
Abstract

Based on the experience in manufacturing
production scheduling problems which the AI
community has amassed over the last ten
years, a workshop was held to provide a
forum for discussion of the issues encoun-
tered in the design of AI-based scheduling
systems. Several topics were addressed
including : the relative virtues of expert sys-
tem, deep method, and interactive approach-
es, the balance between predictive and reac-
tive components in a scheduling system, the
maintenance of convenient scheduling
descriptions, the application of the ideas of
chaos theory to scheduling, the state of the
art in schedulers which learn, and the practi-
cality and desirability of a set of benchmark
scheduling problems. This article expands on
these issues, abstracts the papers which were
presented, and summarizes the lengthy dis-
cussions that took place.

Introduction
Since its first formal business meet-
ing in August of 1988, the American
Association for Artificial Intelligence
Special Interest Group in Manufac-
turing (SIGMAN) has held a number
of workshops, three of which have
been concerned with the application
of AI techniques to the problem of
manufacturing scheduling. Here we
report the results obtained at the
workshop held during the Interna-
tional Joint Conference on Artificial
Intelligence in Detroit.

From its inception, this workshop
was aimed at identifying and dis-
cussing the issues involved in the
design of AI-based manufacturing
production schedulers. This issues-
centered perspective was grounded in
the large number of reports which
have appeared in the literature over
the past ten years concerning AI
approaches to scheduling. It was felt
that enough experience had been

gained in this problem domain to
warrant a forum to develop a shared
overview among those currently
active in the area.

Prior to the event, a number of
steps were taken to identify the
issues. Papers were solicited which
focused on issues encountered during
the application of "identifiable theo-
ry under realistic conditions". The
sessions were organized in response
to the interest of the participants as
reflected in the papers submitted.
Papers were selected for presentation
which represented the spectrum of
positions on the issue of the session.
Each of the session chairmen sup-
plied a one page description of his
issue which was sent to all partici-
pants along with instructions to
those selected to be prepared to give
a concise five minute statement of
their position. Finally, the bound
compilation of the submissions was
made available to each participant
prior to the start of the workshop.

During the event, each of the four
sessions opened with the session
chairman reiterating the issue. Those
selected to present representative
positions on the issues were each giv-
en 5 minutes to address the work-
shop. The session chairmen were
instructed to be sure to leave at least
an hour for discussion of each issue,
and to moderate in such a way that
everyone in attendance was brought
into the discussion. Notes were taken
by each of the committee members
during the discussions.

After the event, the committee
members made their discussion notes
available for the preparation of the
report on each session. Each report,
to be written by the session chair-
man, was to start with the statement

of the issue, include a brief synopsis
of the selected papers, and end with
the edited highlights of the discus-
sion. The concatenation of these
reports forms the body of this article.

Expert versus Deep versus
Interactive Schedulers

Barry Fox, Moderator

The Issues

There are those who feel that expert
system technology can be used to
build manufacturing production
schedulers. There are certainly manu-
facturing engineers available in every
factory to serve as domain experts.
Others believe that “deeper” methods
must be applied. There is an existing
Operations Research (OR) literature
on mathematically-based “deeper”
methods, and a growing AI literature
concerning “deeper” methods based
on, for example, constraint satisfac-
tion. Still others argue that fully
automated schedulers are not as
desirable as interactive schedulers.
The point here is that the man and
the machine bring complementary
skills to the scheduling task, and that
both are necessary to produce high
quality schedules. Prototype systems
have been built based on each of
these three approaches. While all of
the papers in the first session
addressed these issues, they were very
diverse in subject matter. There was
great variety in the problems that
they addressed and in the methods
that they used.

The Contributions

The first paper, “Application of Simu-
lation and AI Techniques for Daily
Production Planning”, was authored
by Fahid Bayat-Sarmadi, Bernd
Hellingrath, Andreas Marx, and
Gabriele Schroder. It describes a job
shop scheduling system under devel-
opment at the Fraunhofer Institute in
Dortmund. The system operates in
two phases. It builds a pool of orders
that can be produced in one day of
production, then employs a discrete
event simulator to develop a detailed
schedule for that one day. Heuristic
methods are used in both phases to
maximize productivity while respect-
ing deadlines. This work is represen-
tative of many knowledge-based
scheduling systems. In spite of its
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limitations, discrete event simulation
can be conveniently combined with
a rule base which controls the
detailed sequence of events. The rules
can be easily acquired from the
human expert and then synthetically
modified when common-sense or
analysis reveals that more sophisti-
cated decisions are required. Unfortu-
nately, because the system is simula-
tion-based, these rules tend to be
myopic, considering only the state or
configuration of the shop at the tem-
poral frontier of the simulation.

The second paper, “Toward the
Knowledge-Based Optimization and
Knowledge-Based Relaxation of Com-
plexity”, was submitted by Jae Kyu
Lee, Min Soo Suh, Yong Uk Song, and
Yoan Sung Yi. It describes a crude oil
delivery scheduling system under
development at the Korean Advanced
Institute of Science and Technology.
The problem is formulated as a 0-1
integer programming model which is
then simplified by knowledge-based
relaxation. The relaxed problem is
then solved by simulating the opera-
tion of the refinery and the delivery
of crude oil. Heuristic methods are
used in both the relaxation and the
simulation. This is a hybrid system
combining both natural and synthet-
ic knowledge. The heuristics for prob-
lem simplification are synthetic,
derived from theoretical knowledge
of integer programming. The heuris-
tics for routing and production are
natural, based upon knowledge
acquired from human experts.

Norman Sadeh and Mark Fox of
the Computer Science Department at
Carnegie Mellon University collabo-
rated on the third paper titled
“CORTES: An Exploration into
Micro-Opportunistic Job-Shop
Scheduling”. The method described
in the paper is to search the space of
partially constructed schedules begin-
ning with an initial schedule in
which none of the activities have
been scheduled and all resources are
available. The research is concerned
with identifying and scheduling
activities that have serious resource
conflicts with other activities. The
underlying method is to create a
number of schedules by essentially
random methods in order to identify
bottleneck resources and regions of
contention. This is a synthetic
method based upon the “deep”
knowledge that hard-to-schedule
activities should be scheduled first
coupled with an apparently brute-

force method based upon the “deep”
knowledge that there is no simple
analytic method that can reveal
regions of contention.

The fourth paper was entitled “A
User Interface Architecture for Inter-
active Scheduling of Software Manu-
facturing Projects” and was presented
by Ali Safavi. This paper describes a
(software) job shop scheduling sys-
tem also under development at the
Computer Science Department at
Carnegie Mellon University. The
research is concerned with creating
an interactive system for traversing
and exploring a search tree of sched-
ules beginning with an initial sched-
ule in which none of the activities
have been scheduled and all
resources are available. The assump-
tion is that the human can exercise
intuition and creativity to speed the
search and improve the quality of
the final schedule. This is an attempt
to apply natural expertise interactive-
ly in an essentially synthetic method.
In fact, it may be possible to include
some of the more useful natural
expertise to improve automated
search methods.

Perry A. Zalevsky presented the
fifth paper which had the title
“Knowledge-Based Finite Capacity
Production Scheduling”. This paper
describes a job shop scheduling sys-
tem under development at Alcoa
Laboratories. It discusses the kinds of
knowledge that are used to construct
a schedule and identifies two prob-
lems that diminish the value of emu-
lating human expertise: separate pro-
duction centers may have contradic-
tory goals that reduce overall produc-
tivity, and established operating pro-
cedures may negatively affect
productivity. The author concluded
by stating a goal to improve current
scheduling methods rather than sim-
ply emulate the human expert and
current methods.

Sanjiv Sidhu of Intellection
authored the sixth paper which
addressed “Avoiding Typical Mistakes
While Building Intelligent Schedul-
ing Systems”. Unlike the others, this
paper describes a number of com-
mon design mistakes that lead to the
failure of automated scheduling sys-
tems. These include inadequate
understanding of dominant domain
characteristics, improper problem
segmentation, unwarranted reliance
on shallow expert knowledge or
locally greedy strategies, and inap-
propriate handling of fluctuations

and trivialities. The examples given
illustrate that regardless of “natural”
or “synthetic” methods, “shallow” or
“deep” knowledge, “autonomous” or
“interactive” methods, there is no
substitute for insight and foresight
during system design.

The Discussion

Much of the discussion in this ses-
sion revolved around three issues:
the role of domain experts and
expert knowledge; the role of the
scheduling specialist and “deeper”
synthetic methods; and the role of
interactive systems which can be
used to compensate for the inade-
quacies of totally automated systems.

Some participants openly ques-
tioned the role of the domain expert
and expert knowledge in automated
scheduling systems. Recent attempts
at building knowledge-based sched-
ulers have met with mixed success.
In some cases, the knowledge-engi-
neering process has failed because of
the tremendous amount of knowl-
edge that must be acquired from the
domain expert and mapped into a
suitable representation. In other cas-
es, the implementation has failed
because the rules acquired from the
domain expert did not define a clear
model of the scheduling process. In
still other cases, it is questionable
whether the humans responsible for
scheduling were really expert within
their domain. The discussion raised
many questions about the role of
domain experts and expert knowl-
edge in the implementation of auto-
mated scheduling systems including:

1) Concerning scheduling con-
straints: Can we rely upon the
domain expert to accurately describe
the production environment and the
constraints that it imposes? Can we
rely upon the domain expert to
understand the constraint represen-
tation that we build? Will the com-
pleted scheduler fail because it fails
to represent and resolve constraints
that the domain expert failed to enu-
merate? Will the completed sched-
uler fail because the constraints enu-
merated by the domain expert are
really context specific?

2) Concerning scheduling meth-
ods: Can we rely upon the domain
expert to accurately describe the
methods that he or she uses to pro-
duce their own schedules? Can these
methods be translated into data
structures and algorithms or rules
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and inference engines? Will the com-
pleted scheduler fail because it fails
to adapt to the great variety of cir-
cumstances that are encountered on
the shop floor? Will the completed
scheduler fail because the methods
described by the domain expert are
really context specific?

3) Concerning system validation:
Can we rely upon the domain expert
to critique the schedules produced by
the completed system? Can the
domain expert critique large scale
schedules as well as small? Are the
flaws identified by the domain expert
superficial or significant? Will the
domain expert accept local anoma-
lies in schedules that are globally
very good?

4) Concerning system acceptance:
Will the completed scheduler fail to
be used because it fails to exactly
emulate the behavior and perfor-
mance of the domain expert? Will
the domain expert accept representa-
tions and methods that are foreign
and hard to comprehend? At the oth-
er extreme, can we develop enough
general scheduling expertise to build
our systems without the close coop-
eration of the domain expert?

The basic conclusion was that it is
clearly necessary to involve human
experts in the process of designing an
AI-based scheduling system, but their
knowledge and methods may not be
sufficient. Systems that do not emu-
late human experts adequately may
not be readily accepted, but systems
that model domain experts too close-
ly may exhibit inadequate perfor-
mance. Striking a balance is difficult.

Some participants expressed confi-
dence in the knowledge and methods
that scheduling specialists bring to
the problem. Regardless of the con-
straints and heuristics that apply,
scheduling systems will be based
upon one of a small number of possi-
ble methods: simulation-based
chronological scheduling, incremen-
tal non-chronological job-machine
assignment, search-based constraint
satisfaction, and so on.

Some argued that it is not necessary
to simply emulate the methods of the
human expert. Human schedulers
must adopt methods that are tractable
with pencil and paper, while comput-
erized systems can adopt methods
that involve detailed time maps of
resource availability and extensive
search. Scheduling specialists can use
their general knowledge of scheduling
problems to select an appropriate

computerized method and to embed
the knowledge acquired from the
human expert into that method.
However, the methods adopted by
scheduling specialists may be so for-
eign that it can become extremely dif-
ficult to acquire appropriate advice
from the domain experts.

Since it requires great effort for
human schedulers to produce even
one schedule, it is hard for the human
to develop a feeling for the global
effect of their decisions. Instead, their
attention is myopic, focusing on indi-
vidual decisions and their immediate
effects. Scheduling specialists can use
their general knowledge of scheduling
problems to identify and focus on
global metrics and develop methods
that improve performance measured
by such metrics.

The papers and discussion covered
a full range of methods including tra-
ditional OR optimization, constraint
satisfaction, constraint directed
search, and simulation. It was pri-
marily concluded from the presenta-
tions that scheduling specialists are
developing methods and metrics far
more sophisticated than the pencil
and paper methods employed by
domain experts, and the perfor-
mance of these systems is expected
to be far superior to that exhibited by
humans.

A secondary conclusion was also
considered in the session. Many
deployed scheduling systems contain
only a small amount of AI. Successful
systems can be dominated by other
issues such as the user interface,
database connections, real-time data
collection, and so on. Good data pro-
cessing and software engineering can
be as important to success as AI and
scheduling technology. (See AI-Based
Schedulers in Manufacturing Prac-
tice: Report of a Panel Discussion by
Kempf, Russell, Sidhu, and Barrett in
this issue.)

Finally, there was open discussion
about the role of interactive systems.
Given questions about the role of
human experts and conclusions
about the power of synthetic meth-
ods, proposals for interactive meth-
ods received mixed reactions. Clearly,
interactive systems allow the human
manager to pursue goals and to
enforce constraints that cannot be
(or have not been) given an accurate
computational representation or that
change rapidly over time. Interactive
systems allow the human to build
schedules by methods that they nat-

urally use but are hard to represent as
algorithms. Interactive systems allow
the human to guide search in the
directions that they might naturally
follow based upon intuition and
knowledge. Interactive systems can
be used to educate the domain
experts about schedules and schedul-
ing methods, and can be used to
negotiate with production managers
and clients about release dates and
due dates. In the extreme, if we can-
not build automated systems that
produce satisfactory schedules, then
there is good reason to involve
humans in the scheduling process.

However, there are obvious risks in
using interactive schedulers. The
human manager may simply enforce
local metrics, the scheduling prob-
lems may be too large for the human
scheduler to comprehend, or the
pace of human interaction may waste
valuable computing time that could
be better spent in intensive search. If
we can build automated systems that
do produce satisfactory schedules,
then there is no reason to involve
humans.

It was concluded that interactive
scheduling systems can be used to
enforce constraints or implement
algorithms that may be difficult to
incorporate into an automated
scheduler. However, there are risks
associated with their use and they
should only be used when there is
clear benefit from human interac-
tion.

Integrating Predictive and
Reactive Decision-Making

Stephen F. Smith, Moderator

The Issues

In most manufacturing domains,
coordination of factory production
implies some combination of predic-
tive, dynamic, and reactive schedul-
ing. Predictive scheduling serves to
provide guidance in achieving global
coherence in local decision-making.
Dynamic scheduling serves as a basis
for execution-time decision-making
within the confines of the current
predictive schedule. Reactive schedul-
ing is concerned with revising predic-
tive schedules as unexpected events
force changes. A fundamental issue
in designing scheduling systems that
integrate these three types of deci-
sion-making is effective reconcilia-
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tion of manufacturing system perfor-
mance optimization and scheduling
system responsiveness objectives.
Alternative approaches adopt differ-
ent perspectives relative to this trade-
off, placing more or less emphasis on
the importance, influence, and
nature of each of these scheduling
activities. The goal of this session was
to explore the implications of differ-
ent approaches to the overall produc-
tion management and control prob-
lem. To focus the discussion, a num-
ber of specific issues about the inte-
gration of predictive and reactive
decision-making were identified
including:

1) What types of scheduling tech-
niques, schedule representations, and
organizational structures are required
to achieve a balanced integration of
predictive and reactive decision-mak-
ing?

2) What are the advantages and
disadvantages of different integration
approaches in attending to interact-
ing scheduling objectives like opti-
mization of factory performance, sta-
bility of factory operations, and sys-
tem responsiveness?

3) How should characteristics of
the manufacturing environment like
process characteristics, demand pat-
terns, and uncertainty influence the
level of emphasis placed on optimiza-
tion, the nature of schedules that are
constructed in advance, and the
nature of the coupling between pre-
dictive and reactive decision-making?

4) How do we measure the utility
of a given approach to integrating
production management and con-
trol?

The session speakers focused their
remarks primarily on the first and
second of these issues, perhaps the
most concrete from the standpoint of
scheduling system design, and pre-
sented a variety of positions relative
to the realization of an integrated
scheduling framework. In each case,
these positions were related to specif-
ic scheduling mechanisms. The
remaining issues were considered in
the subsequent discussion period.

The Contributions

Anne Collinot and Claude Le Pape of
Stanford University, in their paper
titled “Testing and Comparing Reac-
tive Scheduling Strategies”, argued
that the processes of predictive
schedule generation and reactive
schedule revision are not fundamen-

tally separable. The decisions made
in each case must be based on com-
mon knowledge like preference con-
straints, performance criteria, and
scheduling heuristics, if they are to
be compatible. Reactive scheduling
processes are useful in predictive
scheduling contexts, allowing the
incremental generation of schedules
without worrying about all problem
constraints at each step. Detected
inconsistencies can be “reactively”
resolved when they arise. Moreover,
predictive scheduling processes are
useful in reactive scheduling contexts
where regenerating a schedule from
scratch can be viewed as a worst case
reaction. Given this commonality, an
important issue is integration of pre-
dictive and reactive scheduling com-
ponents within the same scheduling
system. One difficulty in this regard
is providing a schedule maintenance
subsystem that effectively supports
both types of decision-making. In
particular, experimental results were
presented which demonstrated that
constraint propagation requirements
are different in predictive and reac-
tive contexts. A blackboard-style
scheduling system architecture that
makes use of a “programmable” con-
straint propagation system was pre-
sented as a framework for solution.

Y. Huang, L. Kanal, and S. Tripathi
of the University of Maryland, in a
paper titled “Dynamic Scheduling:
Problem Definition, Analysis and
Solution”, adopted the opposing per-
spective that global predictive
scheduling can be separated from
operational decision-making and
focused specifically on the problem
of efficient execution-time decision-
making in the face of machine fail-
ure. The issue at hand, stated another
way, is how to maintain a good
schedule without forcing the factory
to wait for schedules to be revised.
They described a dynamic scheduling
heuristic that, in the case of a single
machine problem, is capable of “con-
tinuously” maintaining an optimal
schedule in terms of minimizing the
maximal tardiness as the length of a
machine breakdown increases. Such
an approach can be contrasted with a
reactive scheduling approach, where-
in either time would be wasted while
the schedule is revised once an indi-
cation has been received that the
machine is again operational, or exe-
cution proceeds according to the pre-
vious possibly outdated schedule
while revision takes place.

Patrick Prosser of the University of
Strathclyde, discussing his paper
titled “Reactive Scheduling”, based
his remarks on the general observa-
tion that optimization is an ill-con-
ceived objective for scheduling. First,
optimality is hard, if not impossible,
to define in a realistic scheduling
environment. Second, the computa-
tion of optimal schedules is a futile
enterprise, given the unpredictability
of factory operations. Thus, it is
preferable to produce and maintain
satisfactory schedules over time. He
argued that this implies a view of
scheduling as a search for one and
only one solution satisficing some
goals, in which case scheduling sys-
tems can be built without making
any distinction between predictive
and reactive scheduling since it is
one and the same process. He then
described such a scheduling system
organized as a hierarchy of schedul-
ing agents. Agents at each level have
well defined responsibilities, at the
lowest level managing the schedule
of a single resource, at the next level
managing the distribution of jobs
among sets of resources, and so on.
Constraint propagation and truth
maintenance techniques are
employed to maintain a consistent
global schedule. When a conflict
occurs, the lowest priority agent
among those in conflict uses depen-
dency-directed backtracking to revise
its solution. If it cannot find a new
solution, the conflict rises to the next
level in the hierarchy. The attractive-
ness of the approach is that the same
dependency-directed backtracking
search can be used in both predictive
and reactive scheduling contexts.

The Discussion

The apparent rejection of any
attempt to optimize the performance
of the manufacturing system in
Prosser’s approach gave rise to con-
siderable initial discussion. To be
sure, optimality in an analytic sense
is not a useful concept. But if there is
no concern about how the factory
performs then why bother schedul-
ing at all (except in the case of an
totally automated factory)? In fact,
metrics for gauging the desirability of
different schedules do exist and all
schedulers make some attempt to
exploit such guidance, either explic-
itly as evaluation criteria for focusing
a search or implicitly in the form of
heuristics which restrict the search.
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The approach described by Prosser is
not altogether different in this
regard. Agents at higher levels, like
the global agent responsible for
releasing jobs to the factory, are
assumed to operate with heuristic
models, and the priorities assigned to
agents at lower levels would seem to
encode similar information.

At the same time, the interpreta-
tion given to the notion of a “satis-
factory schedule” does provide a
basis for distinguishing between dif-
ferent approaches to integrating pre-
dictive and reactive scheduling.
Within Prosser’s system, a satisfacto-
ry schedule is defined as the first
solution found under a general
dependency-directed backtracking
scheme. Thus, the approach trades
off performance optimization con-
cerns in favor of some insurance of
system responsiveness. Apparently,
the hierarchical division of labor
between scheduling agents and the
assignment of agent priorities makes
use of this general backtracking
scheme computationally efficient.
The approach of Collinot and LePape
takes a different position relative to
the tradeoff between performance
optimization and system responsive-
ness. These approaches also concen-
trate on producing a single solution
for efficiency reasons, but rely
instead on heuristic models reflecting
performance optimization objectives
to control the search and decide how
to backtrack. These approaches also
make a further distinction between
predictive scheduling contexts where
more computation time is available
and reactive scheduling contexts. In
the approach of Collinot and LePape,
for example, the amount of con-
straint propagation performed is tai-
lored to the time available.

With respect to the issue of how
the characteristics of the manufactur-
ing environment should influence
the coupling between predictive and
reactive decision-making, there was
general agreement that the types of
uncertainties encountered should
dictate both the amount and nature
of predictive scheduling that should
be performed. Ideally one would like
a predictive schedule that retains the
executional flexibility to absorb oper-
ational uncertainties. The trick is to
accomplish this while still providing
constraints that lead to good factory
performance. MRP-style frameworks
provide an extreme example here.
Predictability in the context of the

consistent meeting of due dates is
often achieved under these ap-
proaches. However, this is a mislead-
ing indicator of good factory perfor-
mance because the use of inflated
lead times in setting due dates allows
(and in some sense sanctions) gross
production inefficiencies. It was sug-
gested that a distinction could be
made between “normal uncertain-
ties”, which are in some sense
expected (like variability in process-
ing time) over the scheduling hori-
zon and “catastrophic events”, which
happen less frequently and are in
some sense unexpected (like a sur-
prise machine breakdown). A good
predictive schedule should be robust
to normal uncertainties, whereas the
occurrence of catastrophic events
warrant schedule revision. However,
techniques for determining which
decisions to close on in advance and
which to leave open until execution
time so as to achieve sharper yet suf-
ficiently flexible constraints on facto-
ry operations remain a subject of cur-
rent research.

With respect to the issue of measur-
ing the utility of various approaches,
it is clear that this requires relative
evaluation of total systems, perhaps
via simulation. This raised the subject
of defining a set of benchmark prob-
lems against which the performance
of various approaches could be con-
trasted. Since the topic of benchmarks
was to be considered in detail in the
last session, this part of the discussion
was deferred.

Maintaining Convenient
Schedule Descriptions

Claude Le Pape, Moderator

The Issues

Many scheduling systems are decom-
posed into a general system that
maintains a “convenient’’ descrip-
tion of a schedule being developed or
executed, and a more specific deci-
sion-making system, for example, a
human user, a tree search algorithm,
or a set of schedule modification
operators. Basically, the first compo-
nent provides a characterization of
choices that remain to be made to
complete the schedule and a descrip-
tion of noticeable constraint viola-
tions while the second component
makes and retracts scheduling deci-
sions accordingly.

There is considerable commonality
in the functionality provided by
alternative schedule maintenance
components. However, developers of
scheduling systems have not con-
verged on a particular scheme. In
particular, time maps, explicit time-
tables, and logic/algebraic formalisms
are often considered as exclusive
alternatives, each of which provides
some advantages and includes some
drawbacks. Consequently, this ses-
sion was designed to make progress
with respect to the following ques-
tions:

1) What are the goals of the separa-
tion between schedule maintenance
and decision-making components?

2) What is a “convenient’’ sched-
ule description?

3) How can we efficiently update
such a description as decisions are
made and as events occur on the fac-
tory floor?

4) What makes one formalism
more appropriate than another for a
given application?

Speakers advocated a variety of
approaches to schedule maintenance,
ranging from general purpose con-
straint solving techniques, to prob-
lem independent techniques for
managing time and capacity con-
straints, to more specific, but poten-
tially more efficient, representations
and propagation techniques. They
also presented the separation
between schedule maintenance and
decision-making from very different
perspectives.

The Contributions

Stephen P. Smith of Northrop, in a
paper titled “Scheduling Using
Schedule Modification Operators”,
considered the separation as a natural
database-like decomposition. The
schedule maintenance component is
viewed as a database management
system provided with a number of
“constraint violation noticers’’
allowed to look over the current
schedule and to determine if the cor-
responding constraints have been
violated. Decision-making then con-
sists of selecting 1) the most impor-
tant of the violated constraint and 2)
the best “schedule modification oper-
ator’’ applicable to fix this constraint.
According to the author, the main
difficulty in building a solution
maintenance component is that the
schedule representation cannot be
independent of its use. For instance,
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a “general’’ schedule maintenance
component must allow its user to
choose either a continuous or a dis-
crete model of time.

In the paper “Application of CHIP
to Industrial Scheduling Problems”
by Pascal Van Hentenryck of the
European Computer Industry
Research Center, the separation con-
cerns the efficiency of the scheduling
process and the ease of formulating
constraints, either at the beginning
of a scheduling session (definition of
the scheduling problem) or after a
schedule has been generated (incre-
mental modification of the problem).
This work aims at combining the
advantages of logic programming to
naturally state combinatorial prob-
lems and the efficiency of state-of-
the-art constraint solving techniques
to solve these problems. The sched-
ule maintenance component is a
“constraint solver’’ that uses a collec-
tion of efficient algorithms, such as
boolean unification algorithms, to
solve equations on boolean terms,
constraint propagation algorithms to
solve numeric and symbolic con-
straints on finite domains, and an
incremental version of the simplex
algorithm to solve linear optimiza-
tion problems. The decision-making
component is a logic programming
inference engine with which a pro-
grammer can do anything he wants
including tree search, problem modi-
fication, and user interaction.
According to the author, the result-
ing system enables an efficiency com-
parable to special-purpose codes for a
large class of combinatorial prob-
lems, while the burden of tree-search
and constraint propagation program-
ming are abstracted away from the
programmer.

Jacques Erschler, Pierre Lopez, and
Catherine Thuriot of LAAS, in their
paper “Scheduling under Time and
Resource Constraints”, distinguish
different types of knowledge
involved in solving scheduling prob-
lems: theoretical knowledge about
time and resource management,
empirical knowledge coming from
previous experimentation with
heuristic decision procedures, and
practical knowledge concerning a
particular application. Theoretical
knowledge constitutes the generic
kernel of the overall scheduling sys-
tem. As in previous scheduling sys-
tems, a time and resource manage-
ment system makes use of constraint
propagation rules to characterize

admissible schedules. Constraints
represent the need for consistency
between tasks as well as time and
resource limitations. For instance,
bounds on durations appear in a
graph of bounded differences ((x - y)
>= c) and the availability of resources
over time is represented through sup-
plier and consumer intervals. The
main difficulty is to constitute a set
of constraint propagation rules
which allow efficient generation of
new constraints from existing con-
straints. The use of new rules (relat-
ing to original concepts such as
“energy’’) is advocated to increase
the computing power of the manage-
ment system.

Yoshio Tozawa, Shin-Ichi Hirose,
and Michiharu Kudo of IBM, in a
paper entitled “Sub-Assembly
Scheduling System”, focus on the dif-
ference between types of knowledge
and consider the separation between
schedule maintenance and decision-
making as a way to facilitate the
interaction with human experts in
cases in which all the constraints
cannot be provided a priori. Impor-
tant constraints are identified and
given at the beginning to a schedul-
ing engine able to satisfy them.
Unlisted constraints are given after-
wards by human experts. Then the
scheduling engine modifies the
schedule and the process continues
until no new constraint is given to
the system.

Constantine Spyropoulos and
Stavros Kokkotos, in their paper
“Interactive Fuzzy Scheduling using
the Time Graph System TGS”, con-
centrate on efficiency issues. They
consider the design of a schedule
maintenance component with guar-
anteed response-time to information
requests. They consequently advo-
cate the use of indexed structures to
efficiently access information. A mul-
ti-root time graph with index nodes
enables efficient time management
and guarantees reaction response-
time to information requests. Access
time is nearly independent of the
graph size. However, complicated
requests, like determining all of the
possible insertions of a process of
operations into a schedule, seem to
remain computationally intractable.

The Discussion

The comparison of these five ap-
proaches raised issues concerning the
representation of schedules within a

schedule maintenance component,
and consideration of these issues
constituted the bulk of the discus-
sion.

The convenience of the internal
schedule description language to the
system user needs attention. Indeed,
one can always exploit an existing
schedule maintenance component
and interface it with an external lan-
guage. When the schedule mainte-
nance component is principally con-
sidered as a database management
system, the ease of accessing infor-
mation in a suitable form is extreme-
ly important. When the schedule
maintenance component is consid-
ered as an inference system or as a
deductive database management sys-
tem, the efficiency of the inference
process indubitably becomes the
main concern.

Another issue concerned the gen-
erality of the representation. For
instance, some schedule mainte-
nance components do not allow con-
tinuous processes or pre-emptions
between manufacturing operations
while others do not allow continuous
or discrete models of time. This raises
the question of the design of a uni-
versal model of factory operations.
The expressive power of such a mod-
el would probably have to be equiva-
lent or superior to the expressive
power of first-order logic. Another
(simpler?) question is to determine
which representations are good in
which factories. For example, the
availability of a resource is often rep-
resented through a set of reserva-
tions, which means that individual
resources of the group are unavail-
able throughout an interval of time.
The question is to determine when
such a representation allows 1)
description of the possible behaviors
of the factory and 2) implemention
of an efficient constraint propagation
process.

An important distinction between
the five approaches centers around
the efficiency of the schedule main-
tenance process. In some sense, the
time graphs of Constantine Spy-
ropoulos and Stavros Kokkotos are
related to Thomas Dean’s time maps
[Dean 86] with domain specific
indexing structures built on top for
more efficient manipulation and
access. Stephen P. Smith advocates
the use of constraint violation
noticers to check constraints individ-
ually, so that the system does not get
“out of control’’. On the contrary,
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Jacques Erschler, Pierre Lopez, and
Catherine Thuriot advocate an exten-
sive use of constraint propagation
techniques in order to reduce the
exploration of the search space. In
general, it appears suitable to per-
form certain propagation steps and
certain checks at specific times.

In some cases, knowledge on the
problem solving strategy can be
exploited to reduce the computation-
al burden of schedule maintenance
without sacrificing the deduction of
important information. Relative to
this point, the notion of a parameter-
izable propagator, giving the problem
solver control over the amount of
work that is done in specific deci-
sion-making contexts, was brought
up as one means of addressing the
efficiency/generality tradeoff. The
paper by Anne Collinot and Claude
Le Pape presented in the previous
session provides an example of such
an approach. The schedule mainte-
nance component is explicitly
defined as a controllable inference
system in order to facilitate its adap-
tation to different problem solvers
and problem solving contexts.

The programmer of Pascal Van
Hentenryck’s language can decide
not to express constraints which are
likely to be costly to propagate. Simi-
larly, Thomas Dean [Dean 85] dis-
cusses the use of disjunctive con-
straints to represent possible choices:
“The objective in representing choic-
es is to avoid backtracking. Back-
tracking of any sort is potentially
expensive but so is dealing with an
exponential number of choice com-
binations. The (system described)
allows the planner to use choices
where appropriate’’. These approach-
es are not as general as controlling
the computational behavior of the
constraint propagation system.
Indeed, they do not allow the plan-
ner to decide what the constraint
propagation system does with each
constraint at each point in time.

Difficult issues include identifying
when specific types of inference can
reasonably be avoided and defining
an appropriate language for “pro-
gramming’’ the propagator. Here as
in Pascal Van Hentenryck’s system,
the notion of “programming’’ raises
the question of generic systems that
can be customized with a small
amount of effort. Existing
parameterizable tools are not simple
enough to be customized by the user
of the scheduling system. In particu-

lar, the efficiency of the constraint
propagation process is still an issue
for system programmers. An interest-
ing avenue of research is to make the
adaptation of a generic system man-
ageable by its users. Another is to
provide the system with the ability to
learn from its experience and adapt
itself to the manufacturing environ-
ment in which it works. Since the
topic of learning was to be consid-
ered in detail in the last session, this
part of the discussion was deferred.

Advanced Topics
Karl Kempf, Moderator

Three separate advanced topics were
covered in this session, two of which
had been extracted from the submit-
ted papers, one of which was suggest-
ed by the session moderator as newly
elected SIGMAN Benchmarks Secre-
tary.

Chaos

The first part of the session addressed
the idea that the concepts of “chaos”
as formalized for natural systems by
mathematicians and physicists over
the past 25 years may be applicable
(in spirit if not in detail) to artificial
systems in general, and manufactur-
ing systems specifically. Two partici-
pants presented a micro-tutorial and
a research agenda to alert members
of the AI and scheduling community
to the opening of this new area of
work.

Karl Kempf of Intel Corporation
began the session with highlights
from a paper titled “The Concepts of
Chaos Applied to Manufacturing Pro-
duction Scheduling”. The idea was to
explore the analogy between deter-
mining time-dependent behavior a)
by modeling natural systems with,
for example, sets of differential equa-
tions, and b) by modeling artificial
systems with, for example, discrete
event simulators. In either case, solu-
tions can only be found practically
by computer. The general goal is to
determine whether the concepts of
chaos can provide problem-solving
guidance to those working on artifi-
cial systems in the same way that we
derive guidance from the concepts of
NP-completeness. The specific
research agenda will address three
questions. 1) Is it theoretically possi-
ble for a manufacturing facility to
achieve a chaotic regime? 2) Is it

practically demonstrable that an
actual manufacturing facility has
achieved a chaotic regime? 3) Can or
should the chaotic regime be avoided
or utilized? Answers to these and
related questions should be of great
interest to AI practitioners involved
in manufacturing scheduling.

H. Van Dyke Parunak of the Indus-
trial Technology Institute ended the
session with comments from a paper
titled “The Challenge of Chaos to
Manufacturing Scheduling”. He first
described one of the simplest natural
systems which exhibits chaotic
behavior, and drew analogies
between this system and manufactur-
ing systems. If the analogies hold, it
is clear that none of the scheduling
systems discussed during this work-
shop will be sufficient to ensure sta-
ble performance. It was then suggest-
ed that the best possible way to han-
dle chaos is to avoid it. Two broad
classes of approach seem promising,
AI having much to offer in both. The
first has to do with the intelligent
design of manufacturing systems
with appropriate structural con-
straints to preclude chaotic behavior.
The second includes intelligent mon-
itoring and interpretation of real-
time manufacturing data to appropri-
ately adjust operating parameters to
keep out of chaotic regimes.

In the brief discussion that fol-
lowed, it was imaginable to most of
the participants that, given a single
scheduling problem and a single
schedule, two slightly different initial
conditions could lead to radically dif-
ferent execution histories. This kind
of behavior is, of course, the crux of
chaos.

Learning

The second part of the session ad-
dressed the idea of applying methods
developed in the area of AI and learn-
ing to problems encountered in man-
ufacturing scheduling. Since these
ideas had not been deeply explored in
previous SIGMAN workshops, the first
goal was simply to provide a perspec-
tive on the state-of-the-art for the par-
ticipants. But the obvious questions
included: what would be learned (how
to predict, how to react, when to pre-
dict/react, scheduling rules, and so
on): what is a plausible research agen-
da: what can be expected in what
timescales? Again no conclusions were
expected, but there was time for a
small amount of discussion.
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The first paper, entitled “FMS
Scheduling: A Machine Learning
Approach”, by Alok Chaturvedi and
George Hutchinson, described work
done at the University of Wisconsin-
Milwaukee. The learning technique
applied, goal-directed conceptual
aggregation (GDCA), evolved from
the well-known conceptual clustering
paradigm. GDCA relies on a database
of decisions made in the past and a
simulator for generating future states,
both valid for the FMS being sched-
uled. Three inputs are given to the
system including 1) the local decision
to be made, which job to load next
for example, 2) a global context in
which the decision is to be made,
reduction of work-in-progress for
example, and 3) sample data from
the FMS which the system uses to
deduce its current status. After resolv-
ing any uncertainty in the sample
data, the system classifies and aggre-
gates relevant historical data, and
passes the resulting selected parame-
ters on for simulation. System perfor-
mance measures are recorded for
future reference.

The second paper, written by
David Ruby and Dennis Kibler of the
University of California-Irvine, was
titled “Learning to Plan in Schedul-
ing Domains”. The learning problem
solver described consists of three
basic components including a prob-
lem solver, a memory of problem-
solving knowledge, and a learning
component able to compile problem-
solving experience into problem-solv-
ing knowledge. The problem solver
depends primarily on means-ends
analysis, a technique which can have
difficulty with some types of subgoal
interaction. The memory of problem-
solving knowledge is called whenever
an impasse is encountered which
requires the undoing of some previ-
ously solved subgoal. If a new sub-
goal sequence can not be found
which solves the problem, the system
resorts to a brute force search of task
re-ordering. The resulting sequence
of moves leading to an improved
solution is used by the learning com-
ponent to generate a new sequence
of subgoals to be stored in memory
for reuse.

The third paper, titled “Sharing
Scheduling Knowledge Between
Intelligent Agents”, was submitted by
Wen Ling Hsu, Allen Newell, Michael
Prietula, and David Steier of Carnegie
Mellon University. The paper
describes MERL-SOAR, the applica-

tion of the SOAR architecture, with
its subgoaling approach to problem
solving and chunking approach to
learning, to scheduling problems.
The focus is distributed problem solv-
ing agents and the idea that one
intelligent agent can directly benefit
from the knowledge accumulated by
another problem solver. Four MERL-
SOAR schedulers were exercised in
task environments which differed
only in the volume of tasks to be
scheduled. The learned chunks gen-
erated by one agent while solving its
local problem were then transferred
to another agent. The receiving agent
was reinitialized and proceeded to
solve its own local problem again
with a different set of initial knowl-
edge. The general conclusion was
that there is an overall benefit from
sharing learned knowledge, and
specifically, importing learned
knowledge from agents solving more
difficult problems is especially useful.

In the discussion that followed, it
was generally agreed that schedulers
that learn are certainly intriguing,
both as a mechanism for construct-
ing predictive schedules (learning
how to avoid difficulties) and as a
mechanism for reactively executing
schedules (learning how to repair
failures), especially since feedback is
easily available in each case. Howev-
er, some concern was voiced that
there is a certain naivety on the part
of the learning approaches as to the
complexity of the manufacturing
scheduling problem. On one hand,
analytical approaches to learning are
predicated on an ability to explore
the entire search space (in the worst
case) to find something to compile,
but this is unreasonable given the
size of practically interesting manu-
facturing scheduling problems. On
the other hand, learning approaches
which remember solutions for subse-
quent use may not be productive
either since there is a perpetual nov-
elty in problem solving situations
encountered by actual manufactur-
ing schedulers over time. While
abstraction mechanisms were given
as partial solutions to both of these
difficulties, generalizing over prob-
lems with the scale of combinatorics
exhibited by scheduling was agreed
to be a non-trivial exercise.

Benchmarks

The third part of the session was
motivated by an extract from the

SIGMAN Charter: “SIGMAN is inter-
ested in the precise definition of
paradigmatic manufacturing prob-
lems, the clear and complete descrip-
tion of AI solutions, and the unam-
biguous evaluation of implementa-
tions. It is particularly interested in
the availability of well-defined prob-
lem sets and performance bench-
marks as aids to communication and
progress.” The initial purpose of dis-
cussion of this statement was to
decide whether a set of benchmark
scheduling problems were both pos-
sible and desirable. If the answer to
both parts of this question were yes,
then the secondary purpose was to
brainstorm concerning ways to gen-
erate, collect, maintain, distribute,
and utilize such benchmarks.

The single contribution in this ses-
sion came from Karl Kempf of Intel
Corporation representing the SIG-
MAN Executive Committee as Bench-
mark Secretary. It was pointed out
that within the AI scheduling com-
munity there is no problem descrip-
tion vocabulary or classification
scheme and hence no map of the
problem space. Neither do we have a
solution description language, classi-
fication scheme, or evaluation proce-
dure. These deficiencies make com-
munication among those interested
in working on scheduling very diffi-
cult indeed, and therefore make
progress more difficult than it should
be.

Ideally we would have an abstrac-
tion hierarchy of scheduling prob-
lems with sets of benchmark prob-
lems as leaf nodes. Furthermore,
there would be a complementary
abstraction hierarchy over schedul-
ing solutions with sets of literature
references as leaf nodes. A mapping
between problem leaf nodes and
solution leaf nodes would be espe-
cially interesting.

Many benefits would result from
the realization of such a scheme.
There would be a framework in
which to store our collective experi-
ential assessment of the detailed dif-
ficulties involved with each problem
type. The framework would also help
us evaluate the qualities of our ideas
based on which benchmarks a partic-
ular solution could handle and its
performance on each. The scheme
would clearly identify which prob-
lems could be classified as solved and
which solutions could be accepted as
standard. Unsolved problems would
be more obvious and trial solutions
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could be more easily evaluated. Holes
in both the problem set and solution
set might be recognized. Such a
framework would support collabora-
tion within the community as well as
allowing those new to the field to
come up to speed more rapidly.

Unfortunately, there are a large
number of excuses which can be
raised to explain why this goal can-
not be reached. Benchmarks never
really work as they should. They
always turn out to be subjective,
biased, and prejudiced, reflecting the
viewpoint of the person who devel-
oped them. Besides, the topic of
manufacturing scheduling is too
large with far too many problems to
classify and too many solutions to
catalog. Furthermore the problems
are too ill-defined and the solutions
not well enough described.

It was strongly proposed that these
are nothing more than excuses, and
the imagined pitfalls are far out-
weighed by concrete benefits. Subjec-
tive, biased, prejudiced benchmarks
from a large and diverse set of
experts can be very valuable. Perfor-
mance measured against such a set of
benchmarks is far less misleading
than the results on someone’s
favorite single example problem.
While it is true that scheduling is a
large area, it is also true that there are
a large number of us interested in the
problem. Ill-defined problems remain
so until we devise a way to define
them. Poor solution descriptions per-
sist until we adopt the discipline to
describe them well.

Generally, these remarks were well
received by the participants and dis-
cussion continued until well past the
official ending time of the workshop.
There was little (if any serious) dis-
cussion about whether or not this
proposal was either possible or desir-
able as originally set in the statement
of issues for the session. The partici-
pants moved immediately to imple-
mentation suggestions.

The opinion was expressed that
assembling a set of benchmark prob-
lems is the obvious starting place.
Trying to build a problem description
language at this point would be too
difficult a task. But given an expand-
ing set of benchmark problems, it
would be necessary to find a useful
format in which to collect and dis-
seminate the set. This would force
the groundwork to be laid for the
problem description language.

It was pointed out that an initial

set of benchmarks might be gathered
from the Operations Research litera-
ture, although it was emphasized
that this could not be considered
anything more than a starting point
for either problems or their descrip-
tion. More complex and/or more
realistic examples would be added
when necessary. At this point there
were several participants who volun-
teered to try to construct benchmark
contributions from their current
work. In fact, it was made known
that a research report was nearing
completion at Carnegie Mellon Uni-
versity that included descriptions of
many of the test problems that had
been utilized there.

It was thought to be very
important to try for good coverage of
the problem space from the very
beginning. This was stressed since
support from the AI-based schedul-
ing community was thought to be
vital for this effort to gain the
momentum needed to succeed over
the course of time. Part of the basic
idea is that the benchmarks should
begin to be included in publications
as the normal measure of solution
coverage and performance. But if the
benchmark set does not serve a large
percentage of the community, regular
use will not be achieved.

Participants were anxious to define
“good coverage” for “regular use”,
but not many concrete remarks were
made. There should be problems
from many different problem
domains, that is problems containing
many different kinds of entities and
constraints. There should be a range
of problem sizes in terms of the num-
ber of entities and constraints
involved. And the problems should
include various metrics by which to
measure the quality of the solution.

A related topic of discussion was
problem generators. It was thought
that the benchmark problem should
actually encode a group of actual
problems. The benchmark would
contain descriptions of the resources,
jobs, constraints, and so on, with
ranges of parameters. Actual prob-
lems for system testing would result
from picking specific parameters. For
example, the benchmark might con-
tain a parameter for the quantity of
each product to make and another
parameter for the due dates of each
product. A specific problem might
then be 1500 of product A due at a
rate of 300 on the 16th of each
month and 2500 of product B due at

a rate of 500 on the 25th of each
month. Another problem might
require 5000 of A and 1000 of B. This
means that the benchmark would
not only include the problem
description, but also the problem
generator.

The discussion and workshop
closed with the SIGMAN Benchmark
Secretary calling for assistance on
two topics. The workshop partici-
pants were encouraged to submit
sample problems from their past or
present research. This would allow a
beginning to be made on the mecha-
nism for representing and dissemi-
nating benchmarks. The participants
were also asked to supply reference
lists so that a complete bibliography
of the AI manufacturing literature
can be compiled. This might also
serve as a source of test problems as
well as allow a beginning to be made
on the goal of mapping the solution
space. This bibliography would also
be disseminated by the Benchmark
Secretary.
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Abstract

There is a great disparity between the number
of papers which have been published about
AI-based manufacturing scheduling tools and
the number of systems which are in daily use
by manufacturing engineers. It is argued that
this is not a reflection of inadequate AI tech-
nology, but is rather indicative of lack of a
systems perspective by AI practitioners and
their manufacturing customers. Case studies
to support this perspective are presented by
Carnegie Group as a builder of scheduling
systems for its customers, by Texas Instru-
ments and Intel Corporation as builders of
schedulers for their own use, and by Intellec-
tion as a consulting house specializing in
scheduling problems.

Introduction
Given the impact of manufacturing
on the gross national product of any
developed nation, it is not surprising
that an increasing number of AI prac-
titioners are becoming involved in
the manufacturing domain.
(Although the AAAI SIGMAN (Special
Interest Group in MANufacturing)
held its first formal business meeting
at AAAI-88, its membership already
includes roughly one-third that of
the AAAI parent organization.) From
an optimistic viewpoint, this blos-
soming of interest could bring about
two important results. One is the
revitalizing effect that strong solu-
tions for outstanding problems
would have in manufacturing. The
other is the validating effect that suc-
cessful solution of large scale prob-
lems would have on AI theories.

The pessimistic reality is that these
results have not yet been realized in
spite of long-term efforts by talented
people. In this paper, we try to exam-
ine some of the reasons for this limit-
ed progress. While there are clearly
technical problems encountered in
applying AI techniques to manufac-
turing problems, our experience is
that it is more likely that “people
problems” block the march of
progress. Although specifying and

implementing the things which go
on inside the computer are difficult,
handling the things which go on
outside of the computer are even
more troublesome. While a few com-
ments on technological matters will
inevitably slip into the discussion,
our intended focus is the manufac-
turing personnel and AI technolo-
gists involved in the projects with
which we are familiar.

Artificially intelligent schedulers of
manufacturing production serve as
our example application. A variety of
scheduling problems, including flow-
shops and job-shops, have been
shown to be NP-complete [Garey and
Johnson 1979]. A wide selection of
AI-based solutions have been pro-
posed including at least the 100 ref-
erenced in a recent overview article
[Kempf 1989a]. But very few AI-based
schedulers have found their way into
daily manufacturing practice. Even
the most publicized of AI-based man-
ufacturing schedulers, the ISIS/OPUS
systems produced at Carnegie Mellon
University starting in 1980, have yet
to enter productive service and are
not considered to be on the verge of
doing so [Smith 1989].

A panel was convened at the AAAI
co-sponsored Third International
Conference on Expert Systems and
the Leading Edge in Production and
Operations Management with the
charter of addressing the disparity in
manufacturing production schedul-
ing between the number of papers in
print and the number of systems in
service. Under the auspices of the
Management Sciences Department in
the College of Business Administra-
tion of the University of South Car-
olina, a number of speakers were
invited to participate. With direction
from Timothy Fry, one of the Pro-
gram Chairmen, the aerospace, auto-
motive, and electronics industries
were targeted. Systems were sought
which had been built from scratch
and/or using commercial tools, and
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