Task Structure for Design:
The Propose-Critique-Modify

Family of Methods

The most common top-level family of methods
for design can be characterized as propose-cri-
tique-modify (PCM) methods. These methods
have the subtasks of proposing partial or
complete design solutions, verifying proposed
solutions, critiquing the proposals by identi-
fying causes of failure if any, and modifying
proposals to satisfy design goals. These sub-
tasks can be combined in fairly complex
ways, but the following method is one
straightforward way in which a PCM method
can organize and combine the subtasks.

Example PCM Method:
Step 1. Given design goal, propose solution.

If no proposal, exit with failure.
Step 2. Verify proposal. If verified, exit with

success.
Step 3. If unsuccessful, critique proposal to

identify sources of failure. If no useful criti-
cism available, exit with failure.

Step 4. Modify proposal, and return to 2.
Although all the PCM methods need to have

some way to achieve the iteration in step 4,
there can be numerous variants on the way
the methods in this class work. For example,
a solution can be proposed for only a part of
the design problem, a part deemed to be cru-
cial. This solution can then be critiqued and
modified. This partial solution can generate
additional constraints, leading to further
design commitments. Thus, subtasks can be
scheduled in a fairly complex way, with sub-
goals from different methods alternating. It is
hard to identify a separate method for each
such variation. The implications for a design
architecture of this open-endedness in the
number of methods are discussed in the con-
cluding sections of this article.

In this article, most of the attention is
devoted to the proposal subtask because most
of the design knowledge as such is used in
this subtask. Every task has a default method,
one that uses compiled knowledge to get a
solution without any problem solving. This
method is practical only in simple cases.
Because this method is potentially applicable
to simple versions of all tasks and has no
interesting internal structure, I do not explic-
itly mention it in my discussion.

A task analysis should provide a framework
within which various approaches to design
can be understood. I use selected examples of
existing AI systems to illustrate the ideas, but
there is no attempt to provide a survey of all
AI work on design.

Methods for Proposing Design Choices

Design proposal methods use domain knowl-
edge to map part or all of the specifications to
partial or complete design proposals. Three
groups of methods can be identified: (1)
problem decomposition–solution composi-
tion, (2) retrieval of cases from memory, and
(3) constraint satisfaction. First is problem
decomposition–solution composition. In this
class of methods, domain knowledge is used
to map subsets of design specifications into a
set of smaller design problems. The use of
design plans is a special case of decomposi-
tion method. Second is the retrieval of cases
from memory that correspond to solutions for
design problems that are similar or close to
the current problem. Third is the family of
methods that solve the design problem as a
constraint-satisfaction problem and use a vari-
ety of quantitative and qualitative optimiza-
tion or constraint-satisfaction techniques.

Decomposition and case-based methods
help reduce the size of the search spaces
because the knowledge they use can be
viewed as the compilation or chunking of
earlier (individual or community) search in
the design space. The conversion of a design
problem into one amenable to global-opti-
mization algorithms requires substantial a
priori knowledge of the structure of the
design problem.

Decomposition-Solution Composition.
I treat this method in terms of all the features
that an information-processing analysis calls
for: the types of knowledge and information
needed and the inference processes that oper-
ate on this form of knowledge.

Knowledge needed is of the form D → D1,
D2, . . . , Dn, where D is a given design prob-
lem, and Dis are smaller subproblems (that is,
associated with search spaces smaller than D).
A number of alternate decompositions for a
problem might be available, in which case a
selection needs to be made, with the atten-
dant possibility of backtracking and making
another choice. Repeated applications of the
decomposition knowledge produce design
hierarchies. In well-trodden domains, effec-
tive decompositions are known, and little
search for decompositions needs to be con-
ducted as part of routine design activity. For
example, in automobile design, the overall
decomposition has remained largely invari-
ant over several decades.

Decomposition knowledge in design gener-
ally arises when the functional specifications
can be decomposed into a set of subfunctions
(Freeman and Newell 1971). Design decom-

position knowledge can come in the form of
part-subpart decomposition if a direct map-
ping is available between functions and com-
ponents.

The following are two important subgoals
of the decomposition–solution composition
method: First is generating specifications for
subproblems. The functional and other speci-
fications on D need to get translated into
specifications for each of the subproblems D1,
. . . , Dn. Second is gluing the subproblem
solutions into a solution to the original
design problem.

In most routine design, these subtasks are
not explicit: They are either solved by com-
piled knowledge, or the problem specification
already implies a solution to these problems.
In general, however, additional problem solv-
ing is needed.

How a decomposition–solution composition
method might actually organize and use the
subgoals is shown in the following example:
Example Decomposition–Solution Recom-
position Method:

Step 1. (search the space of decompositions).
Choose from among alternative decomposi-
tions for the given design problem D.

Step 2. Generate specifications for subprob-
lems in the chosen decomposition.

Step 3. Set up each subproblem as a design
problem. Solve them in some order determined
by control strategies and other domain knowl-
edge (for example, progressive deepening).

Step 4. If subproblems are solved, recom-
pose solutions of subproblems into solution
for D, and exit.

Step 5. If failure in steps 3 or 4, go to step 1
to make another choice, or relax specifica-
tions, and go to step 2.

All the caveats mentioned in connection
with the PCM method apply here. Specifically,
the control of how subproblems are solved can
be variable and more complex than previous-
ly indicated. Some of the sources of this com-
plexity are given in the following discussion.

Given a design problem, it might not
always be possible to generate all the con-
straints for its subproblems from the original
problem’s specifications alone. In many
domains, constraint generation for some sub-
problems alternates with partial design of
others, which, in turn, provides additional
information for constraints for yet other sub-
problems. There might be a complex process
of commitments and backtracking. In
extreme cases, most of design problem solv-
ing can consist of search for parameters that
make all the subproblems solvable. For exam-
ple, the propose-and-revise method (Marcus,
McDermott, and Wang 1985) involves

making commitments to some subparts of the
design problem (propose part) and then revis-
ing these when some constraints for other
parts of the problem are violated.

In configuration tasks (Mittal and Frayman
1989), subproblem solutions are given as part
of the problem (that is, the desired functions
are mapped into a set of key components),
and the remaining task is dominated by the
subtasks of specification generation and solu-
tion recomposition. For components A and B
to be connected, certain preconditions and
postconditions might need to be satisfied. If
these conditions are not available a priori,
they need to be derived from configuration
behaviors. Discovering connection conditions
and checking whether specific configuration
proposals result in desired functional behav-
iors can often involve simulation as a prob-
lem-solving method (for example, Kelly and
Steinberg 1982).

There can be complex dependencies
between constraints among subproblems. In
situations where commitments for D1 are
going to constrain the specifications for
D2, . . . , Dn, and the commitments for the
latter might further specify constraints for
D1, a strategy that Steier (1989) identified as
progressive deepening is natural to emerge.
This strategy involves making some commit-
ment for each subproblem at each pass, using
these commitments to generate additional
specifications, undoing earlier commitments
as needed, and repeating this process.

Control Issues. There are two sets of con-
trol issues, one dealing with which sets of
decompositions to choose (step 1 in the
decomposition-recomposition method) and
the other with the order in which the sub-
problems within a given decomposition
ought to be attacked (step 3). For the first
problem, the decomposition will generally
produce an AND or an OR node. All the
decompositions in an AND node will need to
be solved, but only one of the decomposi-
tions for an OR node will need to be solved.
Finding the appropriate decomposition
requires search in an AND/OR graph. Howev-

Articles

WINTER 1990 63

The most common top-level family
of methods for design can be
characterized as propose-critique-modify
(PCM) methods.

Articles

64 AI MAGAZINE

er, as a rule, such searches are expensive. In
domains where multiple decompositions are
possible, but there are no easily formalizable
heuristics to choose among them, the
machine might be effective in proposing
alternatives and the human in evaluating
them and making a selection.

In routine design, extensive searches in the
spaces of possible decompositions are avoided
by limiting the number of possible decompo-
sitions at each choice point to one or a few.
Design hierarchies come about in those
domains where the problem is sufficiently
routine that only one decomposition is avail-
able to choose at each selection point.

Transformation methods (Balzer 1981) for
algorithm synthesis are a type of decomposi-
tion method. In this approach, a set of high-
level specifications for an algorithm are
converted into a series of programming lan-
guage–level commitments by recursively
mapping subsets of specifications into com-
ponents for which some implementation-
level commitments have been made. Each
such commitment will typically constrain
other implementation commitments. Because
of this constraint, search in the space of pos-
sible transformations might often be needed.
In most implemented transformation systems,
humans choose from a set of alternative trans-
formations presented by the design system.

Regarding the order in which subproblems
in a given decomposition are to be attacked,
the main constraint is the knowledge about
dependencies between subproblems that I
just discussed. When the subproblems are
organized in the form of a design hierarchy,
the default control is top down, but actual
control can be complicated. For example, a
component at the leaf level of the design
hierarchy might be the most limiting compo-
nent and many other components and sub-
systems can only be designed after this
component is chosen. Part of the design pro-
cess in this case will appear to have a bottom-
up flavor. In general, appropriate control
strategies come about based on the depen-
dencies between subproblems.

Design Plans. A special case of decomposi-
tion knowledge is the design plan, represent-
ing a precompiled partial solution to a design
goal (Rich 1981; Johnson and Soloway 1985;
Friedland 1979; Mittal, Dym, and Morjaria
1986; Brown and Chandrasekaran 1989). A
design plan specifies a sequence of design
actions to take for producing a design or part

of a design. Design commitments made by a
design plan can be abstract; that is, choices
are not made at the level of primitive objects
but at the intermediate level of design
abstractions, which need to be further refined
at the level of primitive objects. For example,
in designing an automobile, a design plan
might commit to the choice of a diesel
engine as the power plant. Although this
choice is a design proposal in the sense that a
commitment is being made, the diesel engine
design itself is not specified in detail at this
stage but posed as a subtask to be solved by
any of the available methods.

Thus, a design plan D can set up other
design problems D1, . . . , Dn as subproblems,
and in this sense, it is decomposition knowl-
edge in a strong form: The process of trans-
forming the main problem goals into goals to
be allocated to subproblems and the method
of putting solutions to the subproblems back
together to obtain a solution to the original
design problem are directly encoded in the
plan.

Design plans can be indexed in a number
of ways. Two possibilities are by design goal
(for achieving <goal>, use <plan>) and by
component (for designing <part>, use
<plan>). Each goal or component can have a
small number of alternative plans attached to
them, with perhaps some additional knowl-
edge that helps in choosing among them.

Control and inference issues in the use of
plans are similar to those in the general case
of decomposition: Alternate plans are possible,
and in routine design, design plan hierarchies
can emerge. The default control strategy can
be characterized as “instantiate and expand.”
That is, the plan’s steps specify some of the
design parameters as well as calls to other
design plans. Choosing an abstract plan and
making commitments that are specific to the
problem at hand are the instantiation pro-
cess, and calling other plans for specifying
details to portions is the expansion part.

A number of additional pieces of informa-
tion might be needed or generated as this
expansion process is undertaken. Information
about dependencies between parts of the plan
might need to be generated at run time (for
example, discovering that certain parameters
of a piston need to be chosen before those of
the rod), and some optimizations might be
discovered at run time (for example, the same
base that was used to attach component A
can also be used to attach component B).
Noah (Sacerdoti 1975) is an early example of
the run-time generation of dependencies and
optimization.

Design Proposal by Case Retrieval. A
major source of design proposal knowledge is
the design case, an instance of successful past
design problem solving. Cases can arise from
an individual’s problem-solving experience or
that of an organization such as a design firm
or a design community. Cases can be episodic
(that is, represent one problem-solving
episode) or can represent the result of abstrac-
tion and generalization over several episodes.
Design plans can be considered fairly abstract-
ed versions of numerous cases.

Sussman (1973) proposes that a design
strategy is to choose an already-completed
design that satisfies constraints closest to the
ones that apply to the current problem and to
modify this design for the current constraints.
Schank (1982) emphasizes the importance of
case-based problem solving in general. Recent
work on case-based reasoning in planning
and design (Hammond 1989; Goel and Chan-
drasekaran 1989a) explores this family of
methods. In case-based reasoning, almost cor-
rect designs are obtained by searching a memory
bank of previous cases for a design that solves
a problem similar to the current one.

The heart of a case-based design proposal is
matching: How to choose the design that is
closest to the current problem? Clearly, some
features of the cases are more important in
matching than others. Some notion of priori-
tizing over goals, or difference ordering in the
sense of means-end analysis, might be needed.

Indexing of cases with a rich vocabulary of
the features of the case and the goals it satis-
fies is a key idea in case-based reasoning.
Matching and retrieval can be driven by asso-
ciative processes on these indexes. Much of
the work in case-based planning has used
domain-specific goals to index cases. For the
problem of designing engineering artifacts,
the design cases need to be indexed in terms
of the output behaviors of interest. For exam-
ple, Goel and Chandrasekaran (1989b) pro-
pose that design cases be indexed using their
functions. More generally, they show how
cases can be indexed by a causal representa-
tion that relates the structure of the device to
its function, and how this method of index-
ing can help in retrieval. Goel (1989) has a
proposal for how matching and retrieval can
benefit from a principled representation for
design goals and states for the device and the
substances the device operates with.

Case-based design proposal has a lot in
common with the use of analogical reasoning
in design. Maher, Zhao, and Gero (1988) pro-
pose that analogical reasoning in design is at
the heart of design creativity.

Design Proposal by Constraint Satisfac-
tion. Under fairly strong assumptions, par-
ticular classes of design problems can be
formulated as optimization, constraint satis-
faction, or algebraic equation-solving problems.
What is common to all these formulations is
that the solution lies in a space determined
by simultaneous constraints, and specific
classes of computational algorithms are avail-
able to directly locate this space. In particular,
when the structure of the design is already
specified, but parameters are determined by
the specifics of a design problem, numeric or
symbolic optimization techniques can be
useful for design proposal. Linear, integer,
and dynamic programming techniques have
been used to solve design problems formulat-
ed in this manner.

Some versions of the constraint-satisfaction
problem can be solved by constraint propaga-
tion. Constraints can be propagated in such a
way that the component parameters are
chosen to incrementally converge on a set
that satisfies all the constraints (Stefik 1981).

Formally, all design can be thought of as
constraint satisfaction, and one might be
tempted to propose global constraint satisfac-
tion as a universal solution for design. How-
ever, unless knowledge is used to reduce the
size of the space (for example, by decompos-
ing problems into smaller problems), design
by constraint propagation can be computa-
tionally intractable. Knowledge such as
decomposition can create subproblems with
sufficiently small problem spaces where con-
straint-satisfaction methods can work without
excessive search.

Verification

Verification involves checking that the design
proposal satisfies functional and other specifi-
cations. There are two families of methods for
this subtask: First, attributes of interest can be
directly calculated or estimated by means of
domain-specific algorithms or formulas (for
example, the use of algebraic formulas to

Articles

WINTER 1990 65

. . . cases can be indexed by a causal
representation that relates the structure
of the device to its function . . .

domains. Little AI research has been done to
date on visual representations that have the
qualities needed for pictorial reasoning and
imagination and also the symbolic properties
needed for arbitrary referencing and composi-
tion by parts. A beginning in this direction is
proposed in Chandrasekaran and Narayanan
(1990), and the use of such representations
for simulation is discussed in Narayanan and
Chandrasekaran (1990).

Critiquing

Critiquing is the subtask in which the causes
of a design’s failure are analyzed: Parts of the
structure are identified as potentially respon-
sible for the unacceptable behavior or con-
straint violation. Critiquing is really a
generalized version of the diagnostic problem,
that is, a problem of mapping from undesir-
able behavior to parts of the structure respon-
sible for the behavior. Modification of design
can be directed to these candidates. Of course,
localization of responsibility for failure does
not always work: The entire approach to the
design might need to be changed.

What is needed for criticism is information
about how the structure of the device con-
tributes to (or is intended to contribute to)
the desired overall behavior. An AI method
that is commonly used for this subtask is
dependency analysis (Stallman and Sussman
1977). This method is applicable if explicit
information is available in the form of
dependencies, that is, knowledge that explicit-
ly relates types of constraint or specification
violations to prior design commitments. For
example, if the total weight of a proposed
design is higher than the weight limit, domain-
specific knowledge is usually available that
identifies parts whose weights are both suffi-
ciently large and can be adjusted. Dependencies
can be discovered by analyzing preconditions
and postconditions of design operators. For
example, if a certain output value (say, volt-
age in an electronic device) of a proposed
design is excessive, the input to the output
stage can give information about which of the
components upstream might have contribut-
ed to the specific output. This dependency
analysis might identify potential candidates,
which might be verified by simulation.

Most of the proposals for critiquing that
have been made in the case-based reasoning
literature use domain-specific critics and are
variations on precompiled patterns of relat-
ing output behavior to possible changes.
Goel’s (1989) approach to critiquing a design
proposal is based on a functional analysis of
the proposed design. If a design proposal is

calculate total weight or cost or the use of
finite-element methods to calculate stress
distribution). Direct calculation methods are
not of much interest from an AI point of
view. Second, behaviors of interest can be
derived by simulation. These behaviors can
be checked against requirements.

Simulation takes a description of the
system structure as input and generates the
behaviors of interest as output. The methods
used in simulation should mirror the rules by
which the behavior of the component assem-
blages is composed from the component
properties. Quantitative simulation methods
use equations that directly describe the
results of this composition. These equations
again are domain specific. For example, dif-
ferential equations can be used to describe
the behavior of a reaction in a reaction vessel.
The structural description in a proposed
design of a reaction vessel can be translated
into parameters of the differential equation
and the equation simulated to derive behav-
iors of interest.

There are generic AI techniques for generat-
ing behavior from structure that could be
useful for simulation. Qualitative simulation
(see Forbus [1988] for a survey of the current
state of the art), consolidation (Bylander
1988), and functional simulation (Sticklen
1987) are examples of AI techniques that are
available for deriving behaviors given struc-
ture. A proposed design can be simulated
under various input conditions and the
behavior evaluated. All these techniques take
a structural description as input and using
qualitative descriptions of component behav-
iors and rules of composition mimic the oper-
ation of the device to produce qualitative
descriptions of behavior. Qualitative and
quantitative simulation can alternate: A qual-
itative simulation can identify behaviors
likely to be in unacceptable ranges, and a
more focused quantitative procedure can be
used to get more precise values.

Visual Simulations. Visual simulation of
artifacts is widely used by human designers in
verification. Designs are imagined, represent-
ed, and communicated pictorially in domains
such as architecture and mechanical engi-
neering. (See Goel and Pirolli [1989] for
design protocol studies that show the preva-
lence of images during design.) It is clear that
there is a need for pictorial representations
and symbolic representations to coexist in
design systems. A major use of imaginal rep-
resentations is in the simulation of design
proposals, but they also play a role in making
design proposals by analogy with other

Articles

66 AI MAGAZINE

endowed with causal indexes that explicitly
indicate the relation between structure and
intended functions, then it is relatively easy
to identify substructures for modification
(Goel and Chandrasekaran 1989a).

Modification

Modification as a subtask takes information
about the failure of a candidate design as its
input and then changes the design to get
closer to the specifications. Basically, what is
required is changing a functional subpart of
the proposed design or adding components to
the proposed design to satisfy the design
specifications. Depending on how informa-

tive failure analysis is and what types of
knowledge are available, a number of prob-
lem-solving processes are applicable. Some of
them are briefly outlined in the following
paragraphs.

Modification can be driven by a form of
means-end reasoning, where the differences
are reduced in order of most to least signifi-
cant. Especially useful here is knowledge that
relates the desired changes in behavior to pos-
sible structural changes (Goel 1989).

A related search approach is one where
modification is done by some form of hill
climbing. In this method, parameters are
changed, direction of improvement noted,
and additional changes are made in the direc-

Articles

WINTER 1990 67

TASK METHODS SUBTASKS

Design Propose, Critique,Modify family (PCM) Propose, Verify, Critique, Modify

Propose Decomposition methods (incl. Design Specification generation for subproblems
Plans) and Transformation methods

Solution of subproblems generated by decomposition
(another set of Design-tasks)

Composition of subproblem solutions

Case-based methods Match and retrieve similar case

Global constraint-satisfaction methods

Numerical optimization methods

Numerical or Symbolic constraint
propagation methods

Specification generation
for subproblems

Constraint propagation incl.
constraint posting Simulation to decide how constraints propagate

Composition of Configuration methods Simulation for prediction behavior of candidate
subproblem solutions configurations

Verify Domain-specific calculations
or simulation

Qualitative simulation, Consolidation

Visual simulation

Critique Causal behavioral analysis techniques
to assign responsibility

Dependency-analysis techniques

Modify Hill-climbing-like methods which
incrementally improve parameters

Dependency-based changes

Function-to-structure mapping
knowledge

Add new functions Design new function. Recompose with candidate
design

Table 1. The Task Structure for Design.
For each task, there is a default compiled knowledge method that has domain-specific knowledge to directly achieve it. (This method is not included
here.) For subtasks such as critiquing, I only indicate families of generic AI methods, without explicit indication of their subtasks.

that we have available a description of the
behavior of the device as a system of differen-
tial equations; if this information is not
directly available and if it cannot be generat-
ed by additional problem solving, the
method cannot be used.

A delineation of the methods and their
properties helps us to move away from
abstract arguments about ideal methods for
design. Each method in a task structure can
be evaluated for appropriateness in a given
situation by asking questions reflecting these
criteria. Although some of this evaluation can
take place at problem-solving time, much of
it can be done when the knowledge system is
designed; this evaluation can be used to
guide a knowledge system designer in the
choice of methods to implement.

Different types of methods can be used for
different subtasks. For example, a design
system can use a knowledge-based problem-
solving method for the subtask of creating a
design but a quantitative method, such as a
finite-element method, for the subtask of
evaluating the design.

Implications for an Architecture
for Design Problem Solving

Because of the multiplicity of possible meth-
ods and subtasks for a task, a task-specific
architecture that is exclusively for design is
not likely to be complete: Even though
design is a generic activity, there is no one
generic method for it. Further, note that sub-
tasks such as simulation are not particularly
specific to design as a task. Thus, if the
knowledge for these modules is embedded
within a design architecture, either they will
be unavailable for other tasks that require
simulation as a subtask, or the knowledge for
these tasks will need to be replicated. Thus,
instead of building monolithic task-specific
architectures for such complex tasks, a more
useful architectural approach is one that can
invoke different methods for different sub-
tasks in a flexible way.

Following the ideas in the work on task-
specific architectures, we can support meth-
ods by means of special-purpose shells that
can help encode knowledge and control
problem solving. This approach is an imme-
diate extension of the generic task methodol-
ogy (Chandrasekaran 1986). These methods
can then be combined in a domain-specific
manner; that is, methods for subtasks can be
selected in advance and included as part of
the application system, or methods can be
recursively chosen at run time for the tasks

tion of maximal increment in some measure
of overall performance. This method is espe-
cially applicable where the design problem is
viewed as a parameter choice problem for a
predetermined structure (for example, the
Dominic system [Dixon, Simmons, and
Cohen 1984]).

Modification is straightforward in depen-
dency-directed methods. Once the dependen-
cy point is reached by backtracking, an
alternative choice is simply made from the
list of finite choices available. Some systems
that perform routine design problems have
explicit knowledge about what to do under
different kinds of failures. This information
can be attached to the design plans (DSPL
[Brown and Chandrasekaran 1989]).

Criticism can reveal the need to add new
functions. If these functions can be modular-
ly added, that is, by creating and integrating
separate substructures that deliver the func-
tions, the design of the additional structures
can simply be viewed as new design problems
to be solved by all the methods available for
design. The subtasks of generating specifica-
tions for these additional design problems
and integrating their solutions were discussed
in the section on problem decomposition
and solution recomposition.

Discussion of the Task Structure
The task structure for design described in the
preceding sections is summarized in table 1.5
A task structure is a description of the task,
proposed methods for it, the internal and
external subtasks, knowledge required for the
methods, and any control strategies for the
method. Thus, the task analysis provides a
clear road map for knowledge acquisition.
How the analysis can be used to integrate the
methods and goals is discussed in the follow-
ing section.

Choice of Methods
How are methods to be chosen for the vari-
ous tasks? The following is a set of criteria:

Properties of the solution: Some methods
can produce answers that are precise, but
others might only produce answers that are
qualitative. Some of them might produce
optimal solutions, and others might produce
satisficing ones.

Properties of the solution process: Is the
computation pragmatically feasible? How
much time does it take? Memory?

Availability of knowledge required for
the method to be applied: For example, a
method for design verification might require

Articles

68 AI MAGAZINE

based on the criteria listed in the previous
subsection. For the latter approach, a task-
independent architecture is needed with the
capability of evaluating different methods,
choosing one, executing it, setting up sub-
goals as they arise from the chosen method,
and repeating the process. Soar (Rosenbloom,
Laird, and Newell 1987), BB1 (Hayes-Roth
1985), and Tips (Punch 1989) are good candi-
dates for such an architecture. This approach
combines the advantages of task-specific
architectures and the flexibility of run-time
choice of methods. The DSPL++ work of
Herman (1990) is an attempt at precisely this
approach.

Using method-specific knowledge and strat-
egy representations within a general architec-
ture that helps select methods and set up
subgoals is a good first step in adding flexibil-
ity to the advantages of the task-specific
architecture view. However, it can also have
limitations. For many real-world problems,
switching between methods can result in con-
trol that is too large grained. Consider my
earlier description of a PCM method. The
method description calls for a specific
sequence of how the operators of propose,
and so on, are to be applied. Numerous vari-
ants of the method, with complex sequencing
of the various operators, can be appropriate in
different domains. It would be a hopeless task
to try to support all these variants by method-
specific architectures or shells. It is much
better in the long run to let the task-method-
subtask analysis guide us in the identification
of the needed task-specific knowledge and let
a flexible general architecture determine the
actual sequence of operator application by
using additional domain-specific knowledge.
The subtasks can then be flexibly combined
in response to problem-solving needs, achiev-
ing a much finer-grained control behavior.
(See Johnson, Chandrasekaran, and Smith
[1989] for realizing generic task ideas in Soar.)

The task structure also makes clear how AI-
like methods and other algorithmic or numer-
ic methods can be flexibly combined, much

as human designers alternate between prob-
lem solving in their heads and formal calcula-
tions. For example, a designer might need to
make sure that the maximum current in a
proposed circuit is less than the limits for its
components, and at this point, s/he might set
up current and voltage equations and solve
them. If s/he finds that the current in one
branch of the circuit is more than the permit-
ted limit, s/he might go back to critiquing the
design to look for possible places to change it.
The task structure view that I outlined shows
how computer-based design systems can also
similarly engage in a flexible integration of
problem solving and other forms of algorith-
mic activity. The key is that the top-level con-
trol is goal oriented and can set up subgoals
and choose methods that are appropriate to
the subgoal. If the appropriate method for a
subtask is a numeric algorithm, this method
can be invoked and executed, at which point
control reverts to the top level for pursuing
other goals.

Concluding Remarks

Over the last several years, a number of work-
ing systems have come to be able to perform
some version of the design task in some
domain. These design proposals do not
always bring out what is common among the
different design tasks. There have also been
attempts to develop formal first-principle
algorithms for design that are meant to cover
all types of design. Such general algorithms
are, however, computationally intractable and
are not particularly helpful in identifying the
sources of power and tractability in human
design problem solving in most domains.

The view elaborated here is that there is a
generic vocabulary of tasks and methods that
are part of design and that design problems in
different domains simply differ in the mix-
ture of subtasks and methods. Expertise, that
is, methods, and knowledge and control
strategies for them, emerge over a period in

Articles

WINTER 1990 69

The task structure also makes clear how AI-like methods
and other algorithnic or numeric methods can be flexibly
combined, much as human designers alternate between
problem solving in their heads and formal calculations.

Intelligence to Design. In Proceedings of the Twenty-
First Design Automation Conference, 634–640.
Washington, D.C.: IEEE Computer Society.

Forbus, K. D. 1988. Qualitative Physics: Past, Pre-
sent, and Future. In Exploring Artificial Intelligence,
eds. H. E. Shrobe and the American Association for
Artificial Intelligence, 239–296. San Mateo, Calif.:
Morgan Kaufmann.

Friedland, P. 1979. Knowledge-Based Experimental
Design in Molecular Genetics. In Proceedings of
the Sixth International Joint Conference on Artifi-
cial Intelligence, 285–287. Menlo Park, Calif.: Inter-
national Joint Conferences on Artificial
Intelligence.

Goel, A. 1989. Integration of Case-Based Reasoning
and Model-Based Reasoning for Adaptive Design
Problem Solving, Ph.D. diss., Dept. of Computer
and Information Science, The Ohio State Univ.

Goel, A., and Chandrasekaran, B. 1989a. Functional
Representation of Designs and Redesign Problem
Solving. In Proceedings of the Eleventh Interna-
tional Joint Conference on Artificial Intelligence,
1388–1394. Menlo Park, Calif.: International Joint
Conferences on Artificial Intelligence.

Goel, A., and Chandrasekaran, B. 1989b. Use of
Device Models in Adaptation of Design Cases. In
Proceedings of the DARPA Workshop on Case-Based
Reasoning, ed. K. Hammond, 100–109. San Mateo,
Calif.: Morgan Kaufmann.

Goel, V., and Pirolli, P. 1989. Motivating the
Notion of Generic Design within Information-Pro-
cessing Theory: The Design Problem Space. AI Mag-
azine 10(1): 18–38.

Hammond, K. 1989. Case-Based Planning: Viewing
Planning as a Memory Task. Boston: Academic.

Hayes-Roth, B. 1985. A Blackboard Architecture for
Control. Artificial Intelligence 26:251–321.

Herman, D. J. 1990. DSPL++: A High-Level Lan-
guage for Building Design Expert Systems with
Flexible Use of Multiple Methods. Ph.D. diss., Dept.
of Computer and Information Science, The Ohio
State Univ. Forthcoming.

Johnson, L., and Soloway, E. 1985. PROUST:
Knowledge-Based Program Understanding. IEEE
Transactions on Software Engineering 11(3): 267–275.

Johnson, T.; Chandrasekaran, B.; and Smith, J. W.,
Jr. 1989. Generic Tasks and Soar, Working Notes of
the AAAI Spring Symposium on Knowledge System
Development Tools and Languages, 25–28. Menlo
Park, Calif.: American Association for Artificial
Intelligence.

Kelly, V. E.; and Steinberg, L. I. 1982. The CRITTER
System: Analyzing Digital Circuits by Propagating
Behaviors and Specification. In Proceedings of the
Second National Conference on Artificial Intelli-
gence, 284–289. Menlo Park, Calif.: American Asso-
ciation for Artificial Intelligence.

Keuneke, A. 1989. Machine Understanding of
Devices: Causal Explanations of Diagnostic Conclu-
sions, Ph.D. diss., Dept. of Computer and Informa-
tion Science, The Ohio State Univ.

McDermott, J. 1988. A Taxonomy of Problem-Solv-

different domains to help tractably solve the
task in a given domain. Thus, the key to
understanding real-world design computa-
tionally is not in a uniform algorithm for
design but in the structure of the task, show-
ing how the tasks, methods, subtasks, and
domain knowledge are related. The analysis
also clarifies the relationship between task-
specific architectures and more general-pur-
pose architectures for knowledge systems.

Acknowledgments

Many ideas from my collaborations with the
following individuals found their way into
this article: David C. Brown and Ashok Goel
on design problem solving and Tom Bylan-
der, John Josephson, Todd Johnson, Jack W.
Smith, and Jon Sticklen on generic tasks. I am
thankful to John Gero, Ashok Goel, Mary Lou
Maher, Dale Moberg, and David Steier for
useful comments on earlier drafts. The usual
caveat holds good that they don’t necessarily
agree with all of what I am saying in this arti-
cle. Support from the Air Force Office of Sci-
entific Research (grants 87-0090 and 89-0250)
and the Defense Advanced Research Projects
Agency (contracts F30602-85-C-0010 and
F49620-89-C-0110) is gratefully acknowledged.

References
Balzer, R. 1981. Transformation Implementation:
An Example. IEEE Transactions on Software Engineer-
ing SE-7: 3–14.

Brown, D. C., and Chandrasekaran, B. 1989. Design
Problem Solving: Knowledge Structures and Control
Strategies. San Mateo, Calif.: Morgan Kaufmann.

Bylander, T. C. 1988. A Critique of Qualitative Sim-
ulation from a Consolidation Point of View. IEEE
Systems, Man, and Cybernetics 18(2): 252–268.

Chandrasekaran, B. 1989. Task Structures, Knowl-
edge Acquisition, and Learning. Machine Learning
4:339–345.

Chandrasekaran, B. 1986. Generic Tasks in Knowl-
edge-Based Reasoning: High-Level Building Blocks
for Expert System Design. IEEE Expert 1(3): 23–30.

Chandrasekaran B., and Narayanan, N. H. 1990.
Integrating Imagery and Visual Representations. In
Proceedings of the Twelfth Annual Conference of the
Cognitive Science Society, 670–677. Hillsdale, N.J.:
Lawrence Erlbaum.

Clancey, W. J. 1985. Heuristic Classification. Artifi-
cial Intelligence 27(3): 289–350.

Dixon, J. R.; Simmons, M. K.; and Cohen, P. R.
1984. An Architecture for Application of Artificial

Articles

70 AI MAGAZINE

ing Methods. In Automating Knowledge Acquisition
for Expert Systems, ed. S. Marcus, 225–256. Boston:
Kluwer.

Maher, M. L.; Zhao, F.; and Gero, J. S. 1988. Creativ-
ity in Humans and Computers. Knowledge-Based
Design in Architecture, eds. J. S. Gero and T. Oksala,
29–44. Helsinki: Helsinki University of Technology.

Marcus, S.; McDermott, J.; and Wang, T. 1985.
Knowledge Acquisition for Constructive Systems. In
Proceedings of the Ninth International Joint Con-
ference on Artificial Intelligence, 637–639. Menlo
Park, Calif.: International Joint Conferences on
Artificial Intelligence.

Mittal, S., and Frayman, F. 1989. Towards a Generic
Model of Configuration Tasks. In Proceedings of the
Ninth International Joint Conference on Artificial
Intelligence, 1395–1401. Menlo Park, Calif.: Inter-
national Joint Conferences on Artificial Intelli-
gence.

Mittal, S.; Dym, C.; and Morjaria, M. 1986. PRIDE:
An Expert System for the Design of Paper Handling
Systems. IEEE Computer 19(7): 102–114.

Narayanan, N. H., and Chandrasekaran, B. 1990.
Qualitative Simulation of Spatial Mechanisms: A
Preliminary Report, Technical Report, Laboratory
for AI Research, The Ohio State Univ.

Newell, A. 1980. Reasoning, Problem Solving, and
Decision Process: The Problem Space as a Funda-
mental Category. In Attention and Performance,
volume 8, 693–718. Hillsdale, N.J.: Lawrence Erl-
baum.

Punch, W. 1989. A Diagnosis System Using a Task-
Integrated Problem Solver Architecture (TIPS),
Including Causal Reasoning, Ph.D. diss., Dept. of
Computer and Information Science, The Ohio State
Univ.

Rich, C. 1981. A Formal Representation for Plans in
the Programmer’s Apprentice. In Proceedings of the
Seventh International Joint Conference on Artificial
Intelligence, 1044–1052. Menlo Park, Calif.: Inter-
national Joint Conferences on Artificial Intelligence.

Rosenbloom, P. S.; Laird, J. E.; and Newell, A. 1987.
SOAR: An Architecture for General Intelligence.
Artificial Intelligence 33:1–64.

Sacerdoti, E. D. 1975. A Structure for Plans and
Behavior, Technical Report 109, AI Center, SRI,
Menlo Park, Calif.

Schank, R. 1982. Dynamic Memory: A Theory of
Learning in Computers and People. New York: Cam-
bridge University Press.

Stallman, R., and Sussman, G. 1977. Forward Rea-
soning and Dependency-Directed Backtracking in a
System for Computer-Aided Circuit Analysis. Artifi-
cial Intelligence 9:135–196.

Steels, L. 1990. Components of Expertise. AI Maga-
zine 11(2): 28–49.

Stefik, M. 1981. Planning with Constraints. Artifi-
cial Intelligence 16:111–140.

Steier, D. 1989. Automating Algorithm Design
within an Architecture for General Intelligence,
Ph.D. diss., School of Computer Science, Carnegie-
Mellon Univ.

Sticklen, J. 1987. MDX2: An Integrated Medical
Diagnosis System, Ph.D. diss., Dept. of Computer
and Information Science, The Ohio State Univ.

Sussman, G. J. 1973. A Computational Model for Skill
Acquisition, Ph.D. diss., Massachusetts Institute of
Technology. Also in A Computational Model for Skill
Acquisition. 1975. New York: American Elsevier.

Notes
1. This work has evolved over a number of years.
Earlier versions have appeared as chapter 2 of
Brown and Chandrasekaran (1989) and in Research
in Engineering Design. 1989. 1:75–86.

2. The constraints that are described as part of the
design specification should be distinguished from
the term constraint that appears in the description
of design methods, such as constraint-directed
problem solving.

3. In this article, I use the terms task and goal inter-
changeably.

4. I subscribe to the view that such algorithms are
simply degenerate cases of search where the agent
has sufficient knowledge to make the correct choice
at each choice point. However, pragmatically speak-
ing, it is best to think of algorithmic methods as a
separate type because implementing them does not
require search support in general.

5. The task structure described here is inherently
incomplete: Additional methods can be identified
for any subtask as a result of further research.

B. Chandrasekaran
received a B.S. in engi-
neering in 1963 from
Madras University, India,
and a Ph.D. from the
University of Pennsylva-
nia, Philadelphia, in
1967. From 1967 to
1969, he was research
scientist with the Philco-
Ford Corporation in Blue

Bell, Pennsylvania, working on speech and charac-
ter-recognition machines. He has been at Ohio
State University, Columbus, since 1969. He is cur-
rently a professor of computer and information sci-
ence and directs the Laboratory for AI Research.
Currently, his major research activities are in
knowledge-based reasoning, architecture of mind,
and cognitive science. Chandrasekaran is editor in
chief of IEEE Expert and serves on the editorial
boards of numerous international journals. He was
an invited speaker at the 1987 International Joint
Conference on Artificial Intelligence, held in Milan,
and has been awarded the University Distinguished
Scholar Award by The Ohio State University. He is a
Fellow of IEEE.

Articles

WINTER 1990 71

