
There is a wealth of
research literature,
in both AI and the
social sciences, deal-
ing with evaluation
methodology. Evalu-
ation is often
described in terms
of establishing
numeric scores or
qualitative ratings
for a candidate.
Candidates are usu-
ally represented in
terms of attributes
(criteria) that are rel-
evant to the evalua-
tion. Many models
involve a weighted
scoring process,

where the weights indicate the importance
levels of the attributes being scored. Such
models have been used in education (Beggs
and Lewis 1975), marketing (Wright 1975),

Many of the prob-
lems we encounter
in our day-to-day
lives involve decid-
ing between a set of
options, or candi-
dates. In these kinds
of problems, one
needs to determine
the worthiness of
each candidate to
select the best one.
Other problems
involve assessing an
individual candi-
date’s strengths and
weaknesses to sug-
gest ways of improv-
ing its performance.
Both types of prob-
lems require the process of evaluation. In
schools, for example, students are evaluated
for both remedial purposes and selection and
ranking.

Articles

FALL 1991    95

A Task-Specific Problem-
Solving Architecture for
Candidate Evaluation

Michel Mitri 

Task-specific architectures are a growing area of
expert system research. Evaluation is one task
that is required in many problem-solving domains.
This article describes a task-specific, domain-
independent architecture for candidate evaluation.
I discuss the task-specific architecture approach
to knowledge-based system development. Next, I
present a review of candidate evaluation meth-
ods that have been used in AI and psychological
modeling, focusing on the distinction between
discrete truth table approaches and continuous
linear models. Finally, I describe a task-specific
expert system shell, which includes a development
environment (Ceved) and a run-time consulta-
tion environment (Ceval). This shell enables
nonprogramming domain experts to easily
encode and represent evaluation-type knowledge
and incorporates the encoded knowledge in per-
formance systems.

0738-4602/91/$4.00 ©1991 AAAI

Candidate 1

Candidate 3

Candidate 2

Knowledge-Based
System Development

Candidate Evaluation Methods

AI Magazine Volume 12 Number 3 (1991) (© AAAI)



frameworks are gener-
al in their applicabili-
ty but are expressed at
too low a level of
abstraction to make
them useful and
coherent in formulat-
ing complex problem
solutions. Their level
of abstraction is too
close to the imple-
mentation level of
software design,
whereas a truly useful
knowledge engineer-
ing tool should be
expressed using con-
structs at the knowl-
edge-use level (Newell
1982; Clancey 1985;
Chandrasekaran 1983,
1986; Steels 1990). In
other words, the tool

should be forced to think like the expert, not
vice versa.

Task-specific architectures attempt to do
this expert thinking by expressing their repre-
sentation constructs in terms that are natural
for the type of problem to be solved. Thus,
they are less general in scope than the rule-
based or object-oriented paradigms but make
up for this lack of generality by being more
expressive in their ontology and, therefore,
making it easier to implement knowledge
bases in the task areas to which they apply.
Figure 1 illustrates this point.

In the early-to-mid 1980s, Chandrasekaran
(1983, 1986) and his colleagues at The Ohio
State University began to isolate various types
of problem-solving methods. Chandrasekaran’s
thesis was the following: “There exist differ-
ent problem solving types, i.e. uses of knowl-
edge, and corresponding to each is a separate
substructure specializing in that type of prob-
lem solving” (1983, p. 9).

Chandrasekaran identified two of these
problem-solving types in the process of devel-
oping a medical diagnostic system called MDX.
These types were hierarchical classification
and inferential data retrieval. The problem-
solving regimes identified by Chandrasekaran
were later termed generic tasks. As time went
on, several additional generic tasks were added
to the list, including abduction (Punch et al.
1990), simple design (Brown and Chandrase-
karan 1986), structured matching (Bylander,
Goel, and Johnson 1989), and functional rea-
soning (Sticklen, Chandrasekaran, and Bond
1989).

Generic tasks represent one stream in the

software validation (Gaschnig et al. 1983;
O’Keefe 1989), and a host of other domains.
Indeed, evaluation is a such a ubiquitous task
that an entire research discipline has grown
that is entirely devoted to the study of evalu-
ation techniques (Edwards and Newman 1982).

This article presents a task-specific architec-
ture for reasoning and knowledge represen-
tation in candidate evaluation tasks. The
architecture includes primitives for represent-
ing candidates, their attributes, importance
levels, and numeric-qualitative performance
measures. It includes a mechanism for estab-
lishing and interpreting evaluation results
and recommending actions to take based on
the evaluation. The architecture is specifically
designed for use by nonprogramming
domain experts and, thus, enhances the abili-
ty to quickly acquire and represent expert
knowledge.

Before presenting the candidate evaluation
architecture, I discuss the task-specific archi-
tecture paradigm, then compare some of the
methods that have been used for evaluation
in AI and the social sciences.

Task-Specific Architectures
The notion of task-specific architectures was
motivated by a dissatisfaction with the com-
monly used knowledge representation
paradigms usually associated with expert sys-
tems, such as rules, frames, and logic, and
their corresponding control regimes of forward
and backward chaining, inheritance links,
and predicate and clause selection. These

The 
architecture is

specifically
designed for
use by non-

programming
domain

experts…

Articles

96 AI MAGAZINE

Knowledge Based System

TSA – Generic Task

Rules, Frames, Logic Paradigms

3 GL and 4 GL Languages

Assembly Language

Hardware

Expert
Knowledge

Computer
Implementation

Figure 1. Levels of Abstraction for Expert System Development. 
The task-specific architecture and generic task paradigms are closer to the knowledge-
use level of representation than traditional representational schemes such as rules,
frames, and logic.



task-specific architecture philosophy. Charac-
teristics of task-specific regimes in general and
the generic-task approach in particular include
the following: First, control knowledge is usu-
ally intertwined with domain knowledge. The
knowledge base of an expert system is not
divorced from the inference engine (or prob-
lem solver), as is the case with many other
paradigms (Chandrasekaran 1986). Second,
there is often a tendency to distribute knowl-
edge among knowledge agents, or specialists,
which each contain expertise in a limited area
of the problem domain (and the problem-
solving task) and which communicate with
each other along prescribed, usually hierar-
chical channels (Sticklen et al. 1987). Third,
general intelligence is not the goal, unlike
with rules and frames, which are meant to
capture any type of intelligent activity. A task-
specific architecture is constrained in its
applicability, sacrificing generality to achieve
explicitness of control representation, rich-
ness of ontology, and high-level (abstract)
control and domain knowledge representa-
tion. However, generic tasks (if not task-spe-
cific architectures in general) should be
applicable across a wide range of domains
and problems encountered by humans. For
example, a truly generic diagnostic strategy
should not be confined to medical diagnostic
problems but should be applicable for diag-
nostic reasoning in nonmedical domains as
well. Fourth, a task-specific architecture
method should have an identifiable control
regime and a known set of primitives for rep-
resenting the knowledge that this task
embodies. This approach implies that the
strategy can be implemented in the form of
an expert system shell (that is, template),
where instead of rules, objects, procedures,
and so on, as the knowledge representation
constructs, one would directly encode the
knowledge in terms that relate to the task
primitives. These task primitives should be
expressed at the proper level of granularity or
abstraction for the task at hand.

The desired characteristics of task-specific
architectures have significant implications for
knowledge acquisition, as pointed out by
Bylander and Chandrasekaran (1987). They
discussed the interaction problem in knowledge
representation, stating that “representing
knowledge for the purpose of solving some
problem is strongly affected by the nature of
the problem and the inference strategy to be
applied to the knowledge” (p. 232). 

The implications are that the knowledge-
acquisition process should be guided by the
language or vocabulary of the problem-solving
task at hand. Thus, an early goal of knowledge

acquisition is to identify the generic task(s)
that are appropriate for the problem at hand.
Once these tasks have been selected, said
Bylander and Chandrasekaran, the interview-
ing process can be guided by, and expressed
in terms of, the language constructs of the
chosen generic tasks.

I would go a step further beyond this state-
ment. In my view, expressing the architectural
primitives of the task-specific architecture in
terms of high-abstraction knowledge use–
level constructs makes it possible for nonpro-
grammers to directly use a task-specific archi-
tecture shell without having to go through an
intermediary knowledge engineer or comput-
er programmer for encoding knowledge onto
the computer. In other words, the program-
ming language of a task-specific architecture
(or the generic task) can itself serve as a
knowledge-acquisition tool, provided that the
language is implemented in a user-friendly
environment that does not have the look or
feel of a programming language (that is, it
involves menus, graphic displays, and other
user-friendly features).

This approach is being used at the Center
for International Business Education and
Research (CIBER) at Michigan State University
(MSU). Here, College of Business students and
faculty (most of whom have no computer
programming experience) are using task-spe-
cific architecture shells to directly encode
their knowledge pertaining to several areas in
international marketing. I discuss one of
these shells in this article, but first I discuss
two approaches to evaluation in AI.

A Historical Perspective on 
Evaluation in AI: 

Samuel versus Berliner
To set the stage for describing the candidate
evaluation architecture, it is helpful to com-
pare two alternative approaches to evaluation
functions developed for game-playing expert
systems. Both approaches significantly influ-
enced the development of the candidate eval-
uation architecture that I present later. The
first approach is Samuel’s (1959; 1967) signa-
ture table, used in checker-playing systems,
which was later generalized by Bylander,
Goel, and Johnson (1989) into the generic
task of structured matching. The second
approach is called SNAC (smoothness, nonlin-
earity, and application coefficients). It was
developed by Berliner (Berliner 1977, 1979;
Berliner and Ackley 1982) and involves a hier-
archy of linear and nonlinear mathematical
operators for scoring potential board moves

Articles

FALL 1991    97



Articles

98 AI MAGAZINE

in backgammon that is similar but not identi-
cal to structured matching.

Because both checkers and backgammon
can be viewed as state-space search problems
with large state spaces, there is a great moti-
vation for finding a way to quickly focus on
the most promising states (board positions).
One way to accomplish this task is through
evaluation functions, which assign a measure
of goodness to a board position based on fea-
tures of the board position.

Samuel and Berliner both began their work
on evaluation functions by using a simple
linear polynomial method. In this method, a
potential board position is scored using a
linear-weighted sum, where each term in the
summation pertains to a particular feature of
the board position. Each term includes a vari-
able, whose value is the numeric measure of
goodness of this feature, and a coefficient,
whose value is measure of the feature’s weight
of importance.

Signature Tables and Structured
Matching

Both Samuel and Berliner found that a
straight linear polynomial method to evalua-
tion had a significant drawback. The context
of the evaluation was not accounted for, and
therefore, decisions made based on this eval-
uation function could be in error. For Samuel,
the problem is that the linear polynomial
method treats individual features as if they
are independent of each other and, thus, does
not account for interactions between features.
Samuel found that this approach greatly
inhibited the quality of learning in his check-
er-playing system.

Thus, he introduced another technique
that accounted for interactions between vari-
ous features in the evaluation of a board posi-
tion. This technique, called signature table
analysis, used an n-dimensional array (called
a signature table) to store the scores for vari-
ous board positions. Each dimension of the
array represented a feature of the board posi-
tion. An array’s dimension would be divided
into as many positions as there were possible

values for the corresponding feature. Thus, if
a feature could take on the values -2, -1, 0, 1,
and 2, the corresponding array dimension
would have five positions. Each cell in the
array contained a value that was the score
corresponding to the combination of feature
values that mapped onto this cell. In this
way, a board position’s overall score was spe-
cific to the nonlinear combination of features
that the board position took on.

Although this technique was able to
account for interaction between features, it
introduced a significant space-complexity
problem. For a large number of features, each
with a large number of potential values, the
size of the array would grow to a prohibitive
expanse. Samuel’s solution for this problem
was twofold. First, he restricted the number
of possible values that a feature could take
on. Second, he arranged his features into a
hierarchy of signature tables. At the lowest
level, the signature tables consisted of subsets
of the board-position features themselves,
with each feature having a greatly restricted
range of possible values. Higher-level signa-
ture tables used lower-level tables as compos-
ite features, and because the number of these
lower-level tables was considerably smaller
than the number of board-position features
themselves, the table output could have a
larger range of possible values. Thus, through
the use of a hierarchy of signature tables,
Samuel was able to arrive at accurate assess-
ments of the worthiness of potential board
positions in a reasonable amount of time.
This approach greatly improved the quality
of play of his checker program and signifi-
cantly contributed to his research in machine
learning. Note, however, that any notion of
weighted scoring, the primary activity of the
linear polynomial method, was totally aban-
doned in the signature table approach. Elimi-
nating this feature forced the space of
potential feature values to be discrete, where-
as the linear polynomial approach allows for
a continuous space.

Bylander, Goel, and Johnson (1989) later
developed a generic problem-solving method
called structured matching, which is essentially

…a major difference… is one of discrete (Samuel) versus continuous (Berliner)
representations of the evaluation space.



a generalization of Samuel’s signature table.
The architecture of structured matching
involves a hierarchy of matchers, or truth
tables, each mapping a limited set of parame-
ter-value pairs onto a decision for the match-
er. Parameters can be data about the world or
output from lower-level matchers. Each row
of the truth table includes a conjunctive
clause of the parameter-value pairs and the
resulting output value that occurs if the
clause is satisfied. The different rows of the
truth table have a disjunctive relationship to
each other, with each row containing a differ-
ent alternative output value.

The inferencing action of structured match-
ing is a goal-driven top-down traversal of the
matcher hierarchy. The goal at each level is to
determine the output value of the matcher.
This determination is made by examining the
truth table. If parameter values in the truth
table are determined by lower-level matchers,
then these matchers are examined. This pro-
cess continues recursively until the value for
the top-level matcher can be determined.

Hierarchical Weighted Scoring

Another hierarchical static-evaluation tech-
nique was developed by Berliner and Ackley
(1982). They had done previous work on
linear polynomial evaluation functions
(Berliner 1977) and found problems similar to
those experienced by Samuel. Their domain,
like Samuel’s, was game playing, but the game
was backgammon.

Berliner’s earlier program, BKG, used a
straight linear polynomial function to rate
board positions. All board positions (that is,
states in the state space) were treated identi-
cally, where the same linear polynomial func-
tion was used to evaluate each one. Berliner
soon encountered problems similar to
Samuel’s, namely, that the linear polynomial
was too rigid to account for the context of the
board position. Samuel had described the
context in terms of the interrelationships
between features. Berliner expressed context
by partitioning the space of board positions
into state classes, which I discuss later.

In a new program called QBKG, Berliner and
Ackley, like Samuel,  moved from a straight
linear polynomial function to a hierarchical
representation of the evaluation features.
However, they differed from Samuel by not
entirely abandoning the linear polynomial
method. Instead, primitive features would
have weights and scores associated with
them, and the weighted scores would be
propagated through the hierarchy to obtain
scores for higher-level aggregate features

(called concepts in Berliner and Ackley’s termi-
nology). In effect, they maintained the ability
to deal with a continuous space of possible
feature values; Samuel’s method, however,
forced this space to be discrete.

Continuous versus Discrete 
Representation

Thus, a major difference between the two
approaches to evaluation is one of discrete
(Samuel) versus continuous (Berliner) repre-
sentations of the evaluation space. Berliner
and Ackley (1982) criticized discrete represen-
tations in evaluation functions, stating that
they were fragile and suffered from the
boundary problem.

By fragile, they meant that erroneous or
noisy data could dramatically skew the results:

In a discrete medical diagnostic
system using production rules, for example,
an erroneous result on a test could prevent
the system from ever making an accurate
diagnosis, because the knowledge relating
to the actual disease is not used, due to
the non-satisfaction of the condition por-
tions of the relevant productions (Berlin-
er and Ackley [1982], p. 214).

They said continuous representations allevi-
ate the fragility problem by ensuring that all
relevant factors are taken into account by
including them in an overall scoring process.

Actually, continuousness of representation
as such is not what alleviates the fragility
problem. Rather, it is the use of a compen-
satory scoring mechanism that dampens the
effect of erroneous or incomplete input data.
The effectiveness of the compensatory scoring
mechanism applies to discrete representations
as well. 

By the boundary problem, Berliner and
Ackley were referring to the tendency for sys-
tems with large grain sizes to make erroneous
decisions when a feature’s actual value (as it
would appear in a continuous domain) lies in
a grey area at the boundary between two pos-
sible discrete values and is arbitrarily mapped
onto one of these discrete values. The idea
here is that fine granularity is less likely to
produce errors than coarse granularity. This
problem can be significant with structured
matching, which imposes a small limit on the
number of allowable values that a parameter
can take on. In the interest of computational
tractability, structured matching forces coarse
granularity, thus becoming vulnerable to
boundary errors.

However, there are two problems with con-
tinuous representation based on scoring
methods that make qualitative, discrete repre-

Articles

FALL 1991    99



Articles

100 AI MAGAZINE

sentations more attractive. The first is that
scoring methods cannot account for interac-
tions between variables in the way that con-
junctive-clause production rules can. The
second is that explanation is much easier
with discrete representations.

Berliner and Ackley’s system does not
appear to account for specific interactions
between variables in the way that Samuel’s
signature tables can. However, by arranging
their scoring into a feature hierarchy, they
were able to provide explanations at various
degrees of abstraction for their system.

Context in Evaluation

Another distinction between the Samuel’s
and Berliner’s approaches involves the context
of the evaluations they perform. Although
both Berliner and Samuel express context in
terms of abstraction levels using the hierar-
chical arrangement of their knowledge
groups (signature tables and scorers), they
differ in other expressions of the context of
the game.

For Samuel, the context is represented
specifically by the interactions of the vari-
ables at each signature table in the hierarchy,
as previously described. Contextual factors
and evaluative factors are treated uniformly:
All are represented as variables in the system.

In contrast, Berliner’s (1979) method,
which does not explicitly show the interac-
tions of variables, represents context by divid-
ing possible board positions into state classes ,
which are categories describing overall aspects
of the game. For example, one state class con-
tains all end-game board positions, where the
pieces for each player have already passed
each other, and the two sides are racing to
take their pieces off the board. This approach
is in contrast to another state class, engaged
game, where the opposing pieces can still land
on one another. In this sense, context plays
an important role in determining the weight-
ings for the various features of a board posi-
tion. For example, in an end-game context, it
is no longer important to avoid having a
piece stand alone because no opposing piece
can land on the lone piece. This consideration
would be important if the opposing players
were engaged. This dynamic, context-based
weight adjustment introduces a nonlinear
flavor to the SNAC derivation of the linear
polynomial evaluation function. Figure 2
illustrates this notion.

Explanation of Evaluation

As previously mentioned, discrete knowledge
representations tend to be better at facilitating
the explanatory power of knowledge-based

.2

.5 .5

.3.8 .7

.4 .8

State Class 1

.4

.1 .9

.3.6 .7

.3 .7

State Class 2

Figure 2. Berliner and Ackley’s QBKG Program.
Using the SNAC method, QBKG involves a hierarchy of features. The context of evaluation is expressed using state classes,
which allow for dynamic-weight modification. Scores are determined using a linear model and propagated up the
hierarchy to determine overall score.



systems than continuous representations.
When dealing with overall scores, it is diffi-
cult to identify just what is wrong with the
candidate being evaluated or exactly why one
candidate is better than another.

Thus, it would appear that the signature
table approach is superior to SNAC in this
regard. With QBKG, Berliner and Ackley
wanted to maintain the performance advan-
tages of the continuous representation but
keep the explanatory power of the discrete
representations. They saw two main tasks in
this regard: (1) isolate relevant knowledge
(pertaining to a query for explanation) from
irrelevant knowledge and (2) decide when
quantitative changes should be viewed as
qualitative changes. They handled the first
task using their hierarchical arrangement of
features. Thus, explanations at lower levels
tended to be narrow and detailed, but expla-
nations at higher levels were broad and unfo-
cused. They handled the second task by
partitioning the differences in scores between
candidates (for any given feature) into contexts,
which can be phrased as “about the same,”
“somewhat larger,” “much larger,” and so on.
In other words, they transformed the evalua-
tion space from a continuous to a discrete
representation after all the scoring had taken
place, thereby avoiding the pitfall of losing
valuable information because of arbitrary
early classification. Once the evaluation space
became discrete, the qualitative differences in
scores could be displayed as explanations for
choosing one candidate over another.

Studies of Evaluation in the
Social Sciences

The dichotomy between the Samuel’s signa-
ture table approach and Berliner’s SNAC

method is mirrored in social science research
on decision strategies used by people for can-
didate evaluation and selection. This section
examines some studies that use linear models
to emulate expert decision making. It also
looks at models of consumer behavior that
seem to incorporate both discrete and contin-
uous decision models.

Psychological Studies of Linear Models

Dawes and Corrigan (1979) conducted exten-
sive studies where they attempted to emulate
expert evaluative and classificatory decision
making using linear models. Their studies
compared the performance of actual expert
judges with linear models of the judges’ deci-
sion-making processes and found that the

models consistently performed as well as or
better than the judges themselves.

Dawes concluded that linear models work
well in solving problems with the following
structural characteristics: (1) each input vari-
able has a conditionally monotonic relation-
ship with the output, (2) there is error in
measurement, and (3) deviations from optimal
weighting do not make practical difference.
By conditional monotonicity, Dawes meant two
things: First, the ordinal relationship between
an input variable and the output decision is
independent of the values of other input vari-
ables (much like the assumption underlying
Samuel’s and Berliner’s linear polynomial
evaluation function). Second, the ordinal
relationship between the input and output
variables is monotonic; that is, a higher score
on an input always results in a higher (or
lower, given negative weighting) score on the
output. Dawes suggested that most variables
can be scaled in such a way that conditional
monotonicity is possible.

It is interesting to note that Berliner and
Ackley’s SNAC method managed to circumvent
the conditional monotone requirement for
linear models by introducing the notion of
state classes and dynamic weight adjustment.
Such a requirement rests on the assumption
that the weight of each term in the linear
function is constant or, at least, that its sign is
constant. With SNAC’s state classes, the values
(and even the signs) of the weights could
change with changing context. Thus, the rela-
tionship between input variable value and
output value need not be monotonic.

Error in measurement enhances the appeal
of linear models because of the compensatory
nature of such models. In other words, even if
a particular input variable has an incorrect
value assigned to it, other variables that go
into the total score compensate for this error.
Note that this argument is consistent with
Berliner and Ackley’s fragility critique of dis-
crete representations for evaluation functions.

Based partially on Dawes’s research, Chung
(1987, 1989) empirically compared the linear
model approach to a rule-based approach in
terms of inductive knowledge-acquisition
methods for classificatory problem types. His
study indicated that the relative performance
of systems using these approaches differed
based on the type of classification problem
they were applied against. Specifically, he
found that tasks involving conditional mono-
tonicity are good linear candidates, whereas
those violating conditional monotonicity are
better rule-based candidates. This finding is
consistent with the findings of Dawes and
Corrigan.

Articles

FALL 1991    101



Models of Consumer Behavior

Research in consumer behavior has isolated
two types of evaluative decision rules for
product-purchase decision making; these are
called compensatory and noncompensatory
decision rules (Wright 1975; Schiffman and
Kanuk 1987).

A compensatory decision rule is analogous to
the linear polynomial method employed by
both Samuel and Berliner in the early versions
of their evaluation functions and described
by Dawes and Corrigan in their study of
human judgment. It is called compensatory
because positive evaluations on some attributes
can balance out negative evaluations on others.

Compensatory decision making can be rep-
resented naturally using Berliner’s SNAC

method because weights of importance for
various attributes can explicitly be represent-
ed in the SNAC architecture. Also, modifying
the compensatory evaluative knowledge of
the system is easy with a SNAC-like approach.
If an expert or knowledge engineer decides to
change the importance level of a particular
feature, all s/he has to do is change this fea-
ture’s weight value. By contrast, the signature
table approach (and structured matching) is
awkward for representing the compensatory
rule. The relative importance of each feature
is not explicitly represented but, rather, is
implied by the combination of feature values
in a pattern of the truth table. This approach
makes it difficult for the observer to ascertain
which attributes are important and which are
not. Also, changing the importance level of a
single feature can require making changes to
several patterns in a truth table, creating a
maintenance nightmare for knowledge engi-
neers dealing with large knowledge bases.

Noncompensatory decision rules deal with
quick-reject or quick-accept situations. These
situations can be expressed in a number of
ways. For example, if one says “This candi-
date is unacceptable if it scores below a
threshold for a certain variable,” this example
illustrates the conjunctive rule of consumer
behavior. Alternatively, the phrase “I accept
this candidate because s/he scores above a
threshold on a particular feature” is an
expression of the disjunctive rule.

The discrete nature of signature tables and
structured matchers makes it easy and natural
to represent noncompensatory evaluative
knowledge. Structured matching in particular
allows quick-reject or quick-accept parame-
ters to be evaluated early and, thereby, cuts
down on unnecessary computing. By con-
trast, linear polynomial methods, including
SNAC, are not good at representing or reason-
ing using noncompensatory decision rules. A

Ceved is…
intended to

make it easy
for a non-

programmer
to represent
evaluation-

type 
knowledge.

Articles

102 AI MAGAZINE

continuous representation is unnecessary for
such threshold issues. Additionally, the com-
pensatory nature of weighted scoring makes
it difficult to minimize the number of variables
that need to be resolved to make a decision.

Thus, we see that linear models or variants
thereof are generally better at representing
compensatory evaluative knowledge, whereas
truth tables are better for handling noncom-
pensatory evaluation. Thus, a task-specific
architecture for candidate evaluation must
have attributes of both approaches to effec-
tively handle the entire realm of evaluation.

Candidate Evaluation as a 
Task-Specific Architecture

In the previous discussion, I described some
of the literature background of evaluation
techniques in AI and social science. I also pre-
sented a description and the motivation for
the notion of generic tasks and task-specific
architectures. One purpose of the research at
CIBER is to develop a general, evaluative
problem-solving methodology that combines
the strengths of Berliner and Ackley’s SNAC

method and Samuel’s signature table. The
motivation for this work is to provide envi-
ronments for nonprogramming domain
experts to easily encode evaluative knowledge
that can be used in expert systems.

Developmental Principles for a 
Candidate Evaluation Task-Specific
Architecture

The philosophy guiding the development of
the candidate evaluation architecture is based
on the following principles:

First, the architecture should allow for all
types of evaluative decision making, includ-
ing both compensatory and noncompensato-
ry evaluation, using both discrete and
continuous representations of the evaluation
space. The architecture must allow for quick-
reject or quick-accept decisions as well as a
thorough assessment of the strengths and
weaknesses of the candidate being evaluated.
It should also allow the evaluation process to
be sensitive to non-evaluative, contextual fac-
tors in the environment. 

Second, the architecture should adhere to
the task-specific architecture school of
thought and as much to the generic task
framework as possible. In particular, its con-
ceptual primitives should be natural for rep-
resenting evaluative knowledge, and the
problem-solving method it embodies should
be applicable over a wide range of problem
domains.



Third, the architecture should allow for a
rich explanatory facility, taking into account
combinations of features and expressing various
levels of abstraction. The evaluation and expla-
nation process should be easy for the novice
to interact with and should provide effective,
valid evaluations and recommendations.

Fourth, the architecture should be able to
be implemented in an expert system shell.
This shell should be directly usable by non-
programming domain experts, who will use
the architecture framework to encode their
knowledge in performing evaluative expert
systems. There should be no need for an
intermediary AI programmer to encode evalu-
ative knowledge. Thus, the knowledge-acqui-
sition bottleneck should be eased somewhat.

Overall Description of the Candidate
Evaluation Architecture

The candidate evaluation architecture meets
these developmental principles in the follow-
ing ways:

It incorporates all the evaluation methods
previously mentioned. For compensatory
decision making, it uses a linear model
approach that, like Berliner’s SNAC, provides
for dynamic weight adjustment based on con-
text. Like Samuel’s signature table approach,
it also accounts for the interaction of variables,
at least at an abstract level, by mapping com-
binations of feature ratings onto recommen-
dations. It also provides for quick-reject or
quick-accept (noncompensatory) decisions by
allowing the developer to set threshold levels
for any single feature or composite feature.

The architecture adheres to the task-specific
architecture and generic task philosophies in
two ways: First, its semantic structure and
conceptual primitives are at a level of abstrac-
tion that is meaningful for evaluative tasks.
The primitives include a hierarchy of compos-
ite features (dimensions of evaluation); a set
of evaluative questions (equivalent to QBKG’s
primitive features); a set of contextual ques-
tions for dynamic weight adjustment (serving
the same purpose as SNAC’s state classes); and
a set of recommendation fragments that, like
Samuel’s signature tables, account for interac-
tions of feature ratings. These elements are
discussed later. Second, in keeping with
generic task requirements, the architecture is
applicable across a wide variety of domains.
Many problems requiring evaluative reason-
ing are solvable using this architecture.

The architecture has a rich explanation
facility intertwined with its conceptual struc-
ture. Like QBKG, the hierarchy of features
allows for explanation at various levels of

Articles

FALL 1991    103

abstraction. Also like QBKG, there is a posteval-
uation mapping from the continuous space
(score) onto a discrete space (feature rating),
which allows for qualitative expressions of
the evaluation. In addition, because recom-
mendations are tied to combinations of feature
ratings, the system can provide explanations
for interactions of variables, like Samuel’s sig-
nature tables and Bylander’s structured
matching. Finally, textual explanations can be
tied to specific questions or dimensions.

The architecture has been implemented in
an expert system shell, including a develop-
ment environment (Ceved) and a run-time
module (Ceval). It is easy to use and has been
employed by graduate students and domain
experts in international marketing. None of
the users had prior computer programming or
AI experience, yet they were able to quickly
learn to use the tool and have developed a
dozen international marketing–related expert
systems using the tool.

The Candidate Evaluation
Shell—Ceved and Ceval

In this section, I describe the shell for imple-
menting candidate evaluation. It involves two
components: The candidate evaluation editor
(Ceved) is the development module, and the

Domain Expert

CEVAL
Inference

Engine

User

Interface End User

CEVED

Dimensions
Context
Questions

Evaluative
Questions

Recommen-
dations

Knowledge Bases
(Product Standardization, Foreign

Subsidiary Evaluation, etc)

Figure 3. Structural Components and Flow of 
Knowledge in the Ceved-Ceval System. 

The domain expert creates knowledge bases using Ceved. The end user is led through
the consultation using Ceval.



list of qualitative ratings (a verbal evaluative
description of the dimension, for example,
“excellent,” “fair,” or “poor”) and corre-
sponding threshold scores (a threshold score
is a minimum quantitative score for which a
given rating holds); (4) the dimension’s
weight of importance, that is, the degree to
which the dimension contributes to the over-
all  score of its parent; (5) an optional expla-
nation message (the developer can write a
comment here to help the end user under-
stand what the dimension is measuring); and
(6) optional threshold messages (these mes-
sages are tied to a threshold score for the
dimension; for example, the developer can
define a reject message that would appear if
the final score for a particular dimension falls
below a specified threshold).

Dimensions are related to each other in a
parent-child relationship (using the parent
attribute), producing a tree-structured hierar-
chy. A parent dimension’s overall score is
based on a linear-weighted sum of the scores
of its children dimensions. Figure 5 shows a
sample dimension hierarchy for a foreign
subsidiary evaluation expert system.

Contextual Questions. Contextual ques-
tions are multiple-choice questions designed
to establish the weights of importance of var-
ious features (dimensions) based on the con-
text. They essentially serve the same purpose
as Berliner’s state classes. The contextual
questions contain the following attributes: (1)
the dimensions (features) to which the ques-
tion pertains, (2) the question’s text, (3) a list
of multiple-choice answers and a correspond-
ing list of weight-adjustment values (each
weight-adjustment value specifies the direc-
tion and degree to which the chosen answer
will change each associated dimension’s
weight (using multiplication), and (4) an
optional explanation message. During a con-
sultation, the answers that a user gives for
contextual questions will determine the final
weights that each dimension (aggregate fea-
ture) takes on. Contextual questions are
asked before evaluative questions.

Evaluative Questions. Ceved allows the
developer to define multiple-choice evaluative
questions that will be presented to the end
user during a consultation. Questions are
grouped into question sets. Each question set
is associated with a lowest-level dimension
(that is, a leaf node in the dimension hierarchy).

An evaluative question contains the follow-
ing attributes (figure 6): (1) the question text,
(2) the question’s weight of importance (which
identifies the degree to which this question
contributes to the overall score of its question

candidate evaluator (Ceval) is the run-time
module.

Candidate Evaluation Editor (Ceved)

Ceved is a development environment intend-
ed to make it easy for a nonprogrammer to
represent evaluation-type knowledge. Four
main types of objects can be represented
using Ceved: dimensions of evaluation, con-
textual questions, evaluative questions, and
recommendation fragments (figure 3). In
keeping with the requirements for a user-
friendly development environment and to
avoid the feel of a programming language,
Ceved requires only two types of input from
the user: menu choice and text processing.
The Ceved text-processing facility is for typing
in explanations and recommendations; it
includes many text-editing features found in
standard word processors, including cut and
paste and text file import and export.

Dimensions of Evaluation. Ceved
allows the developer to define a hierarchy of
abstracted candidate features, called dimen-
sions, that serve as the baseline for evaluating
the candidate. A dimension is made up of the
following attributes (figure 4): (1) the dimen-
sion’s name; (2) its parent dimension; (3) a

Articles

104 AI MAGAZINE

Dimension Name

Parent Dimension

Weight

Ratings Threshold

Country Environment

Foreign Subsidiary Performance

30%

Excellent

Moderate

Poor

85

45

0

Figure 4. A Sample Dimension Entry Screen in Ceved. 
The developer uses this screen to enter the dimension’s name, parent, importance level
(weight), ratings, and threshold scores.



set), (3) a list of answers and their correspond-
ing scores (the answers are presented to the
end user as a menu to select from during a
consultation; depending on the answer
chosen, its corresponding score will be
assigned to this question), and (4) optional
threshold and explanation messages (similar
to the messages defined for dimensions).

During a consultation, the overall score of a
question set is a linear-weighted sum of the
questions’ weights and their scores based on
user answers during a consultation. This score
provides the rating for the question set (leaf-
node dimension) and is propagated upward
to contribute to the scores of the dimension’s
ancestors in the dimension hierarchy.

Recommendation Fragments. Ceved
allows the developer to define recommendation
fragments and a recommendation presentation
strategy. Recommendation fragments are
linked to (and triggered by) combinations of
dimension ratings. The recommendation pre-
sentation strategy controls the order in which
recommendation fragments appear and
allows some recommendation fragments to
suppress others.

A recommendation fragment includes the

following attributes: (1) the recommendation
heading (a one-line description), (2) the rec-
ommendation fragment’s presentation condi-
tions (the condition consists of a list of
dimensions and their desired ratings; a rec-
ommendation fragment is presented only if
the corresponding dimension’s have the
desired ratings), (3) the recommendation frag-
ment’s text, and (4) the recommendation
fragment’s local presentation strategy (which
includes a list of all other recommendation
fragments that this recommendation frag-
ment suppresses or prevents from appearing
and a list of all recommendation fragments
that it is suppressed by; thus, the developer of
a candidate evaluation knowledge base can
prevent redundant or conflicting recommen-
dation fragments from appearing together).

The global recommendation presentation
strategy involves a recommendation ordering
strategy and a recommendation suppression
strategy. The ordering strategy allows the devel-
oper to describe, in general terms, the order
in which recommendation fragments should
be presented to the end user during a consul-
tation. For example, the developer can specify
that more abstract fragments come before less
abstract ones or that fragments tied to more

Articles

FALL 1991    105

50%50%

Foreign
Subsidiary

Performance

Subisdiary -
Parent

Relationship

Excellent

Moderate

Poor

90

0

Country
Environment

Market
Opportunity

Company
Factors

30% 30% 30% 10%

Political
Risk

Commercial
Risk

Financial Technical Management Market
Segmentation

30% 30% 20% 20%

Market
Size

Market
Share

Market
Segmentation

50%

40% 30% 30%

Excellent

Moderate

Poor

85

45

0

Low

Mod

High

90
50

0

60

Figure 5. Example Dimension Hierarchy for Foreign Subsidiary Evaluation 
(some ratings and thresholds are shown).



number of questions asked. Then, the depth-
first traversal takes place, where the most
important (that is, high weight) dimensions
are explored first. When a leaf-node dimen-
sion (an evaluative question set) is reached,
the evaluative questions in this set are pre-
sented to the user, and the user’s answers are
input. Then, Ceval determines the score of
the question set using a linear-weighted sum
of the questions’ weights and the answers’
scores and propagates the score up the tree to
determine minimum and maximum possible
scores for each ancestor of the question set
dimension (figure 7). If any dimension’s (or
question’s) score falls below (or above) its
quick-reject (or quick-accept) threshold, a
message appears recommending to terminate
the evaluation and make a reject (accept)
decision immediately. In this manner, Ceval
implements noncompensatory evaluative 
reasoning.

After propagating the score up the tree,
Ceval attempts to establish the qualitative
rating for the ancestor dimensions of the
question set. If any ratings can be determined
(that is, if the minimum and maximum scores
for a dimension are within a range that corre-
sponds to a single rating for this dimension),
Ceval triggers any recommendation fragments
tied to these dimension ratings. Each trig-
gered recommendation fragment checks its
presentation conditions, and if they are satis-
fied, the recommendation fragment is added
to a recommendation agenda list. The order-
ing and suppression strategies are then used
to order and prune the recommendation list.

After the recommendation fragments are
processed, Ceval resumes the traversal of the
tree. It continues this traversal until either all
the questions have been asked or enough
questions have been asked to qualitatively
rate all the dimensions deemed relevant by
the end user. Then, the recommendation
fragments that remain on the recommenda-
tion list are presented to the user based on
the ordering and suppression strategies. Thus,
the overall recommendation is a combination
of the recommendation fragments whose
conditions have been met and those that
were not suppressed.

As an example, see figure 8. Assume that
the user obtained Excellent for Foreign Sub-
sidiary, Moderate for Country Environment,
and Moderate for Commercial Risk. In this
case, recommendation fragments 1, 2, and 3
all satisfy their conditions. However, because
fragment 2 suppressed fragment 1, fragment
1 is deleted from the final recommendation
fragment list. Also, if the ordering strategy
indicates that highly abstract recommendation

important dimensions should appear before
fragments tied to less important ones. The
suppression strategy allows the developer to
define, in general terms, which types of rec-
ommendation fragments prevail if two or
more redundant or conflicting fragments
have satisfied their presentation conditions.

Candidate Evaluator (Ceval)

Ceval is the run-time inference engine that
executes the knowledge bases developed
using Ceved. It presents the questions to the
users, inputs their answers, scores and rates
the dimensions of the dimension hierarchy
based on these answers, and presents a final
recommendation to the user based on the
dimension ratings and the recommendation
presentation strategy.

Ceval’s inference behavior can be described
as a weighted depth-first traversal of the
dimension hierarchy. First, contextual ques-
tions are asked to determine the weights of
the various dimensions in the hierarchy. If
the resulting weight of any dimension is zero,
this dimension and its subtree are pruned
from the search, thereby reducing the

Articles

106 AI MAGAZINE

Question

Question Set

Answers

What is the level of price controls in the host 
country?

Commercial Risk 15%

Extensive
Moderate
Low
None

0.00
40.0
70.0

100.0

Weight

Score

Figure 6. A Sample Evaluative Question Entry Screen in Ceved. 
The developer uses this screen to enter the question’s text, weight, possible answers
and corresponding scores, and the dimension (question set) to which the question
belongs.



fragments appear after more detailed recom-
mendations, recommendation fragment 3 is
displayed before recommendation fragment 2.

Ceval allows the user to specify whether s/he
wants detailed explanations to appear during
the question-and-answer process and determine
whether s/he wants the recommendations to
appear after each score propagation or only at
the end of the entire consultation. In addition,
the user can save a consultation for rerunning
at a future time and can save recommenda-
tions that result from these consultations.

Strengths and Weaknesses of 
Ceved-Ceval
As mentioned earlier, one strength of the
Ceved-Ceval shell is its ease of use for non-
programming domain experts. At CIBER, we
have found that the development of expert
systems is greatly facilitated by the use of this
and other task-specific architecture–oriented
shells. Our use of task-specific architectures
speeds knowledge acquisition and expert
system development because the domain
expert is directly involved in encoding his
(her) knowledge on the computer. Figure 3
illustrates how the domain expert interacts
with Ceved to encode his(her) knowledge.

Another strength is that explanation in

Ceval is expressed in terms of the evaluation
task, making it easier for the end user to com-
prehend. When a user asks why a particular
recommendation is given, the system responds
by indicating the score-rating of the dimen-
sion(s) that resulted in the recommendation.
The user can then get further information
about the subdimensions or questions that
led to this score-rating. Also, the user is shown
how important the various dimensions and
questions are and how these importance
levels were obtained. Thus, the structure of
the candidate evaluation architecture causes
explanations that are expressed in terms of
evaluative reasoning rather than in terms of
rule tracing, as in general-purpose shells.

These two strengths result from the task-
specific nature of the shell. However, task
specificity also leads to a lack of flexibility.
Obviously, not all tasks are evaluative in
nature. Ceved-Ceval cannot handle non-eval-
uative tasks. Other shells are needed.

You might notice that the imposition of
multiple-choice answers causes the system to
be noncontinuous. In fact, the boundary
problem cited by Berliner and Ackley is not
solved using this tool. However, the fragility
problem is solved because of the use of a
weighted scoring scheme. In addition, despite
the lack of true continuity, there are two char-

Ceval is the
run-time
interference
engine that
executes the
knowledge
bases 
developed
using Ceved.

Articles

FALL 1991    107

Foreign
Subsidiary

Performance

Subisdiary -
Parent

Relationship

Country
Environment

Market
Opportunity

Company
Factors

Political
Risk

Commercial
Risk

Financial Technical Management Market
Segmentation

Market
Size

Market
Share

Market
Segmentation

Max Score: 100
Min Score:    15
Rating: UNKNOWN

Max Score: 100
Min Score:    50
Rating: UNKNOWN

Score:  100
Rating: LOW

Figure 7. A Possible Scenario of Score Propagation Part Way through a Ceval Consultation.
Here, the user has just completed the Political Risk portion, scoring 100 percent. Rating is known for Political Risk,
and max and min scores propagate up the tree. Ratings are still unknown at higher levels in the hierarchy.



shell that implements the candidate evalua-
tion architecture called Ceved-Ceval.

Ceved and Ceval provide an easy way to
develop and implement interactive expert
systems for candidate evaluation tasks. Ceved
provides the development interface for easy
knowledge acquisition and representation of
evaluative expertise. Ceval provides a consul-
tation environment for asking questions and
providing recommendations to end users.

This shell was used to develop expert sys-
tems in several areas of international market-
ing, including freight forwarder evaluation,
company-readiness-to-export assessment, for-
eign distributor evaluation, foreign subsidiary
evaluation, joint-venture partner selection,
and the assessment of product standardiza-
tion feasibility. In addition, the shell was
used to develop a management consulting
tool for evaluating a company’s corporate
logistics strategies.

Ceved and Ceval were written in AION ADS

and run on a PC/AT platform.

Acknowledgments

My thanks go to S. Tamer Cavusgil, executive
director of MSU CIBER, Professors Jon Sticklen,
Carl Page, and George Stockman of MSU’s
Computer Science Department, William
McCarthy of MSU’s Accounting Department,
Stephen Schon of Kennen International, and

acteristics of the candidate evaluation archi-
tecture that give it a pseudocontinuous
flavor. First, the mapping of answers to scores
allows for ratio representation, not merely
nominal or ordinal. Second, contextual
weight adjustment significantly increases the
number of possible points in the evaluation
space.

Nevertheless, limiting the user input to
multiple-choice format is a weakness in the
architecture. At CIBER, we are currently work-
ing to improve the flexibility of the shell,
with the aim of allowing the user to type in
numeric answers that can be mapped onto
scores using continuous functions.

Conclusion
Task-specific architectures are a growing area
in AI research and practice. They aid in all
phases of expert system development, from
knowledge acquisition and problem analysis
to the development of performance systems.
This article briefly discussed the task-specific
architecture approach to knowledge engineer-
ing and its implications for knowledge acqui-
sition and compared two methods for the
task of evaluation (truth tables and linear
models). It then described a new task-specific
architecture called candidate evaluation,
which incorporates both evaluative methods
into a domain-independent framework and a

Articles

108 AI MAGAZINE

Excellent

Moderate

Poor

Excellent

Moderate

Poor

Low

Moderate

High

Foreign
Subsidiary

Market
Opportunity

Country
Environment

Political
Risk

Commercial
Risk

Rec #1

Rec #2

Rec #3

Suppress

Figure 8. Dimension Ratings and Recommendation Fragments.
These ratings and fragments are linked using trigger-condition links (dashed lines). Recommendation fragments can
be linked to each other using suppression links. Suppression links help prevent redundant or conflicting recommenda-
tion fragments from appearing in the same recommendation.



Omar K. Helferich of A. T. Kearney, Inc., for
their valuable insights and support. Funding
for this research was partially provided by
grants from the U.S. Department of Education
and Ameritech, Inc. Software development
assistance was provided by the programming
staff at A. T. Kearney, Inc.

References
Beggs, D., and Lewis, E. 1975. Measurement and
Evaluation in the Schools. Boston: Houghton Mifflin.

Berliner, H. 1979. On the Construction of Evalua-
tion Functions for Large Domains. In Proceedings
of the Sixth International Joint Conference on Arti-
ficial Intelligence, 53–55. Menlo Park, Calif.: Inter-
national Joint Conferences on Artificial Intelligence.

Berliner, H. 1977. Experiences in Evaluation with
BKG—A Program That Plays Backgammon. In Pro-
ceedings of the Fifth International Joint Conference
on Artificial Intelligence, 428–433. Menlo Park,
Calif.: International Joint Conferences on Artificial
Intelligence.

Berliner, H., and Ackley, D. 1982. The QBKG System:
Generating Explanations from a Non-Discrete
Knowledge Representation. In Proceedings of the
Second National Conference on Artificial Intelli-
gence, 213–216. Menlo Park, Calif.: American Asso-
ciation for Artificial Intelligence.

Brown, D., and Chandrasekaran, B. 1986. Knowl-
edge and Control for a Mechanical Design Expert
System. IEEE Expert 1(7): 92–100.

Bylander, T., and Chandrasekaran, B. 1987. Generic
Tasks in Knowledge-Based Reasoning: The “Right”
Level of Abstraction for Knowledge Acquisition.
The International Journal of Man-Machine Studies
26:231–243.

Bylander, T.; Goel, A.; and Johnson, T. 1989. Struc-
tured Matching: A Computationally Feasible Tech-
nique for Making Decisions, Working Paper, The
Ohio State Univ.

Chandrasekaran, B. 1986. Generic Tasks in Knowl-
edge-Based Reasoning: High-Level Building Blocks
for Expert System Design. IEEE Expert 1(3): 23–30.

Chandrasekaran, B. 1983. Toward a Taxonomy of
Problem-Solving Types. AI Magazine 4:9–17.

Chung, H. 1989. Empirical Analysis of Inductive
Knowledge-Acquisition Methods. SIGART Newsletter
(Special Issue on Knowledge Acquisition) 108:156–159.

Chung, H. 1987. A Comparative Simulation of
Expert Decisions: An Empirical Study, Information
Systems Working Paper, 5-88, Anderson Graduate
School of Management, Univ. of California at Los
Angeles.

Clancey, W. J. 1985. Heuristic Classification. Artifi-
cial Intelligence 27:289–350.

Dawes, R., and Corrigan, B. 1979. Linear Models in
Decision Making. Psychological Bulletin 81(2): 95–106.

Edwards, W., and Newman, J. 1982. Multiattribute
Evaluation. Beverly Hills, Calif.: Sage.

Gaschnig, J.; Klahr, P.; Pople, H.; Shortliffe, E.; and
Terry, A. 1983. Evaluation of Expert Systems: Issues
and Case Studies. In Building Expert Systems, eds. F.
Hayes-Roth, D. Waterman, and D. Lenat, 241–280.
Reading, Mass.: Addison-Wesley.

Newell, A. 1982. The Knowledge Level. AI Journal
19(2): 87–127.

O’Keefe, R. 1989. The Evaluation of Decision-
Aiding Systems: Guidelines and Methods. Informa-
tion and Management: The International Journal of
Information Systems Applications 17(4): 217–226.

Punch, W.; Tanner, M.; Josephson, J.; and Smith, J.
1990. PEIRCE: A Tool for Experimenting with Abduc-
tion. IEEE Expert 5(5): 34–44.

Samuel, A. 1967. Some Studies in Machine Learning
Using the Game of Checkers. II—Recent Progress.
IBM Journal of Research and Development 11(11):
601–617.

Samuel, A. 1959. Some Studies in Machine Learning
Using the Game of Checkers. IBM Journal of
Research and Development 3:211–229.

Schiffman, L., and  Kanuk, L. 1987. Consumer
Behavior. Englewood Cliffs, N.J.: Prentice-Hall.

Steels, L. 1990. Components of Expertise. AI Maga-
zine 11(2): 29–49.

Sticklen, J.; Chandrasekaran, B.; and Bond, W.
1989. Distributed Causal Reasoning. Knowledge
Acquisition 1:139–162.

Sticklen, J.; Smith, J.; Chandrasekaran, B.; and
Josephson, J. 1987. Modularity of Domain Knowl-
edge. International Journal of Expert Systems: Research
and Applications 1:1–15.

Wright, P. L. 1975. Consumer Choice Strategies:
Simplifying vs. Optimizing. Journal of Marketing
Research 12:60–67.

Michel Mitri is a senior
knowledge engineer at the
Center for International
Business Education and
Research (CIBER) at Michigan
State University (MSU), where
he designs expert system
software for international
marketing applications. He is
a Ph.D. candidate in com-
puter science at MSU, major-

ing in AI. He is also a founding partner of Kennen
International, a firm devoted to providing consult-
ing services and decision support software for inter-
national business. Mitri is the developer of the
Ceved and Ceval programs.

Articles

FALL 1991    109




