
■ In this article, we show how 4D/RCS incorporates
and integrates multiple types of disparate knowl-
edge representation techniques into a common,
unifying architecture. The 4D/RCS architecture is
based on the supposition that different knowledge
representation techniques offer different advan-
tages, and 4D/RCS is designed in such a way as to
combine the strengths of all of these techniques in-
to a common unifying architecture in order to ex-
ploit the advantages of each. In the context of ap-
plying the architecture to the control of
autonomous vehicles, we describe the procedural
and declarative types of knowledge that have been
developed and applied and the value that each
brings to achieving the ultimate goal of au-
tonomous navigation. We also look at symbolic
versus iconic knowledge representation and show
how 4D/RCS accommodates both of these types of
representations and uses the strengths of each to
strive towards achieving human-level intelligence
in autonomous systems.

During the past century, the neuro-
sciences have provided deep insights in-
to the anatomical, physiological, chem-

ical, and computational bases of cognition.
Neuroanatomy has described the structure and
function of the basic computational element of
the brain—the neuron—and produced exten-
sive maps of the computational modules and
interconnecting data flow pathways making up

the anatomy of the brain. Behavioral psychol-
ogy provides information about stimulus-re-
sponse behavior and instrumental condition-
ing. Cognitive psychology is exploring how the
brain represents knowledge; how it perceives
objects, events, situations, and relationships;
how it analyzes the past and plans for the fu-
ture; and how it selects and controls behavior
that satisfies desires and achieves goals

Over the last five decades, the invention of
the electronic computer has brought rapid ad-
vances in computational power, making it fea-
sible to launch serious attempts at building in-
telligent systems. Artificial intelligence and
robotics have produced significant results in
planning, problem solving, rule-based reason-
ing, image analysis, and speech understanding.
Autonomous vehicle research has produced ad-
vances in real-time sensory processing, world
modeling, navigation, path planning, and ob-
stacle avoidance. Research in industrial au-
tomation and process control has produced hi-
erarchical control systems, distributed
databases, and models for representing process-
es and products. Modern control theory has de-
veloped precise understanding of stability,
adaptability, and controllability under various
conditions of uncertainty and noise. Progress is
rapid in each of the above fields, and there ex-
ists an enormous and rapidly growing body of
literature in all of these areas. 

What is lacking is a widely accepted theoret-
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upgrades. IMPRINT has been integrated with
ACT-R to model military behaviors (Archer et
al. 2003). EPIC is an architecture that models
the detailed timing of human perceptual, cog-
nitive, and motor activity, including the in-
put/output characteristics of the nervous sys-
tem connecting the higher-level cognitive
functions to the external world (Kieras and
Meyer 1997). The 4D/RCS architecture is a con-
trol system architecture inspired by a theory of
cerebellar function (Albus 1971). It models the
brain as a hierarchy of goal-directed sensory-in-
teractive intelligent control processes that the-
oretically could be implemented by neural
nets, finite state automata, cost-guided search,
or production rules (Albus 1981).

The 4D/RCS architecture is similar to other
cognitive architectures in that it represents pro-
cedural knowledge in terms of production rules
and represents declarative knowledge in ab-
stract data structures such as frames, classes,
and semantic nets. It differs from other cogni-
tive architectures in that it also includes sig-
nals, images, and maps in its knowledge data-
base, and maintains a tight real-time coupling
between iconic and symbolic data structures in
its world model. The 4D/RCS architecture is al-
so different in its (1) focus on task decomposi-
tion as the fundamental organizing principle;
(2) level of specificity in the assignment of du-
ties and responsibilities to agents and units in
the behavior-generating hierarchy; and (3) em-
phasis on controlling real machines in real-
world environments.

Background of 4D/RCS
The 4D/RCS architecture evolved from the bot-
tom up as a real-time intelligent control system
for real machines operating on real objects in
the real world. The first version of RCS was de-
veloped as a sensory-interactive goal-directed
controller for a laboratory robot (Barbera, Al-
bus, and Fitzgerald). The latter, that is, funda-
mental element is the control loop, which has
a goal, a transition function, a feedback loop,
and an action output such as a force, velocity,
or position. Over the years, RCS has evolved in-
to an intelligent controller for industrial ro-
bots, machine tools, intelligent manufacturing
systems, automated general mail facilities, au-
tomated stamp distribution systems, automat-
ed mining equipment, unmanned underwater
vehicles, and unmanned ground vehicles (Al-
bus 1997, Barbera et al. 1984). The most recent
version of RCS (4D/RCS) embeds elements of
Dickmanns’s (1999) four-dimensional ap-
proach to machine vision within the 4D/RCS
control architecture. The 4D/RCS architecture

ical architecture that can integrate concepts
from all of these different fields into a unified
whole. This article describes the 4D/RCS archi-
tecture and describes how it has been imple-
mented to leverage and integrate multiple dif-
ferent types of knowledge representation in the
domain of autonomous vehicle navigation. 

The “Related Architectures” section gives an
overview of existing intelligent architectures.
That section is followed with a presentation of
the background of 4D/RCS. We then describe,
in the “Intelligence in Autonomous Vehicles”
section, knowledge that is captured in 4D/RCS
as it relates to enabling intelligence in au-
tonomous vehicles. Finally, we conclude with
sections describing the results and concluding
remarks. 

Related Architectures
One of the earliest architectures was the ACT
architecture (Anderson 1983). ACT grew out of
research on human memory. Over the years,
ACT has evolved into ACT* and more recently,
ACT-R. ACT-R is being used in several research
projects in an Advanced Decision Architectures
Collaborative Technology Alliance for the U.S.
Army (Gonzalez 2003). ACT-R is also being
used by thousands of schools across the coun-
try as an algebra tutor—an instructional system
that supports learning by doing. Another well-
known and widely used architecture is Soar
(Laird, Newell, and Rosenbloom 1987). Soar
grew out of research on human problem solv-
ing and has been used for many academic and
military research projects in problem solving,
language understanding, computational lin-
guistics, theorem proving, and cognitive mod-
eling.

Other architectures include Prodigy, Icarus,
the improved performance research integration
tool (IMPRINT), executive-process interactive
control (EPIC), and 4D/RCS (4D refers to three
dimensions of space and one dimension of
time, and RCS stands for real-time control sys-
tems). Like Soar, Prodigy uses search through a
problem space to achieve goals cast as first-or-
der expressions (Minton 1990). Icarus is a reac-
tive architecture that encodes knowledge as re-
active skills (Shapiro and Langley 1999).
IMPRINT is a task description language de-
signed for the U.S. Army to capture the proce-
dural specification of tactical behavior scenar-
ios (Archer and Adkins 1999). It contains a
dynamic, stochastic, discrete-event network
modeling tool designed to help assess the inter-
action of soldier and system performance
throughout the system lifecycle—from concept
and design through field testing and system
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was designed for the U.S. Army Research Lab
AUTONAV and Demo III Experimental Un-
manned Vehicle programs and has been adopt-
ed by the Army Future Combat System pro-
gram for Autonomous Navigation Systems
(Albus et al. 2002, Albus and Meystel 2001).

The 4D/RCS architecture consists of a multi-
layered, multiresolutional hierarchy of compu-
tational nodes, each containing elements of
sensory processing (SP), world modeling (WM),
value judgment (VJ), behavior generation (BG),
and a knowledge database (KD), as shown in
figure 1. Throughout the hierarchy, interaction
between SP, WM, VJ, BG, and KD give rise to
perception, cognition, and reasoning. At low
levels, representations of space and time are
short range and high resolution. At high levels,
distance and time are long range and low reso-
lution. This enables high-precision fast-action
response at low levels, while long-range plans
and abstract concepts are being simultaneously
formulated at high levels. The hierarchical ap-
proach also helps to manage computational
complexity. 

The 4D/RCS architecture closes feedback

loops at every level, through every node. SP
processes focus attention (that is, window re-
gions of space or time), group (that is, segment
regions into entities), compute entity attribut-
es, estimate entity state, and assign entities to
classes at every level. WM processes maintain a
rich and dynamic database of knowledge about
the world in the form of images, maps, entities,
events, and relationships at every level. Other
WM processes use that knowledge to generate
estimates and predictions that support percep-
tion, reasoning, and planning at every level. VJ
processes assign worth and importance to ob-
jects and events, compute confidence levels for
variables in the knowledge database, and eval-
uate the anticipated results of hypothesized
plans.

Intelligence in 
Autonomous Vehicles

The 4D/RCS architecture is designed in such a
way as to accommodate multiple types of rep-
resentation formalisms and provide an elegant
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used, which contain names and attributes of
environmental features such as road edges,
holes, obstacles, ditches, and targets. These
maps represent the shape and location of ter-
rain features and obstacle boundaries. Still
higher up the hierarchy is symbolic informa-
tion referring to the location of vehicles, tar-
gets, landmarks, and local terrain features such
as buildings, roads, woods, fields, streams,
fences, ponds, and so on. The top levels of the
hierarchy primarily deal with groups of objects,
such as groups of people, buildings, or vehicles.
These groups are treated as a single entity, with
average characteristics (for example, speed, lo-
cation, color) used to describe them. 

This knowledge is stored within the knowl-
edge database (KD). The KD consists of data
structures that contain the static and dynamic
information that collectively forms a model of
the world. The KD contains the information
needed by the world model to support the be-
havior generation, sensory processing, and val-
ue judgment processes within each node.

way to integrate these formalisms into a com-
mon, unifying architecture. This section will
describe the types of knowledge representa-
tions that have been researched or implement-
ed within the 4D/RCS architecture for au-
tonomous driving and the mechanisms that
have been deployed to integrate them.

As mentioned previously, 4D/RCS is a hierar-
chical architecture, and as such, supports
knowledge representation at different levels of
abstraction. Traditionally, the lowest levels of
the architecture primarily contain state vari-
ables such as actuator positions, velocities, and
forces, pressure sensor readings, position of
switches, gearshift settings, and inertial sensors
for detecting gravitational and locomotion ac-
celeration and rotary motion. The next higher
level of the hierarchy (and above) contains
map-based information, with decreasing reso-
lution and increasing spatial extent as one pro-
ceeds higher up the hierarchy. Further up the
hierarchy, a combination of map-based repre-
sentations and object knowledge bases are
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Knowledge in the KD includes the system’s best
estimate of the current state of the world plus
parameters that define how the world state can
be expected to evolve in the future under a va-
riety of circumstances.

Figure 2 shows the many different types of
knowledge representation formalisms that are
currently being implemented within the
4D/RCS architecture as applied to autonomous
driving. These formalisms range from iconic to
symbolic and from procedural to declarative.
Knowledge is captured in formalisms and at
levels of abstraction that are suitable for the
way that it is expected to be used. Different
knowledge representation techniques offer dif-
ferent advantages, and 4D/RCS is designed in
such a way as to combine the strengths of all of
these techniques into a common unifying ar-
chitecture in order to exploit the advantages of
each. In the following subsections, we describe
some of the formalisms depicted, classifying
knowledge as either procedural or declarative.

Procedural Knowledge
Procedural knowledge is the knowledge of how
to perform tasks. Procedural knowledge is dif-
ferent from other kinds of knowledge, such as
declarative knowledge, in that it can be directly
applied to a task. Within 4D/RCS, procedural
knowledge is primarily used for planning and
control purposes. As such, we will describe two
planning approaches that are currently being
implemented in 4D/RCS and describe the
knowledge that underlies each.

Both planning approaches start with the
same 4D/RCS methodology for determining
the knowledge that needs to be represented to
accomplish the planning task. The methodolo-
gy starts as follows:

The first step involves an intensive analysis
of domain knowledge from manuals and sub-
ject matter experts, especially using scenarios
of particular subtask operations. The output of
the effort is a structuring of this knowledge in-
to a task decision tree consisting of simpler and
simpler commands (actions/verbs) at simpler
and simpler levels of task description.

The second step defines the hierarchical or-
ganization of agent control modules that will
execute these layers of commands in such a
manner as to reasonably accomplish the tasks.
This is the same as coming up with a business
or military organizational structure of agent
control modules (people, soldiers) to accom-
plish the desired tasks. This step forces a more
formal structuring of all of the subtask activi-
ties and responsibilities, as well as defining the
execution structure.

At this point, the two approaches diverge in

the procedure for determining the types of
knowledge necessary to accomplish the plan-
ning task. Subsequent steps are described in the
following subsections.

State Machine-Based Planning (a). The state
machine-based methodology, shown in figure
3, concentrates on the task decomposition as
the primary means of understanding the
knowledge required for intelligent control.
Once the previous two steps are performed, the
procedure proceeds as follows:

The third step (3a) clarifies the processing of
each agent’s input command through the use
of rules to identify all of the task branching
conditions with their corresponding output
commands. Each of these command decompo-
sitions at each agent control module will be
represented in the form of a state table of or-
dered production rules (which is an implemen-
tation of an extended finite state machine
[FSM]). The sequence of simpler output com-
mands required to accomplish the input com-
mand and the named situations (branching
conditions) that move the state table to the
next output command are the primary knowl-
edge represented in this step.

In the fourth step (4a), the above-named sit-
uations that are the task branching conditions
are defined in great detail in terms of their de-
pendencies on world and task states. This step
attempts to define the detailed precursor states
of the world that cause a particular situation to
be true. 

In the fifth step (5a), we identify and name
all of the objects and entities together with
their particular features and attributes that are
relevant to defining the above world states and
situations. Current efforts are exploring the use
of ontologies and databases to represent this
information.

The sixth step (6a) uses the context of the
particular task activities to establish the dis-
tances and, therefore, the resolutions at which
the above objects and entities must be mea-
sured and recognized by the sensory processing
component. This step establishes a set of re-
quirements and specifications for the sensor
system at the level of each separate subtask ac-
tivity. 

Cost-Based Planning Representations (b).
The cost-based methodology concentrates on
decomposing each of its assigned tasks into an
optimal sequence of commands that will be as-
signed to its subordinates. This is accomplished
through the incremental creation and evalua-
tion of a planning graph (Balakirsky 2003).
Once again, the first two steps from the proce-
dural knowledge subsection must be performed
and are then followed by the following steps:
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with the potential user constraints and objec-
tive in order to construct a cost function that
will be utilized by the value judgment module
during the graph expansion process.

By developing the state transition simulator
from step 3b, we are able to incrementally
build a planning graph based on potential ac-
tions that a subordinate may take. The cost
function developed in step 5b may then be
used to evaluate the individual arcs of the plan-
ning graph in order to control the expansion
order and find the cost optimal path through
the planning graph.

To represent the knowledge coming out of
these methodologies, active efforts have been
exploring the development of an ontology to
model tactical behaviors. The ontology is based
upon the OWL-S specification (Web Ontology

The third step (3b) develops an action model
that delineates how each of the subordinate’s
commands will affect the system state at the
current level of resolution. This allows a simu-
lation system to experiment with various com-
mand options in order to obtain the state tran-
sitions that are required to fulfill the level’s
goals.

The fourth step (4b) develops a set of user
constraints and objectives that could affect the
cost-benefit ratio of performing a given action
or occupying a given state. For example, the
cost-benefit of running a red light would be
substantially different for a casual driver than it
would be for a person driving his wife to the
hospital to deliver a baby. 

Step 5 (5b) examines the potential state vari-
able transitions that have been identified along
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Language-Services).1 In this context, behaviors
are actions that an autonomous vehicle is ex-
pected to perform when confronted with a pre-
defined situation. The ontology is stored with-
in the 4D/RCS knowledge database, and the
behaviors are spawned when situations in the
world are determined to be true, as judged by
sensor information and the value judgment
components. More information about this ef-
fort can be found in Schlenoff, Washington,
and Barbera (2004).

Declarative Knowledge 
Declarative knowledge is represented in a for-
mat that may be manipulated, decomposed,
and analyzed by reasoners. Unlike procedural
knowledge, it does not describe how to perform
a given task. Instead, it provides the ability to
use knowledge in ways that the system design-
er did not foresee. Two classes of declarative
knowledge captured within 4D/RCS are sym-
bolic knowledge and iconic knowledge. In the
follow two subsections, we describe details
about these two types of knowledge representa-
tions.

Symbolic Knowledge. Symbolic representa-
tions provide ways of expressing knowledge
and relationships, and of manipulating knowl-
edge, including the ability to address objects by
property. 

Tying symbolic knowledge back into the spa-
tial representation provides symbol grounding,
thereby solving the previously noted problem
inherent to purely symbolic knowledge repre-
sentations. It also provides the valuable ability
to identify objects from partial observations
and then extrapolate facts or future behaviors
from the symbolic knowledge.

Two types of symbolic representations being
implemented within 4D/RCS are ontologies
and relational databases. 

Ontologies represent key concepts, their
properties, their relationships, and their rules
and constraints within a given domain. On-
tologies often focus more on the meaning of
concepts than on the terms that are used to
represent them. Two efforts have focused on
the development of ontologies for autonomous
navigation. 

A roadway driving ontology that is used to
determine whether objects in the environment
are potential obstacles to your vehicle has been
developed for autonomous driving. The system
is composed of an ontology of objects repre-
senting “things” that may be encountered in
our current environment, in conjunction with
rules for estimating the damage that would be
incurred by collisions with the different objects
in different situations. Automated reasoning is

used to estimate collision damage, and this in-
formation is fed to the route planner to help it
decide whether to avoid the object. More infor-
mation about this effort can be found in the
paper by Provine et al. (2004).

In addition to ontologies, databases have
been developed to house symbolic informa-
tion. The database that has received the most
attention to date is the Road Network Database
(Schlenoff et al. 2004). The database includes
detailed information about the roadway, such
as where the road lies, rules dictating the tra-
versal of intersections, lane markings, road bar-
riers, road surface characteristics, and so on.
The purpose of the Road Network Database is
to provide the data structures necessary to cap-
ture all of the information necessary about
road networks so that a planner or control sys-
tem on an autonomous vehicle can plan routes
along the roadway at any level of abstraction.
At one extreme, the database provides struc-
tures to represent information so that a low-
level planner can develop detailed trajectories
to navigate a vehicle over the span of a few me-
ters. At the other extreme, the database pro-
vides structures to represent information so
that a high-level planner can plan a course
across a country. Each level of planning re-
quires data at different levels of abstraction,
and as such, the Road Network Database must
accommodate these requirements.

Iconic Knowledge. Iconic knowledge is often
spatial in nature and can be defined as two-di-
mensional or three-dimensional array data in
which the dimensions of the array correspond
to dimensions in physical space. The value of
each element of the array may be Boolean data,
a real number, or vector data representing a
physical property such as light intensity, color,
altitude, range, or density. Each element may
also contain spatial or temporal gradients of in-
tensity, color, range, or rate of motion. Each el-
ement may also contain a pointer to a geomet-
ric entity (such as an edge, vertex, surface, or
object) to which the pixel belongs.

Examples of iconic knowledge used within
4D/RCS include digital terrain maps, sensor im-
ages, models of the kinematics of the machines
being controlled, and knowledge of the spatial
geometry of parts or other objects that are
sensed and with which the machine interacts
in some way. This is where objects and their re-
lationship in space and time are modeled in
such a way as to represent and preserve those
spatial and temporal relationships, as in a map,
image, or trajectory.

Within 4D/RCS, maps enhance the scope of
the world model. Such iconic maps may take a
variety of forms including survey and aerial
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Results
Experimental validation of the 4D/RCS archi-
tecture and the knowledge representation
within has been provided by the performance
of the Demo III experimental unmanned
ground vehicles (XUVs) in an extended series
of demonstrations and field tests during the
winter of 2002–2003. 

The XUVs were equipped with an inertial
reference system, a commercial grade GPS re-
ceiver (accurate to about +/– 20 m), a LADAR
camera with a frame rate of 10 frames per sec-
ond, and a variety of internal sensors. The
LADAR had a field of view 90 degrees wide and
20 degrees high with resolution of about 1/2
degree per pixel. It was mounted on a pan/tilt
head that enabled it to look in the direction
that the vehicle planned to drive. The LADAR
detected the ground out to a range of about 20
m and detected vertical surfaces (such as trees)
out to a range of about 60 m. Routes for XUV
missions were laid out on a terrain map by
trained army scouts and given to the XUVs in
terms of GPS waypoints spaced over 50 m
apart.

The XUVs operated completely au-
tonomously until they got into trouble and
called for help. Typical reasons for calling for
help were the XUV was unable to proceed be-
cause of some terrain condition or obstacle
(such as soft sand on a steep slope or dense
woods), and was unable to find an acceptable
path plan after several attempts at backing up
and heading a different direction. At such a
point, an operator was called in to teleoperate
the vehicle out of difficulty. During these oper-
ations, data was collected on the cause of the
difficulty, the type of operator intervention re-
quired to extract the XUV, the time required
before the XUV could be returned to au-
tonomous mode, and the work load on the op-
erator. 

During three major experiments designed to
determine the technology readiness of au-
tonomous driving, the Demo III experimental
unmanned vehicles were driven 550 km, over
rough terrain: (1) in the desert; (2) in the
woods, through rolling fields of weeds and tall
grass, and on dirt roads and trails; and (3)
through an urban environment with narrow
streets cluttered with parked cars, dumpsters,
culverts, telephone poles, and manikins. Tests
were conducted under various conditions in-
cluding night, day, clear weather, rain, and
falling snow. The unmanned vehicles operated
over 90 percent of both time and distance with-
out any operator assistance. An extensive re-
port of these experiments has been published
(Camden et al. 2003), along with high-resolu-

maps and may provide significant information
about existing topology and structures. The
higher levels in the 4D/RCS control hierarchy
include feature and elevation data from a priori
digital terrain maps such as information about
roads, bridges, streams, woods, and buildings.
This information needs to be registered and
merged with data from the lower-level maps
that are generated by sensors. Additionally, for
incorporating a priori knowledge into the
world model, some form of weighting is re-
quired, and this depends on how well the a pri-
ori data and the sensed information are regis-
tered. There is also the need to generate
higher-resolution a priori terrain maps as the
current survey maps are too coarse for au-
tonomous driving. Another potential applica-
tion for registering sensor data is the computa-
tion of ground truth.

Towards registering LADAR (laser range de-
tection) range images to a priori maps, we have
developed an iterative algorithm that can deal
with false/spurious matches, occlusions, and
outliers for UGV (unmanned ground vehicle)
navigation (Madhavan and Messina 2003). The
iterative registration algorithm can be summa-
rized as follows: Given an initial motion trans-
formation between two three-dimensional
point sets, a set of correspondences are devel-
oped between data points in one set and the
next. For each point in the first data set, we find
the point in the second that is closest to it un-
der the current transformation. It should be
noted that correspondence between the two
point sets is initially unknown and that point
correspondences provided by sets of closest
points is a reasonable approximation to the
true point correspondence. From the set of cor-
respondences, an incremental motion can be
computed facilitating further alignment of the
data points in one set to the other. This corre-
spondence/compute motion process is iterated
until a predetermined threshold termination
condition.

A hybrid iterative algorithm has also been
developed for registering three-dimensional
LADAR range images obtained from unmanned
aerial and ground vehicles (Madhavan, Hong,
and Messina 2004). Combined with a feature-
based approach, the algorithm was shown to
produce accurate registration for the two sets of
LADAR data. Registration of the UGV LADAR
to the aerial survey map minimizes the depen-
dency on GPS for position estimation, especial-
ly when the GPS estimates are unreliable or un-
available.
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tion ground truth data describing the terrain
where the XUVs experienced difficulties (Witz-
gall, Cheok, and Gilsinn 2003). 

Conclusion
We believe that 4D/RCS provides an excellent
architecture in which to integrate multiple
knowledge representation approaches to build
cognitive models and intelligent systems that
significantly advance the level of intelligence
we can achieve. In this article, we have de-
scribed how 4D/RCS supports multiple types of
representations, ranging from iconic to sym-
bolic and from declarative to procedural, and
we have provided brief examples of how each
of these representations is used in the context
of autonomous driving. We have also shown
not only how all of these knowledge represen-
tation formalisms fit into the node structure
present at each level of the 4D/RCS hierarchy
but also what role they play in the 4D/RCS
methodologies.

It should be noted that the Demo III tests
were performed in environments devoid of
moving objects such as oncoming traffic,
pedestrians, or other vehicles. In a dynamic en-
vironment, the autonomous vehicle would
need to consider the actions, and possible fu-
ture actions, of these types of objects in the en-
vironment. To address this, current and future
efforts will focus on the development of predic-
tive algorithms, leveraging the knowledge
models found within this article, to predict the
future actions of objects just as humans do
when they drive. When humans drive, we of-
ten have expectations of how each object in
the environment will move based upon the sit-
uation. For example, when a vehicle is ap-
proaching an object that is stopped in the road,
we expect it to slow down and stop behind the
object or try to pass it. When we see a vehicle
with its blinker on, we expect it to turn or
change lanes. When we see a vehicle traveling
behind another vehicle at a constant speed, we
expect it to continue traveling at that speed.
The decisions that we make in our vehicle are
largely a function of the assumptions we make
about the behavior of other vehicles. It is be-
lieved that this level of “intelligence” is neces-
sary to begin to achieve human-level AI. 

In general, we believe that autonomous dri-
ving is an excellent topic for continued re-
search on intelligent systems for the following
reasons:

First, it is a problem domain for which there
is a large potential user base, both in the mili-
tary and civilian sectors. This translates into re-
search funding.

Second, it is a problem domain where phys-
ical actuators and power systems are readily
available. Wheeled and tracked vehicle tech-
nology is mature, inexpensive, and widely de-
ployed. 

Third, it is a problem domain for which the
technology is ready. The invention of real-time
LADAR imaging makes it possible to capture
the three-dimensional geometry and dynamics
of the world. This has broken the perception
barrier. The continued exponential growth rate
in computing power per dollar cost has
brought the necessary computational power
within the realm of economic viability. This
has broken the cost barrier. Intelligent control
theory has advanced to the point where the en-
gineering of intelligent systems is feasible. This
has broken the technology barrier.

Finally, it is a problem domain of fundamen-
tal scientific interest. Locomotion is perhaps
the most basic of all behaviors in the biological
world. Locomotion is essential to finding food
and evading predators throughout the animal
kingdom. The brains of all animate creatures
have evolved under the pressures of natural se-
lection in rewarding successful locomotion be-
havior. It is therefore, not unreasonable to sus-
pect that building truly intelligent mobility
systems will reveal fundamental new insights
into the mysteries of how the mechanisms of
brain give rise to the phenomena of intelli-
gence, consciousness, and mind.

The 4D/RCS architecture and the au-
tonomous driving domain provide an excellent
opportunity to further advance research in hu-
man-level AI. Through the analysis of this do-
main, the process in which humans perceive
and process information is becoming more ev-
ident. With the large amount of both moving
and stationary objects in the environment and
the inability of humans to be able to process
every detail, challenges, such as focus of atten-
tion, are starting to be better understood and
helping to drive research in promising direc-
tions. A better understanding of human dri-
ving is allowing methodologies, such as the
state machine-based methodologies described
in the state machine-based planning subsub-
section, to be developed to better mimic the
process that humans go through when they
make decisions at different time horizons.
These breakthroughs are also making evident
the wealth of knowledge that humans use to
make these decisions. The knowledge represen-
tation examples described in this article only
begin to skim the surface of the knowledge rep-
resentation techniques that are needed to
achieve a level of humanlike intelligence. Con-
tinued research in this domain will help to
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make these knowledge requirements more evi-
dent and help to drive future research with the
ultimate goal of approaching human-level in-
telligence in AI systems.

Note
1. See the OWL Services Coalition, OWL-S 1.0 Re-
lease, 2003 (www.daml.org/services/owl-s/1.0/owl-
s.pdf).
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