
Articles

Penguins Can Make Cake
David Chapman

Until quite recently, it was taken for granted
in AI-and cognitive science more broadly-
that activity resulted from the creation and
execution of plans. In 1985, several researchers,
including myself, independently realized that
plans and planning are not necessary-or
necessarily useful-in activity. Since this
time, a number of alternatives have been pro-
posed. In this issue of AI Magazine, Matthew
Ginsberg, in “Universal Planning: An (Almost)
Universally Bad Idea,” analyzes one such
alternative, Marcel Schoppers’s universal
plans. He also extends this analysis to a
number of other systems, including Pengi
(A~gre and Chapman 1987), which was
designed by Phil Agre and myself.

Ginsberg’s criticisms of universal plans rest
on computational complexity arguments.
Using universal plans, he says, is infeasible
because their size is exponential in the
number of possible domain states. Represent-
ing such a plan is infeasible in even quite
small realistic domains. I’m sympathetic to
such arguments, having made similar ones to

The Counting Argument
Ginsberg defines a universal plan as a mathe-
matical function from situations to actions
and defines situations as vectors of instanta-
neous sensor readings. At the heart of the
article is a counting argument, the conclu-
sion of which is that the expected size of a
universal plan is exponential in the number
of sensors. Presumably, in realistic cases, the
number of sensors is large enough that a uni-
versal plan could not fit in your head.

There are two reasons not to be concerned
about this apparent problem. They involve
structure and state,
respectively.

the effect that classical planning is
infeasible (Agre and Chapman 1988;
Chapman 1987b).

I don’t understand the details of
Schoppers’s ideas, so I’m not sure
whether this critique of universal
plans per se is correct. However, I
show that these arguments do not
extend to Pengi. Ginsberg calls Pengi an
approximate universal plan, by which he
means it is like a universal plan except that it
does not correctly specify what to do in every
situation. However, Pengi’s operation
involves no plans, universal or approximate,
and Pengi and universal plans, although they
share some motivations, have little to do
with each other as technical proposals. (A
common related misapprehension is that
Pengi is reactive. It isn’t.)
073%4602/X9/$3 50 01989 AAAI

\
4

WINTER 1989 45

AI Magazine Volume 10 Number 4 (1989) (© AAAI)

Articles

. . . a Pengi- Nothing in the

like system,
counting argument
deoends on the

Blockhead, 1 mapping being from

efFciently sense vectors to
actions. It is really a

solves the proof that the size

f?ui tcake of the smallest cir-

problem . . .
cuit to compute an
arbitrary function is
exponential in the
number of its inputs.
This analysis is
equally applicable to
any other computa-
tional problem. Thus,
you could conclude
that vision is impos-
sible because it
requires exponential
computation in the number of pixels or that,
on the average, business data processing takes
exponential work in the number of records.
However, neither vision nor data processing
tasks are arbitrary functions. They have a lot
of structure to them, and this structure can be
exploited to exponentially reduce the compu-
tation’s size.

Many theoretically possible inputs are
impossible under the rules of the domain,
and the remainder can be categorized rela-
tively cheaply to permit abstraction and
modularity in their processing. There is every
reason to think that this same structure is
present in the relationship between percep-
tion and activity. Indeed, Ginsberg makes this
point himself in arguing for planning: “Our
environment behaves in predictable ways;
[planning couldn’t work if] there were no
rhyme or reason to things.” Describing and
exploiting such regularities is most of the
work in designing a system such as Pengi. For
further discussion of the sorts of structure
found in activity and how it can be exploited,
see Agre 1985b, 1988a and 1988b and Agre
and Chapman 1988.

Pengi maintains state (in its visual system),
so it does not always act the same way given
identical sensor readings. This second reason
also explains why the counting argument
does not apply. Whereas a universal plan is a
pure mathematical function from sense vec-
tors to actions (and, hence, does not involve
state), state is important to Pengi’s operation.
John Tsotsos (1989) showed that if vision
were computed bottom up (without state)
and without constraints on possible inputs, it
would indeed take exponential circuitry.
However, the addition of a small amount of
state can cut this expotential down to a linear

function of the
number of pixels.
Pengi’s visual system
is quite similar to
the one Tsotsos pro-
poses and uses state
in just this way.

Blockhead
Ginsberg suggests
that the fruitcake
problem is not
amenable to univer-
sal plans and so by
implication not to
the approach taken
in Pengi. In this sec-
tion, I describe a
Pengi-like system,

Blockhead, which efficiently solves the fruit-
cake problem; the way it solves it elucidates
what is problematic about both universal
plans and planning itself.

The fruitcake problem is to stack a set of
labeled blocks so that they spell the word
fruitcake. What is apparently difficult about
this problem is that the number of situations
is factorial in the number of blocks. I show
Blockhead solving a problem involving 45
blocks in which there are 45! = 1056 configu-
rations, all of them legal. Blockhead acts cor-
rectly in every configuration, so it is not by
approximation that it succeeds.

Blockhead has two parts, a visual system
and a central system. The power of the archi-
tecture lies in the interactions between these
components, not in either individually. The
visual system is a small subset of Pengi’s
system, which was inspired by Shimon
Ullman’s (1984) visual routines theory. The
central system is a simple digital circuit (152
gates). The interface between the two systems
is intended to be as realistic as possible. The
internals of the visual system are not realistic,
however; although it conceptually takes pixel
arrays as input, it actually has direct access to
the blocks world data structures, which made
the implementation much easier.

Central to Blockhead’s visual system is a
limited set of visual markers. Visztal markers
are pointers into the retinal image; they locate
points of particular interest. All of Block-
head’s access to the image is through these
markers; unmarked regions of the image are
effectively invisible. The visual system can
move the markers around as directed by the
central system and can tell the central system
about properties of the marked locations. In
particular, for each marker, it tells the central

46 AI MAGAZINE

A? tides

F
r Y ll
i

Figure 1. Finding the Bottom of the Stack to Copy in the Initial Situation.

system whether this marker is over a block,
the table, or free space. If it is over a block, it
can tell what label is on the block. It can also
tell whether two markers are coincident; that
is, whether they mark the same point. The
marker locations are the principal form of
state Blockhead maintains.

The visual system provides four operators
for moving marks around. It can warp one
marker onto another, so that the two are
coincident. It can walk a marker a specified
distance from its current position in a speci-
fied direction. It can jump a marker to the
next item in a given direction, ignoring what-
ever free space is in between. If nothing is in
this direction, the visual system informs the
central system that the operator has failed.
Finally, the visual system can find a point in
the image that has specified properties and
drop a marker on it. You can specify that the
point must be in free space or in the table or
in a block; in the last case, you can specify
which (alphabetic) label the block must have
on it.

With one exception, Blockhead’s visual
system is domain independent and compati-
ble with available neurophysiological data
and can be efficiently implemented on a par-
allel architecture. There is also considerable
psychophysical evidence that Blockhead’s
visual primitives are available as primitives in
the human visual system (Chapman 1989b;
Ullman 1984). The exception is the ability to
primitively manipulate alphabetic labels.
However, colors, which can be primitively

manipulated by the human visual system,
could be substituted for letters, resulting in a
formally isomorphic problem.

Blockhead’s effector system consists of only
the traditional puton action. The two argu-
ments are specified by means of visual markers.

To make the problem more interesting, I
generalized it somewhat: Blockhead will actu-
ally copy an arbitrary stack of blocks given to
it as a model. Specifically, it copies the right-
most stack that is visible. (This generalization
doesn’t make the problem any easier; it would
be a small modification to the system to solve
the problem as stated.)

The first thing that Blockhead needs to do
to solve a stack-copying problem is to find
the stack to copy. Specifically, it needs to find
the bottom of the stack because it will build
the copy bottom up. First, it uses the finding
operator to put a marker on an arbitrary
block. In figure 1, this marker appears as an
inverse-video square. In general, the block
found might be at any height in a tower; the
next objective is to find a block that is on the
table. Blockhead accomplishes this task by
walking the marker downward, moving a
block’s height at a time, until the visual system
reports that it is into the table (a primitively
sensible condition). At this point, Blockhead
knows it has gone too far and walks the
marker up again, onto the block that is rest-
ing on the table. Then, Blockhead repeatedly
uses the free-space jumping operator to move
the marker right. When jumping fails, the
system knows that the square marker is, in

WINTER 1989 47

Articles

Figure 2. Finding the Top of the Junk on the Desired Block.

fact, on the bottom of the stack to be copied.
The next step is to locate a block that can

be the bottom of the new tower. This block
has to have the same label as the one that the
system has already marked, in this case, e.
The system gives this label to the finding
operator, thereby finding a block of the
desired sort. A second marker, represented by
a downward-pointing triangle, is used to label
this block (figure 2).

This block might be under a heap of junk
that must be cleared away. A third marker,
appearing as an upward-pointing triangle, is
used to find the top of the stack in which the
desired block appears. This marker is first warp-
ed to the upward marker, then is repeatedly
walked upward until it is found to be hanging
in midair. Then it is walked back down onto
what the system now knows is the top block.

If the two triangular markers are coinci-
dent at this point, Blockhead knows that the
desired block has a clear top. Otherwise, it
puts the block under the downward marker
on the table. It keeps a fourth, cruciform
marker on the table at all times; it puts it
there using the finding operator right after
the system is started up. Thus, giving the
puton effector the downward and cruciform
markers as arguments removes the junk.

Blockhead then warps the downward
marker back to the upward marker in case
more than one block was on top of the
desired one and repeats this junk-clearing

routine until the
desired block is
found to have a
clear top.

Now, the desired
block can be put
into place. At first,
this place is on the
table; after this
point, it is at the top
of the growing copy
stack. Another,
hexagonal marker is
needed to keep track
of this stack. Initial-
ly, Blockhead puts
this marker on the
table; as it adds each
block to the copy
stack, it warps this
marker there.
When a block is put
in place on the new
stack, Blockhead
needs to know
which is the next
block to be copied;

so, the square marker is walked up a block’s
height. If it is over empty space, the system
knows it is done (figure 3). Otherwise, it’s
time to locate another block with the same
label, as Blockhead did previously to copy the
bottom block. Thus, it repeats the whole
single block- copying routine I just
described.

Discussion
Why did the fruitcake problem seem difficult
for universal plans, and why is it easy for
Blockhead? I believe that what makes the
problem seem hard is representation and
what makes it easy is vision.

Representation is generally thought to
make problems easy; if a problem seems hard,
you probably need more representation. In
concrete activity, however, representation
mostly just gets in the way. Virtually every AI
approach to the fruitcake problem would
start with a database of expressions such as
(ON B0648 B1673), (CLEARTOP B0097), and
(LABEL-OF B0944 “a”). Representing situations
this way differentiates a “skillion” different
states that you have to be able to decide what
to do with, which leads to a combinatorial
explosion. This explosion occurs in classical
planning as well as in universal plans; plan-
ners spend most of their time creating, elabo-
rating, and deriving properties of models of
possible worlds.

48 AI MAGAZINE

Articles

Blockhead doesn’t
have a world model,
so it doesn’t have to
reason about it. It
doesn’t need one
because almost
everything in a
world model is irrel-
evant to what the
system is up to. For
example, if you
want to dig a block
out from under
whatever junk is on
top of it, you don’t
care what the junk
is, you just want to
dump it all on the
table. Avoiding rep-
resenting irrelevant
distinctions collaps-
es the state space.
(See Subramanian
and Woodfill 1989a,
1989b for formal
analysis of this

d/

point.) This collapse is a collaboration of the
central and visual systems, which together
selectively throw away most of the informa-
tion present in the visual scene. Although any
part of the scene can be addressed, only
what’s currently useful is retained in choosing
what to do.

People concerned with action usually think
of vision as a hindrance. It doesn’t give you
the expressional sort of representations you
want, and it’s unreliable; so, the more you
can avoid thinking about it the better. I find
that taking vision seriously often actually
helps. In this case, applying a serious theory
of visual attention tells us that although the
visual system supplies as a primitive the abili-
ty to track a handful of items using visual
markers, representing more items would
require considerably more work. Thus, it is
clear that you should represent as little as pos-
sible, only what’s relevant to your purposes.

Of course, Blockhead’s visual system is far
from serious in general; it ignores most of the
interesting issues, such as segmentation and
shape matching and noise tolerance and the
representation of motion patterns. I think,
though, that taking seriously such issues -
and analogous issues in effector systems-
might make many other apparently difficult
problems in activity easy.

Blockhead is a trivial system that I wrote in
one day to solve a trivial problem; any archi-
tecture in which the fruitcake problem is not
trivial would indeed be deficient. Blockhead

Figure 3. Copying Completed.

does not display most of the interesting fea-
tures of the architecture it shares with Pengi.
Pengi is nontrivial because its domain is non-
trivial; no planner could survive in it.

I think the best criticisms of Pengi are that
it is domain specific, its performance doesn’t
improve with practice, and it is blind in the
face of certain sorts of novel situations. How-
ever, these are limitations in Pengi, not in the
research program of which it is one product.
An ability to acquire new skills from practice
might address all three of these criticisms.
Agre and I have been centrally concerned
with this issue from the beginning (Agre 1985a,
1988a; Chapman and Agre 1987), and in fact,
Pengi’s architecture is motivated as strongly
by concerns of learnability as by those of real-
time activity. We are continuing research on
skill acquisition (Chapman 1987a, 1989b).

Pengi and Planning
The aim of this article was to show that Gins-
berg’s critique of universal plans does not
apply to Pengi or similar systems. This critique
is motivated by a largely implicit comparison
between universal plans and classical planning.
In reply, I sketch just briefly the relationship
between Pengi and planning.

Pengi and planning are not strictly compa-
rable because they have different aims. Plan-
ners are designed to solve problems; technically
defined, a problem is a sort of logical puzzle
that can be solved once and for all. Pengi is

WINTER 1989 49

Articles

. . . entirely
new ideas
about the
nature of

plans and
their use are
needed and

. . . these
ideas must

come f?om the
care@1 study

of human
plan use.

designed to lead a life. Pengi’s world, like
ours, is not a problem to be solved but an on-
going web of recurring opportunities to engage
in sorts of activity. Per-@ architecture is good
at getting about in the world but not good at
solving problems. Planners, being designed to
solve problems, are not good at leading lives.

There are many tasks in which plan using
and plan making are necessary. It is not yet
clear to me, however, how to study them.
Since the first wave of nonplanning systems
appeared, many researchers have proposed
hybrid systems coupling a classical planner
with a reactive system. This alternative seems
to me to combine the worst features of both
approaches. As currently understood, plan-
ning is so inherently expensive-and reactive
systems so inherently myopic-that even in
combination they are useless.

I believe that entirely new ideas about the
nature of plans and their use are needed and
that these ideas must come from the careful
study of human plan use. Preliminary research
(Agre and Chapman 1988; Chapman and Agre
1987; Chapman 1989a, 1989b; Agre 1988b)
suggests that the relationship between plans
and activity is much more subtle and inter-
esting than was previously understood. Plans
are not simply executed but are used flexibly
and creatively. Much of the work of using a
plan is figuring out how to make its text rele-
vant to the concrete situation in front of you.
Because plan users are intelligent agents who
can be depended on to act sensibly, plans can
be drastically simpler than the activity they
describe; they need only specify what to do
when the right course of action is not clear.
Because plans do not have to specify most of
what you will do, they can be much easier to
make. Because plans are not solutions to prob-
lems, the computational intractability of clas-
sical planning can be avoided.

Acknowledgments
This article was improved by comments from Phil
Agre, Rod Brooks, Mike Dixon, Walter Hamscher,
Nils Nilsson, Beth Preston, Jeff Shrager, Penni
Sibun, Michael Travers, Dan Weld, and John Wood-
fill. Thanks also to Matt Ginsberg and Bob Engel-
more for giving me this opportunity to reply.

This article describes research done at the Artifl-
cial Intelligence Laboratory of the Massachusetts
Institute of Technology. Support for the laborato-
ry’s AI research is provided in part by the Defense
Advanced Research Projects Agency of the Depart-
ment of Defense under Office of Naval Research
contract N00014-85-K-0124.

puter Science, Massachusetts Institute of Technology.
Agre, P. 198813. Writing and Representation, MIT
AI WP 315, Dept. of Computer Science, Mas-
sachusetts Institute of Technology.
Agre, P. 1985a Routines, MIT AI Memo 828, Dept.
of Computer Science, Massachusetts Institute of
Technology
Agre, P. 1985b. The Structures of Everyday Life,
MIT AI WP 267, Dept. of Computer Science, Mas-
sachusetts Institute of Technology.
Agre, P., and Chapman, D. 1988. What Are Plans
For? MIT AI Memo 1050, Dept. of Computer Sci-
ence, Massachusetts Institute of Technology.
Revised version to appear in 1990. New Architectures
for Autonomous Agents: Task-Level Decomposition and
Emergent Functionality, ed. Pattie Maes. Cambridge,
Mass.: MIT Press. Forthcoming.
Agre, P., and Chapman, D. 1987. Pengi: An Imple-
mentation of a Theory of Activity. In Proceedings
of the Sixth National Conference on Artificial Intel-
ligence, 268-272. Menlo Park, Calif: American
Association for Artificial Intelligence.
Chapman, D. 1989a. From Planning to Instruction
Use. In Proceedings of the Rochester Planning
Workshop: From Formal Systems to Practical Sys-
tems, 100-104. Rochester, N.Y.: University of
Rochester Department of Computer Science
Chapman, D. 1989b. Instruction Use in Situated
Activity. Ph.D. diss., Dept. of Computer Science,
Massachusetts Institute of Technology. Forthcoming.
Chapman, D. 1987a. Articulation and Experience.
Cambridge, Mass.: MIT.
Chapman, D. 1987b. Planning for Conjunctive
Goals. Artificial Intelligence 32:333-377.
Chapman, D., and Agre, P. 1987. Abstract Reasoning
as Emergent from Concrete Activity. In Reasoning
about Actions and Plans, eds. M. Georgeff and A. Lan-
sky, 411424. San Mateo, Calif.: Morgan Kaufmann.
Subramanian, D., and Woodfill, J. 1989a. Making
Situation Calculus Indexical. In Proceedings of the
First International Conference on Principles of
Knowledge Representation and Reasoning,
467-474. San Mateo, Calif.: Morgan Kaufmann.
Subramanian, D., and Woodfill, J. 1989b. Subjec-
tive Ontologies. In Proceedings of the American
Association for Artificial Intelligence Spring Sympo-
sium on Limited Rationality. Menlo Park, Calif.:
American Association for Artificial Intelligence.
Forthcoming.
Tsotsos, J. 1989. The Complexity of Perceptual
Search Tasks, Technical Report, RBCV-TR-89-28,
Dept. of Computer Science, Univ. of Toronto.
Ullman, S. 1984. Visual Routines. Cognition
18:97-159.

References
Agre, P. 1988a. The Dynamic Structure of Everyday
Life, Technical Report, MIT AI 1087, Dept. of Com-

David Chapman is a graduate student at the MIT
Artificial Intelligence Laboratory.

50 AI MAGAZINE

