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Penguins Can Make Cake 
David Chapman 

Until quite recently, it was taken for granted 
in AI-and cognitive science more broadly- 
that activity resulted from the creation and 
execution of plans. In 1985, several researchers, 
including myself, independently realized that 
plans and planning are not necessary-or 
necessarily useful-in activity. Since this 
time, a number of alternatives have been pro- 
posed. In this issue of AI Magazine, Matthew 
Ginsberg, in “Universal Planning: An (Almost) 
Universally Bad Idea,” analyzes one such 
alternative, Marcel Schoppers’s universal 
plans. He also extends this analysis to a 
number of other systems, including Pengi 
(A~gre and Chapman 1987), which was 
designed by Phil Agre and myself. 

Ginsberg’s criticisms of universal plans rest 
on computational complexity arguments. 
Using universal plans, he says, is infeasible 
because their size is exponential in the 
number of possible domain states. Represent- 
ing such a plan is infeasible in even quite 
small realistic domains. I’m sympathetic to 
such arguments, having made similar ones to 

The Counting Argument 
Ginsberg defines a universal plan as a mathe- 
matical function from situations to actions 
and defines situations as vectors of instanta- 
neous sensor readings. At the heart of the 
article is a counting argument, the conclu- 
sion of which is that the expected size of a 
universal plan is exponential in the number 
of sensors. Presumably, in realistic cases, the 
number of sensors is large enough that a uni- 
versal plan could not fit in your head. 

There are two reasons not to be concerned 
about this apparent problem. They involve 
structure and state, 
respectively. 

the effect that classical planning is 
infeasible (Agre and Chapman 1988; 
Chapman 1987b). 

I don’t understand the details of 
Schoppers’s ideas, so I’m not sure 
whether this critique of universal 
plans per se is correct. However, I 
show that these arguments do not 
extend to Pengi. Ginsberg calls Pengi an 
approximate universal plan, by which he 
means it is like a universal plan except that it 
does not correctly specify what to do in every 
situation. However, Pengi’s operation 
involves no plans, universal or approximate, 
and Pengi and universal plans, although they 
share some motivations, have little to do 
with each other as technical proposals. (A 
common related misapprehension is that 
Pengi is reactive. It isn’t.) 
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problem . . . 
cuit to compute an 
arbitrary function is 
exponential in the 
number of its inputs. 
This analysis is 
equally applicable to 
any other computa- 
tional problem. Thus, 
you could conclude 
that vision is impos- 
sible because it 
requires exponential 
computation in the number of pixels or that, 
on the average, business data processing takes 
exponential work in the number of records. 
However, neither vision nor data processing 
tasks are arbitrary functions. They have a lot 
of structure to them, and this structure can be 
exploited to exponentially reduce the compu- 
tation’s size. 

Many theoretically possible inputs are 
impossible under the rules of the domain, 
and the remainder can be categorized rela- 
tively cheaply to permit abstraction and 
modularity in their processing. There is every 
reason to think that this same structure is 
present in the relationship between percep- 
tion and activity. Indeed, Ginsberg makes this 
point himself in arguing for planning: “Our 
environment behaves in predictable ways; 
[planning couldn’t work if] there were no 
rhyme or reason to things.” Describing and 
exploiting such regularities is most of the 
work in designing a system such as Pengi. For 
further discussion of the sorts of structure 
found in activity and how it can be exploited, 
see Agre 1985b, 1988a and 1988b and Agre 
and Chapman 1988. 

Pengi maintains state (in its visual system), 
so it does not always act the same way given 
identical sensor readings. This second reason 
also explains why the counting argument 
does not apply. Whereas a universal plan is a 
pure mathematical function from sense vec- 
tors to actions (and, hence, does not involve 
state), state is important to Pengi’s operation. 
John Tsotsos (1989) showed that if vision 
were computed bottom up (without state) 
and without constraints on possible inputs, it 
would indeed take exponential circuitry. 
However, the addition of a small amount of 
state can cut this expotential down to a linear 

function of the 
number of pixels. 
Pengi’s visual system 
is quite similar to 
the one Tsotsos pro- 
poses and uses state 
in just this way. 

Blockhead 
Ginsberg suggests 
that the fruitcake 
problem is not 
amenable to univer- 
sal plans and so by 
implication not to 
the approach taken 
in Pengi. In this sec- 
tion, I describe a 
Pengi-like system, 

Blockhead, which efficiently solves the fruit- 
cake problem; the way it solves it elucidates 
what is problematic about both universal 
plans and planning itself. 

The fruitcake problem is to stack a set of 
labeled blocks so that they spell the word 
fruitcake. What is apparently difficult about 
this problem is that the number of situations 
is factorial in the number of blocks. I show 
Blockhead solving a problem involving 45 
blocks in which there are 45! = 1056 configu- 
rations, all of them legal. Blockhead acts cor- 
rectly in every configuration, so it is not by 
approximation that it succeeds. 

Blockhead has two parts, a visual system 
and a central system. The power of the archi- 
tecture lies in the interactions between these 
components, not in either individually. The 
visual system is a small subset of Pengi’s 
system, which was inspired by Shimon 
Ullman’s (1984) visual routines theory. The 
central system is a simple digital circuit (152 
gates). The interface between the two systems 
is intended to be as realistic as possible. The 
internals of the visual system are not realistic, 
however; although it conceptually takes pixel 
arrays as input, it actually has direct access to 
the blocks world data structures, which made 
the implementation much easier. 

Central to Blockhead’s visual system is a 
limited set of visual markers. Visztal markers 
are pointers into the retinal image; they locate 
points of particular interest. All of Block- 
head’s access to the image is through these 
markers; unmarked regions of the image are 
effectively invisible. The visual system can 
move the markers around as directed by the 
central system and can tell the central system 
about properties of the marked locations. In 
particular, for each marker, it tells the central 
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Figure 1. Finding the Bottom of the Stack to Copy in the Initial Situation. 

system whether this marker is over a block, 
the table, or free space. If it is over a block, it 
can tell what label is on the block. It can also 
tell whether two markers are coincident; that 
is, whether they mark the same point. The 
marker locations are the principal form of 
state Blockhead maintains. 

The visual system provides four operators 
for moving marks around. It can warp one 
marker onto another, so that the two are 
coincident. It can walk a marker a specified 
distance from its current position in a speci- 
fied direction. It can jump a marker to the 
next item in a given direction, ignoring what- 
ever free space is in between. If nothing is in 
this direction, the visual system informs the 
central system that the operator has failed. 
Finally, the visual system can find a point in 
the image that has specified properties and 
drop a marker on it. You can specify that the 
point must be in free space or in the table or 
in a block; in the last case, you can specify 
which (alphabetic) label the block must have 
on it. 

With one exception, Blockhead’s visual 
system is domain independent and compati- 
ble with available neurophysiological data 
and can be efficiently implemented on a par- 
allel architecture. There is also considerable 
psychophysical evidence that Blockhead’s 
visual primitives are available as primitives in 
the human visual system (Chapman 1989b; 
Ullman 1984). The exception is the ability to 
primitively manipulate alphabetic labels. 
However, colors, which can be primitively 

manipulated by the human visual system, 
could be substituted for letters, resulting in a 
formally isomorphic problem. 

Blockhead’s effector system consists of only 
the traditional puton action. The two argu- 
ments are specified by means of visual markers. 

To make the problem more interesting, I 
generalized it somewhat: Blockhead will actu- 
ally copy an arbitrary stack of blocks given to 
it as a model. Specifically, it copies the right- 
most stack that is visible. (This generalization 
doesn’t make the problem any easier; it would 
be a small modification to the system to solve 
the problem as stated.) 

The first thing that Blockhead needs to do 
to solve a stack-copying problem is to find 
the stack to copy. Specifically, it needs to find 
the bottom of the stack because it will build 
the copy bottom up. First, it uses the finding 
operator to put a marker on an arbitrary 
block. In figure 1, this marker appears as an 
inverse-video square. In general, the block 
found might be at any height in a tower; the 
next objective is to find a block that is on the 
table. Blockhead accomplishes this task by 
walking the marker downward, moving a 
block’s height at a time, until the visual system 
reports that it is into the table (a primitively 
sensible condition). At this point, Blockhead 
knows it has gone too far and walks the 
marker up again, onto the block that is rest- 
ing on the table. Then, Blockhead repeatedly 
uses the free-space jumping operator to move 
the marker right. When jumping fails, the 
system knows that the square marker is, in 
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Figure 2. Finding the Top of the Junk on the Desired Block. 

fact, on the bottom of the stack to be copied. 
The next step is to locate a block that can 

be the bottom of the new tower. This block 
has to have the same label as the one that the 
system has already marked, in this case, e. 
The system gives this label to the finding 
operator, thereby finding a block of the 
desired sort. A second marker, represented by 
a downward-pointing triangle, is used to label 
this block (figure 2). 

This block might be under a heap of junk 
that must be cleared away. A third marker, 
appearing as an upward-pointing triangle, is 
used to find the top of the stack in which the 
desired block appears. This marker is first warp- 
ed to the upward marker, then is repeatedly 
walked upward until it is found to be hanging 
in midair. Then it is walked back down onto 
what the system now knows is the top block. 

If the two triangular markers are coinci- 
dent at this point, Blockhead knows that the 
desired block has a clear top. Otherwise, it 
puts the block under the downward marker 
on the table. It keeps a fourth, cruciform 
marker on the table at all times; it puts it 
there using the finding operator right after 
the system is started up. Thus, giving the 
puton effector the downward and cruciform 
markers as arguments removes the junk. 

Blockhead then warps the downward 
marker back to the upward marker in case 
more than one block was on top of the 
desired one and repeats this junk-clearing 

routine until the 
desired block is 
found to have a 
clear top. 

Now, the desired 
block can be put 
into place. At first, 
this place is on the 
table; after this 
point, it is at the top 
of the growing copy 
stack. Another, 
hexagonal marker is 
needed to keep track 
of this stack. Initial- 
ly, Blockhead puts 
this marker on the 
table; as it adds each 
block to the copy 
stack, it warps this 
marker there. 
When a block is put 
in place on the new 
stack, Blockhead 
needs to know 
which is the next 
block to be copied; 

so, the square marker is walked up a block’s 
height. If it is over empty space, the system 
knows it is done (figure 3). Otherwise, it’s 
time to locate another block with the same 
label, as Blockhead did previously to copy the 
bottom block. Thus, it repeats the whole 
single block- copying routine I just 
described. 

Discussion 
Why did the fruitcake problem seem difficult 
for universal plans, and why is it easy for 
Blockhead? I believe that what makes the 
problem seem hard is representation and 
what makes it easy is vision. 

Representation is generally thought to 
make problems easy; if a problem seems hard, 
you probably need more representation. In 
concrete activity, however, representation 
mostly just gets in the way. Virtually every AI 
approach to the fruitcake problem would 
start with a database of expressions such as 
(ON B0648 B1673), (CLEARTOP B0097), and 
(LABEL-OF B0944 “a”). Representing situations 
this way differentiates a “skillion” different 
states that you have to be able to decide what 
to do with, which leads to a combinatorial 
explosion. This explosion occurs in classical 
planning as well as in universal plans; plan- 
ners spend most of their time creating, elabo- 
rating, and deriving properties of models of 
possible worlds. 
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Blockhead doesn’t 
have a world model, 
so it doesn’t have to 
reason about it. It 
doesn’t need one 
because almost 
everything in a 
world model is irrel- 
evant to what the 
system is up to. For 
example, if you 
want to dig a block 
out from under 
whatever junk is on 
top of it, you don’t 
care what the junk 
is, you just want to 
dump it all on the 
table. Avoiding rep- 
resenting irrelevant 
distinctions collaps- 
es the state space. 
(See Subramanian 
and Woodfill 1989a, 
1989b for formal 
analysis of this 

d/ 

point.) This collapse is a collaboration of the 
central and visual systems, which together 
selectively throw away most of the informa- 
tion present in the visual scene. Although any 
part of the scene can be addressed, only 
what’s currently useful is retained in choosing 
what to do. 

People concerned with action usually think 
of vision as a hindrance. It doesn’t give you 
the expressional sort of representations you 
want, and it’s unreliable; so, the more you 
can avoid thinking about it the better. I find 
that taking vision seriously often actually 
helps. In this case, applying a serious theory 
of visual attention tells us that although the 
visual system supplies as a primitive the abili- 
ty to track a handful of items using visual 
markers, representing more items would 
require considerably more work. Thus, it is 
clear that you should represent as little as pos- 
sible, only what’s relevant to your purposes. 

Of course, Blockhead’s visual system is far 
from serious in general; it ignores most of the 
interesting issues, such as segmentation and 
shape matching and noise tolerance and the 
representation of motion patterns. I think, 
though, that taking seriously such issues - 
and analogous issues in effector systems- 
might make many other apparently difficult 
problems in activity easy. 

Blockhead is a trivial system that I wrote in 
one day to solve a trivial problem; any archi- 
tecture in which the fruitcake problem is not 
trivial would indeed be deficient. Blockhead 

Figure 3. Copying Completed. 

does not display most of the interesting fea- 
tures of the architecture it shares with Pengi. 
Pengi is nontrivial because its domain is non- 
trivial; no planner could survive in it. 

I think the best criticisms of Pengi are that 
it is domain specific, its performance doesn’t 
improve with practice, and it is blind in the 
face of certain sorts of novel situations. How- 
ever, these are limitations in Pengi, not in the 
research program of which it is one product. 
An ability to acquire new skills from practice 
might address all three of these criticisms. 
Agre and I have been centrally concerned 
with this issue from the beginning (Agre 1985a, 
1988a; Chapman and Agre 1987), and in fact, 
Pengi’s architecture is motivated as strongly 
by concerns of learnability as by those of real- 
time activity. We are continuing research on 
skill acquisition (Chapman 1987a, 1989b). 

Pengi and Planning 
The aim of this article was to show that Gins- 
berg’s critique of universal plans does not 
apply to Pengi or similar systems. This critique 
is motivated by a largely implicit comparison 
between universal plans and classical planning. 
In reply, I sketch just briefly the relationship 
between Pengi and planning. 

Pengi and planning are not strictly compa- 
rable because they have different aims. Plan- 
ners are designed to solve problems; technically 
defined, a problem is a sort of logical puzzle 
that can be solved once and for all. Pengi is 
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designed to lead a life. Pengi’s world, like 
ours, is not a problem to be solved but an on- 
going web of recurring opportunities to engage 
in sorts of activity. Per-@ architecture is good 
at getting about in the world but not good at 
solving problems. Planners, being designed to 
solve problems, are not good at leading lives. 

There are many tasks in which plan using 
and plan making are necessary. It is not yet 
clear to me, however, how to study them. 
Since the first wave of nonplanning systems 
appeared, many researchers have proposed 
hybrid systems coupling a classical planner 
with a reactive system. This alternative seems 
to me to combine the worst features of both 
approaches. As currently understood, plan- 
ning is so inherently expensive-and reactive 
systems so inherently myopic-that even in 
combination they are useless. 

I believe that entirely new ideas about the 
nature of plans and their use are needed and 
that these ideas must come from the careful 
study of human plan use. Preliminary research 
(Agre and Chapman 1988; Chapman and Agre 
1987; Chapman 1989a, 1989b; Agre 1988b) 
suggests that the relationship between plans 
and activity is much more subtle and inter- 
esting than was previously understood. Plans 
are not simply executed but are used flexibly 
and creatively. Much of the work of using a 
plan is figuring out how to make its text rele- 
vant to the concrete situation in front of you. 
Because plan users are intelligent agents who 
can be depended on to act sensibly, plans can 
be drastically simpler than the activity they 
describe; they need only specify what to do 
when the right course of action is not clear. 
Because plans do not have to specify most of 
what you will do, they can be much easier to 
make. Because plans are not solutions to prob- 
lems, the computational intractability of clas- 
sical planning can be avoided. 
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