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Wolfgang Dvořák,1 Markus Ulbricht,2 Stefan Woltran1

1 TU Wien, Institute of Logic and Computation, Austria
2 Leipzig University, Department of Computer Science, Germany

{dvorak,woltran}@dbai.tuwien.ac.at, mulbricht@informatik.uni-leipzig.de

Abstract

We study the computational complexity of abstract argumen-
tation semantics based on weak admissibility, a recently in-
troduced concept to deal with arguments of self-defeating
nature. Our results reveal that semantics based on weak ad-
missibility are of much higher complexity (under typical as-
sumptions) compared to all argumentation semantics which
have been analysed in terms of complexity so far. In fact, we
show PSPACE-completeness of all non-trivial standard deci-
sion problems for weak-admissible based semantics. We then
investigate potential tractable fragments and show that re-
stricting the frameworks under consideration to certain graph-
classes significantly reduces the complexity. As a strategy for
implementation we also provide a polynomial-time reduction
to DATALOG with stratified negation.

1 Introduction
Abstract argumentation frameworks (AFs) as introduced by
Dung (1995) are nowadays identified as key concept to un-
derstand the fundamental mechanisms behind formal argu-
mentation and non-monotonic reasoning. In these frame-
works, it is solely the attack relation between (abstract) argu-
ments that is used to determine the semantics of a given AF,
i.e. jointly acceptable sets of arguments called extensions.

Most of the existing argumentation semantics were either
based on the concept of naivety or admissibility (van der
Torre and Vesic 2017). The former is satisfied if the selected
sets are maximal conflict-free. For the latter, it is required
that the sets defend themselves (each attacker of an argument
in the set is counter-attacked by the set).

There is a wide consensus that the absence of defense
in naive extensions potentially leads to undesired results.
However, already Dung noticed that also the concept of
defense can be seen problematic; in particular, when self-
defeating arguments are involved, that is, arguments which
attack themselves directly or indirectly through an odd loop
of arguments. Such “dummy” arguments may block the ac-
ceptance state of other reasonable ones, while never standing
a chance of being accepted themselves. This issue has been
known for a long time, and inspired several approaches to
mitigate the effect of self-defeating arguments, see e.g. (Bo-
danza and Tohmé 2009; Amendola and Ricca 2019; Fazz-

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

inga, Flesca, and Furfaro 2020). However, no semantics for
abstract argumentation among the numerous invented so far
(see e.g. (Baroni, Caminada, and Giacomin 2011)) has ad-
dressed this problem in a commonly agreed way.

In a recent paper, Baumann, Brewka, and Ulbricht
(2020b) propose a mediating position between naivity and
admissibility and introduced the concept of weak admissi-
bility. This new concept aims at limiting the effect of self-
defeating arguments by verifying the credibility of argu-
ments in a recursive fashion: any conflict-free set of argu-
ments is considered acceptable unless attacked by some se-
rious rival. On top of handling self-defeating arguments in
a more reasonable way, the introduced semantics possess
several promising theoretical properties which were already
pointed out in (Baumann, Brewka, and Ulbricht 2020b) by
showing that weak admissibility inherits many of the de-
sirable properties of its classical Dung-style counterpart.
These observations triggered further investigations of these
semantics w.r.t. well-known postulates discussed in the liter-
ature (see (Baroni, Caminada, and Giacomin 2018; van der
Torre and Vesic 2017)): in particular, Dauphin, Rienstra, and
van der Torre (2020) have studied the aforementioned pos-
tulates in a comprehensive fashion while Baumann, Brewka,
and Ulbricht (2020a) address concepts like strong equiva-
lence for semantics based on weak admissibility.

In light of these solid theoretical results an investigation
from a computational point of view stands to reason as well.
In this paper, we take several steps towards this direction by
thoroughly analyzing the computational complexity of weak
admissibility as well as providing a DATALOG encoding.

More specifically, our main contributions are as follows:

• We show that all standard decision problems for weak-
admissible based semantics (with the exception of skepti-
cal w-admissible acceptance) are PSPACE-complete.

• We analyze the effect of restricting the AFs under con-
sideration to certain graph-classes, which in most cases
renders the “weak” semantics computationally compara-
ble to their Dung-style counterparts, which is a significant
drop in their complexity.

• Towards implementation we provide a polynomial-time
reduction to non-recursive DATALOG with stratified
negation which is known to be PSPACE-complete in
terms of program-complexity (cf. (Dantsin et al. 2001)).
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The complexity analysis we provide is of particular in-
terest, since all known complexity results of standard tasks
for argumentation semantics are located within the first two
layers of the polynomial hierarchy (see, e.g. (Dvořák and
Dunne 2018)). This holds even for semantics which have
a certain recursive nature like cf2- or stage2-semantics; see
(Gaggl and Woltran 2013; Dvořák and Gaggl 2016) for the
respective complexity analyses. We recall that under the as-
sumption that the polynomial hierarchy does not collapse,
problems complete for PSPACE are rated as significantly
harder than problems located at lower levels of the polyno-
mial hierarchy. Our results are mirrored in the complexity
landscape of nonmonotonic reasoning in the broad sense,
where decision problems for many prominent formalisms
(like default logic or circumscription) are located on the sec-
ond level of the polynomial hierarchy (see, e.g. (Cadoli and
Schaerf 1993; Thomas and Vollmer 2010) for survey arti-
cles), and only a few formalisms reach PSPACE-hardness.
Examples for the latter are nested circumscription (Cadoli,
Eiter, and Gottlob 2005), nested counterfactuals (Eiter and
Gottlob 1996), model-preference default logic (Papadim-
itriou 1991), and theory curbing (Eiter and Gottlob 2006).

2 Background
Let us start by giving the necessary preliminaries.

Standard Concepts and Classical Semantics
We fix a non-finite background set U . An argumentation
framework (AF) (Dung 1995) is a directed graph F =
(A,R) where A ⊆ U represents a set of arguments and
R ⊆ A×A models attacks between them. F denotes the set
of all finite AFs over U ; we shall consider finite AFs only.

Now assume F = (A,R). For S ⊆ A we let F ↓S=
(A ∩ S,R ∩ (S × S)). For a, b ∈ A, if (a, b) ∈ R we say
that a attacks b as well as a attacks (the set) E given that
b ∈ E ⊆ A. Moreover, E is conflict-free in F (for short,
E ∈ cf (F )) iff for no a, b ∈ E, (a, b) ∈ R. We say a set E
classically defends (c-defends) an argument a (in F ) if any
attacker of a is attacked by some argument ofE, i.e. for each
(b, a) ∈ R, there is c ∈ E such that (c, b) ∈ R.

A semantics σ is a mapping σ : F → 22U where
F 7→ σ(F ) ⊆ 2A, i.e. given an AF F = (A,R) a semantics
returns a subset of 2A. We consider here admissible com-
plete, grounded, and preferred semantics (abbr. ad , co, gr ,
pr ).
Definition 2.1. Let F = (A,R) be an AF and E ∈ cf (A).
1. E ∈ad(F ) iff E c-defends all its elements,
2. E ∈ co(F ) iff E ∈ ad(F ) and, for any x c-defended

by E, we have x ∈ E,
3. E ∈gr(F ) iff E is ⊆-minimal in co(F ),
4. E ∈pr(F ) iff E is ⊆-maximal in ad(F ).

Weak Admissible-Based Semantics
The reduct is the central notion in the definition of weak
admissible semantics (Baumann, Brewka, and Ulbricht
2020b). For a compact definition, we use, given an AF
F = (A,R), E+

F = {a ∈ A | E attacks a in F} as well

as E⊕F = E ∪E+
F . The latter set is known as the range of E

in F . When clear from the context, we omit the subscript F .

Definition 2.2. Let F = (A,R) be an AF and let E ⊆ A.
The E-reduct of F is the AF FE = (E∗, R ∩ (E∗ × E∗))
where E∗ = A \ E⊕F .

By definition, FE is the subframework of F obtained by
removing the range of E as well as corresponding attacks,
i.e. FE = F↓A\E⊕ . Intuitively, the E-reduct contains those
arguments whose status still needs to be decided, assuming
the arguments in E are accepted. This intuition is captured
in the forthcoming central definition.

Definition 2.3. For an AF F = (A,R), E ⊆ A is called
weakly admissible (or w-admissible) in F (E ∈ adw(F )) iff

1. E ∈ cf (F ) and
2. for any attacker y of E we have y /∈

⋃
adw

(
FE
)
.

The major difference between the standard definition of
admissibility and the “weak” one is that extensions do not
have to defend themselves against all attackers: attackers
which do not appear in any w-admissible set of the reduct
can be neglected.

Example 2.4. Consider the following simple example:

a bc

F :

a bc

F {a} = F {b} :

While we observe {a} /∈ ad(F ), we can verify weak ad-
missibility of {a} in F . Obviously, {a} is conflict-free in F
(condition 1). Since c is the only attacker of {a} in F {a}

we have to check c /∈
⋃

adw
(
F {a}

)
(condition 2). Since

{c} is not conflict-free in the reduct F {a} = ({c}, {(c, c)})
we find {c} /∈ adw

(
F {a}

)
yielding

⋃
adw

(
F {a}

)
= ∅.

Hence, c /∈
⋃
adw

(
F {a}

)
, and thus {a} ∈ adw(F ). �

Following the classical Dung-style semantics, weakly pre-
ferred extensions are defined as ⊆-maximal w-admissible
extensions.

Definition 2.5. For an AF F = (A,R), E ⊆ A is called
weakly preferred (or w-preferred) in F (E ∈ prw(F )) iff E
is ⊆-maximal in adw(F ).

In order to define the “weak” counterparts to Dung’s
grounded and complete extensions, the following notion of
“weak defense” has been proposed in (Baumann, Brewka,
and Ulbricht 2020b):

Definition 2.6. Let F = (A,R) be an AF. Given two sets
E,X ⊆ A. We say E weakly defends (or w-defends) X iff
for any attacker y of X we have,

1. E attacks y, or (c-defense)
2. y /∈

⋃
adw

(
FE
)
, y /∈ E and X ⊆ X ′ ∈ adw(F ).

Now weakly complete and weakly grounded extensions
can be defined analogously to complete and grounded ones:

Definition 2.7. For an AF F = (A,R), E ⊆ A is called
weakly complete (or just w-complete) in F (E ∈ cow(F )) iff



E ∈ adw(F ) and for any X , s.t. E ⊆ X and X w-defended
by E, we have X ⊆ E.

A set E ⊆ A is called weakly grounded (or w-grounded)
in F (E ∈ grw(F )) iff E is ⊆-minimal in cow(F ).

The following relations between weak admissibility se-
mantics and their Dung-style counterparts will be useful
throughout the present paper: We have ad(F ) ⊆ adw(F ) ⊆
cf (F ) as well as prw(F ) ⊆ cow(F ) ⊆ adw(F ), and
grw(F ) ⊆ cow(F ) (see (Baumann, Brewka, and Ulbricht
2020b, Proposition 5.6)). Moreover, as it is the case for the
classical semantics, a set E ⊆ A is w-preferred in F iff it
is ⊆-maximal in cow(F ) (Baumann, Brewka, and Ulbricht
2020b, Theorem 5.3).

Towards a more convenient notion of weak defense, the
following characterization has been developed in (Baumann,
Brewka, and Ulbricht 2020a); it is suitable in all cases that
“matter”, i.e. cases where w-completeness of a given set is
to be verified:

Proposition 2.8. Let F be an AF and let E ∈ adw(F ).
Then, for any X = E ∪̇D we have that E w-defends X iff

1. for any attacker y of D, y /∈
⋃
adw(FE), and

2. there is a set D ⊆ D′ with D′ ∈ adw
(
FE
)
.

Example 2.9. Consider the AF F :

c dbaF :

Let us verify that E = {d} w-defends X = {b, d}.
Since {d} itself is w-admissible, the conditions of the above
proposition are met. We thus consider the reduct FE :

c dbaFE :

Now D = {b} is not attacked by a w-admissible argument
(since a is a self-attacker) and is itself w-admissible in FE .
Hence X = E ∪ D is w-defended by E. Thus {b} is not
w-complete (but of course {b, d} is). It is thus easy to verify
that cow(F ) = {∅, {c}, {b, d}}. �

For more details regarding the definition and basic proper-
ties of weak admissibility we refer the reader to (Baumann,
Brewka, and Ulbricht 2020b).

Decision Problems and Complexity Classes
For an AF F = (A,R) and a semantics σ, we say an argu-
ment a ∈ A is credulously accepted (skeptically accepted)
in F w.r.t. σ if a ∈

⋃
σ(F ) (a ∈

⋂
σ(F )). The correspond-

ing decision problems for a semantics σ, given an AF F and
argument a, are as follows: Credulous Acceptance Credσ:
Deciding whether a is credulously accepted in F w.r.t. σ;
Skeptical Acceptance Skeptσ: Deciding whether a is skepti-
cally accepted in F w.r.t. σ. We also consider the following
decision problems, given an AF F : Verification of an exten-
sion Verσ: Deciding whether a set of arguments is in σ(F );
and Existence of a non-empty extension NEmptyσ: Decid-
ing whether σ(F ) contains a non-empty set.

Table 1: Complexity of classical and weak-admissible based
semantics (“c” is used as shorthand for “complete”).

σ Credσ Skeptσ Verσ NEmptyσ
ad NP-c trivial in P NP-c
co NP-c P-c in P NP-c
gr P-c P-c P-c in P
pr NP-c ΠP

2 -c coNP-c NP-c
adw PSPACE-c trivial PSPACE-c PSPACE-c
cow PSPACE-c PSPACE-c PSPACE-c PSPACE-c
grw PSPACE-c PSPACE-c PSPACE-c PSPACE-c
prw PSPACE-c PSPACE-c PSPACE-c PSPACE-c

Finally, we assume the reader to be familiar with the ba-
sic concepts of computational complexity theory (see, e.g.
(Dvořák and Dunne 2018)) as well as the standard classes
P, NP as well as coNP. In addition we consider the class
ΠP

2 = coNPNP of problems that can be solved in non-
deterministic polynomial time when the algorithm has ac-
cess to an NP oracle. Finally, PSPACE contains the prob-
lems that can be solved using only polynomial space of
memory. We have P ⊆ NP/coNP ⊆ ΠP

2 ⊆ PSPACE.

3 Complexity Analysis
In this section, we investigate the complexity of the standard
decision problems in argumentation for the four semantics
based on weak admissibility. Our results are summarized
and compared with the classical ones (Dvořák and Dunne
2018) in Table 1.

Membership Results
We provide an algorithm that runs in PSPACE and closely
follows the definition of w-admissibility.

Lemma 3.1. Veradw is in PSPACE.

Proof. An algorithm for verifying that E ∈ adw(F ) pro-
ceeds as follows: (1) test whether E ∈ cf (F ); if not return
false, (2) compute the reduct FE , (3) iterate over all sub-
sets S of FE that contain at least one attacker of E and test
whether S is w-admissible; if so return false; else return true.
Notice that the last step involves recursive calls. However,
the size of the considered AF is decreasing in each step and
thus the recursion depth is in O(n). Moreover, we only need
to store the current AF as well as the set S to verify. Finally,
iterating over all subsets of an AF can be done in PSPACE
as well. Hence, the above algorithm is in PSPACE.

Given that verification is in PSPACE we can adapt stan-
dard algorithms to obtain the PSPACE membership of the
other problems. Notice that Skeptadw is always false as the
empty-set is always w-admissible.

Proposition 3.2. For σ ∈ {grw, adw, cow, prw}, Credσ ,
Skeptσ , Verσ , and NEmptyσ can be solved in PSPACE.

Proof. Veradw ∈ PSPACE is by Lemma 3.1. The other
memberships are by the following algorithms that can be



easily implemented in PSPACE with calls to other PSPACE
problems , e.g. Veradw , and thus are themselves in PSPACE.

Verprw can be solved by first verifying that the set is w-
admissible and then iterating over all super-sets and verify-
ing that they are not w-admissible.

Vercow ∈ PSPACE: To test whether a set E is w-
complete, first test whether it is w-admissible, then com-
pute Cred =

⋃
adw(FE) (which is in PSPACE as we

show below), and finally test for each set D ⊆ A \ E
whether it is w-defended by E. The latter can be done by
first testing whether Cred attacks D and then iterating over
all D′ ) D and test D′ ∈ adw

(
FE
)

(which by the above is
in PSPACE). If none of the sets D is w-defended by E then
E is w-complete and thus we obtain Vercow ∈ PSPACE.
Vergrw ∈ PSPACE: To test whether a set E is w-grounded,
we first test whether it is w-complete, and then that each E′
with E′ ( E is not w-complete.

For Credσ with Verσ ∈ PSPACE: we iterate over all sets
of the arguments that contain the query argument and test
whether the set is a σ-extension. As soon as we find a subset
that is a σ-extension we can stop and return that the argu-
ment is credulously accepted. Otherwise if none of the sets
is a σ-extension the argument is not credulously accepted.

For Skeptσ we iterate over all subsets of the arguments
that do not contain the query argument and test whether the
set is a σ-extension. As soon as we find a subset that is a
σ-extension we can stop and return that the argument is not
skeptically accepted. Otherwise if none of the sets is a σ-
extension the argument is skeptically accepted.

For NEmptyσ we iterate over all non-empty subsets of
the arguments and test whether the set is a σ-extension. If
one of them is a σ-extension we terminate and return true
otherwise we return false.

Hardness Results
We show hardness by a reduction from the PSPACE-
complete problem of deciding whether a QBF is valid. To
this end we consider QBFs of the form

Φ = ∀xn∃xn−1 . . . ∀x2∃x1 : φ(x1, x2, . . . , xn−1, xn).

Notice that Φ might start with a universal or existential quan-
tifier and then alternates between universal and existential
quantifiers after each variable and ends with an existential
quantifier. φ is a propositional formula in CNF given by a
set of clauses C, i.e, φ =

∧
c∈C

∨
l∈c l. We call a QBF start-

ing with a universal quantifier a ∀-QBF and a QBF starting
with an existential quantifier an ∃-QBF. Finally, observe that
we named variables in reverse order to avoid renaming vari-
ables in our proofs by induction.

We start with a reduction that maps QBFs to AFs such
that the validity of the QBF can be read off by inspecting
the w-admissible sets of the AF. We will later extend this
reduction to encode the specific decision problems under our
considerations.
Reduction 3.3. Given a QBF Φ with propositional formula
φ(x1, . . . , xn) we define the AF GΦ = (A,R) with

A ={xi, x̄i, pi | 1 ≤ i ≤ n} ∪ {c | c ∈ C} and

R ={(xi, x̄i), (x̄i, xi) | 1 ≤ i ≤ n}∪
{(xi, xi+1), (xi, x̄i+1) | 1 ≤ i < n}∪
{(x̄i, xi+1), (x̄i, x̄i+1) | 1 ≤ i < n}∪
{(xi, c) | xi ∈ c ∈ C} ∪ {(x̄i, c) | ¬xi ∈ c ∈ C}∪
{(c, x1), (c, x̄1) | c ∈ C} ∪ {(pi, pi+1) | 1 ≤ i < n}∪
{(xi, pi), (x̄i, pi) | 1 ≤ i ≤ n}∪
{(pi, xi−1), (pi, x̄i−1) | 2 ≤ i ≤ n}∪{(p1, c) | c ∈ C}.

Example 3.4. Let us consider the valid QBF ∀x2∃x1 : φ
with φ = c1 ∧ c2 = (¬x2 ∨ x1) ∧ (x2 ∨ ¬x1) and apply
Reduction 3.3 to obtain an AF F . It will be convenient to
think of several layers, each one induced by a variable oc-
curring in the QBF at hand. We thus have two layers here,
with xi and x̄i attacking each other in the expected way and
each layer attacked by its predecessor. The x-arguments at-
tack the c-arguments in the natural way. The c-arguments at-
tack the X1 layer only. The arguments p1 and p2 induce odd
cycles to forbid certain possible extensions. Schematically,
this looks as follows.

X2 X1

p2 p1

C

In detail, Reduction 3.3 applied to our QBF yields:

x2

x̄2

x1

x̄1

p2 p1

c1

c2

Now regarding our QBF note that setting x2 to true re-
quires x1 is to be true as well and setting x2 to false re-
quires x1 to be false. This translates to F as follows: Take
E = {x̄2}, corresponding to setting x2 to false. The set E
is not w-admissible in F . To see this, consider the reduct
FE : Here {x̄1} (corresponding to ¬x1 in the QBF) is w-
admissible in FE (even admissible) and attacks x̄2 witness-
ing that E /∈ adw(F ). Similarly, {x2} is not w-admissible
since it is attacked by x1 in the corresponding reduct. �

Let us collect some properties we require:

Proposition 3.5. For a QBF Φ,

1. if Φ is of the form ∃xn∀xn−1 . . . ∃x1 : φ(x1, x2, . . . , xn)
we have that adw(GΦ) ∩ {{xn}, {x̄n}} 6= ∅ if Φ is valid
and adw(GΦ) = {∅} otherwise; and

2. if Φ is of the form ∀xn∃xn−1 . . . ∃x1 : φ(x1, x2, . . . , xn)
we have that adw(GΦ) = {∅} if Φ is valid and
adw(GΦ) ∩ {{xn}, {x̄n}} 6= ∅ otherwise.



Moreover, in both cases adw(GΦ) ⊆ {{xn}, {x̄n}, ∅}.
We briefly sketch the main ideas of the proof. First, we

have that all conflict-free sets E that contain an argument a
different from xn and x̄n yield a reduct GE

Φ with unattacked
argument b that attacks a in GΦ and thus E is not w-
admissible. That is, {xn}, {x̄n}, and ∅ are the only candi-
dates for being w-admissible. The remainder of the proof is
then by induction on the number of variables n, starting with
n = 1. In the induction step we exploit that when consider-
ing one of the sets E = {xn}, E = {x̄n} respectively, we
have that the reduct GE

Φ corresponds to the AF G ′Φ where Φ′

is the QBF we obtain from Φ when eliminating the variable
xn by replacing it by >, ⊥ respectively. That is, we have
that {xn} is weakly admissible in GΦ iff neither {xn−1}
nor {x̄n−1} is weakly admissible in G ′Φ and as Φ′ has only
n− 1 variables one can exploit the induction hypothesis.

We next extend our reduction by two further arguments φ
and pn+1 in order to show our hardness results.
Reduction 3.6. Given a ∀-QBF Φ = ∀xn∃xn−1 . . . ∃x1 :
φ(x1, . . . , xn) we define FΦ =GΦ∪({φ, pn+1}, {(φ, pn+1),
(pn, pn+1), (pn+1, xn), (pn+1, x̄n), (xn, φ), (x̄n, φ)}).

We now formally characterize the potential w-admissible
sets in Reduction 3.6.
Lemma 3.7. For a QBF Φ, adw(FΦ) ⊆ {∅, {φ}}.

Proof. In comparison to Proposition 3.5, we are only left to
consider pn+1. The assumption pn+1 ∈ E ∈ adw(F ) yields
an analogous contradiction: E ∈ cf (F ) implies φ, xn /∈ E
and hence pn+1 is attacked by {φ} ∈ adw(FE).

Proposition 3.8. Given a ∀-QBF Φ = ∀xn∃xn−1 . . . ∃x1 :
φ(x1, x2, . . . , xn) we have that Φ is valid if and only if
adw(FΦ) = {∅, {φ}}, and adw(FΦ) = {∅} otherwise.

Proof. We have that the empty-set is always w-admissible
and by Lemma 3.7 that {φ} is the only candidate for being
a w-admissible set. Now consider {φ} and the reduct F {φ}Φ .
We have that F {φ}Φ = GΦ and xn and x̄n being the attackers
of φ. By Proposition 3.5 we have that {xn} or {x̄n} is w-
admissible in the reduct iff Φ is not valid. Thus {φ} is w-
admissible iff Φ is valid.

Theorem 3.9. All of the following problems are PSPACE-
complete: Credadw , Veradw , NEmptyadw , and Credσ ,
Skeptσ , Verσ , NEmptyσ for any σ ∈ {cow, grw, prw}.

Proof. The membership results are by Proposition 3.2. The
hardness results are all by Reduction 3.6 and Proposi-
tion 3.8. It only remains to state the precise problem in-
stances that are equivalent to testing the validity of the ∀-
QBF Φ. First, consider Credadw = Credcow = Credprw .
In the AF FΦ we have that φ is credulously accepted
w.r.t. w-admissible semantics iff {φ} ∈ adw(FΦ) iff Φ
is valid. Now, consider Veradw and Verprw . We have that
{φ} ∈ adw(FΦ) iff {φ} ∈ prw(FΦ) iff Φ is valid.
Next, consider Skeptprw . We have that φ is skeptically ac-
cepted iff prw(FΦ) = {{φ}} iff Φ is valid. Moreover,
for NEmptyadw = NEmptyprw , the only w-preferred/w-
admissible extension is the empty-set iff Φ is not valid.

For the remaining problems it suffices to show
grw(FΦ) = cow(FΦ) = {{φ}} whenever Φ is valid and
otherwise, grw(FΦ) = cow(FΦ) = {∅}. Regarding the for-
mer, if Φ is valid, then adw(FΦ) = {∅, {φ}}. We show
that in this case, ∅ /∈ cow(FΦ). To this end we show that
∅ w-defends {φ}. We may apply Proposition 2.8 to the w-
admissible set E = ∅ and X = E ∪̇D = ∅ ∪ {φ} = {φ}
and see that ∅ w-defends {φ} since (1) no attacker of φ
can be w-admissible in FEΦ = F ∅Φ = FΦ, and (2) {φ} it-
self is w-admissible in FEΦ = F ∅Φ = FΦ. If, on the other
hand, Φ is not valid, then adw(FΦ) = {∅} so the only
candidate for a w-complete, w-grounded resp., extension is
∅. Since there is no other w-admissible set in the reduct
F ∅Φ = FΦ, ∅ does not w-defend any set and is thus itself
w-complete and hence w-grounded. Hence, we obtain for
σ ∈ {grw, cow} that Φ is valid iff φ is credulously, skepti-
cally respectively, accepted in FΦ, iff {φ} ∈ σ(FΦ) iff FΦ

has a non-empty σ-extensions. Thus, Reduction 3.6 provides
a reduction from ∀-QBF to all of the considered problems,
and as it can be clearly performed in polynomial time, the
PSPACE-hardness follows.

4 Complexity for Specific Graph-classes
In the previous section we have shown the standard reason-
ing problems to be computationally hard. A common ap-
proach towards tractability is to consider AFs that have a
special graph structure (Dunne 2007). To this end, we con-
sider graph classes that have been shown to be tractable frag-
ments for the traditional argumentation semantics and we fo-
cus on the problems Credσ and Skeptσ . As we will see, some
results follow from the fact that weak-admissible semantics
coincide with the standard semantics on certain classes of
AFs. However, certain cases require a dedicated analysis.

First, we consider the class of symmetric AFs
(A,R) (Coste-Marquis, Devred, and Marquis 2005) which
require that if (a, b) ∈ R then also (b, a) ∈ R. In symmetric
AFs we have that conflict-free and admissible sets coincide
and thus also w-admissible and conflict-free sets coincide
(recall that we always have cf (F ) ⊇ adw(F ) ⊇ ad(F )). If
we additionally assume that there is no self-attack then all
arguments are credulously accepted and an argument is only
w-defended if it is not attacked at all. That is, c-defence and
w-defence coincide and thus also complete and w-complete
as well as grounded and w-grounded semantics coincide.

Lemma 4.1. For symmetric AFs F we have adw(F ) =
ad(F ) and prw(F ) = pr(F ). Moreover, if F has no self-
attacks then also cow(F ) = co(F ) and grw(F ) = gr(F ).

By (Baumann, Brewka, and Ulbricht 2020b), we can re-
move self-attacking arguments without changing the exten-
sions of weakly-admissible based semantics and thus by the
known complexity results for the standard semantics (cf.
(Dvořák and Dunne 2018)) we obtain that reasoning on sym-
metric AFs is in polynomial time.

Proposition 4.2. For symmetric AFs and σ ∈ {grw, adw,
cow, prw} , Credσ and Skeptσ can be solved in P.

Next we consider graph classes that are based on the ab-
sence of (certain types) of cycles. To this end, we first re-
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Figure 1: Noeven AF with two prw extensions {a} and {e}.

call recent characterizations from (Baumann, Brewka, and
Ulbricht 2020a) that are crucial for the following investiga-
tions: (a) for odd-cycle free AFs the w-preferred and pre-
ferred extensions coincide; (b) for odd-cycle free AFs there
is a unique w-grounded extension that consists of the skepti-
cally preferred accepted arguments; and (c) for acyclic AFs
grw, cow, prw, gr , co and pr coincide.

First, let us consider odd-cycle free AFs. For the standard
semantics odd-cycle free AFs are not a tractable fragment
but Verpr becomes tractable and the complexity of Skeptpr
drops to coNP-c. For w-admissible based semantics we have
a similar effect with a more drastic drop in complexity.
Given the results of (Baumann, Brewka, and Ulbricht 2020a)
and the results for preferred semantics (Dvořák and Dunne
2018) we obtain the following result.
Proposition 4.3. For odd-cycle free AFs, Credσ is NP-
complete for σ ∈ {adw, cow, prw}, and Skeptcow =
Skeptgrw = Credgrw and Skeptpr are coNP-complete.

Next we consider the class of acyclic AFs and exploit the
fact that the grounded extension is the only w-preferred ex-
tension and can be computed in polynomial time.
Proposition 4.4. For acyclic AFs and σ ∈ {grw, adw, cow,
prw}, Credσ and Skeptσ are in P.

An interesting observation is that even in acyclic AFs w-
admissible semantics differs from admissible and strongly
admissible (Caminada 2014) sets, while the latter two coin-
cide for AFs from this class.

Next we investigate the class of even-cycle free AFs (no-
even AFs) (Dvořák and Dunne 2018) which allow to decide
admissible based semantics in polynomial-time. We have
that noeven AFs have a unique preferred extension, which
is however not true for w-preferred extensions. Consider
the AF F in Figure 1 which has only odd cycles. We have
adw = {∅, {a}, {e}} and thus prw = {{a}, {e}} (more-
over cow = grw = {{a}, {e}}). We next show that noeven
AFs are not a tractable fragment for weak admissibility-
based semantics. To this end we use the above AF F to adapt
the standard reduction from propositional logic in order to
obtain a noeven AF. That is, we replace the symmetric at-
tacks, which model setting a variable to either true or false,
by sub-AFs that are isomorphic to F (cf. Figure 2).
Reduction 4.5. Given a propositional formula
φ(x1, . . . , xn) =

∧
c∈C

∨
l∈c l we define the AF

Hφ = (A,R) with A and R as follows.

A ={xi, x̄i, bi, di, fi | 1 ≤ i ≤ n} ∪ {c | c ∈ C} ∪ {t, t̄}
R ={(xi, bi), (bi, di), (di, xi), (di, x̄i), (x̄i, fi), (fi, di)

| 1 ≤ i ≤ n} ∪ {(c, t) | c ∈ C} ∪ {(t, t̄)} ∪
{(xi, c) | xi ∈ c ∈ C} ∪ {(x̄i, c) | ¬xi ∈ c ∈ C}

Lemma 4.6. For every propositional formula φ we have
that (1) φ is satisfiable iff t is credulously accepted in Hφ

w.r.t. σ, for σ ∈ {grw, adw, cow, prw}; and (2) φ is un-
satisfiable iff t̄ is skeptically accepted in Hφ w.r.t. σ for
σ ∈ {grw, cow, prw}.

By the above, the NP-hard SAT problem can be reduced
to credulous acceptance and the coNP-hard UNSAT prob-
lem can be reduced to skeptical acceptance.

Proposition 4.7. For noeven AFs, Credσ is NP-hard for
σ ∈ {grw, adw, cow, prw} and Skeptτ is coNP-hard for
τ ∈ {grw, cow, prw}.

Finally, we consider the class of bipartite AFs. We have
that bipartite AFs are a sub-class of odd-cycle free AFs and
thus we can again use the correspondence of w-preferred
and preferred semantics. Moreover, preferred semantics has
been shown to be tractable on bipartite AFs (Dunne 2007).

Proposition 4.8. For bipartite AFs and σ ∈ {grw, adw,
cow, prw}, Credσ and Skeptσ are in P.

Proof. The results for prw are directly from the corre-
sponding results for pr in (Dunne 2007). Further, by (Bau-
mann, Brewka, and Ulbricht 2020b), we have Credgrw =
Skeptgrw = Skeptprw and thus reasoning with grw is in
P. The results for adw, cow semantics are by its correspon-
dences with tasks for grw or prw.

5 DATALOG Encoding
In this section we provide a DATALOG encoding for w-
admissible semantics. Our reduction will generate a poly-
nomial size logic program that falls into the class of
non-recursive DATALOG with stratified negation which
is known to be PSPACE-complete in terms of program-
complexity (Dantsin et al. 2001). For our encoding we con-
sider an AF F = (A,R) with arguments A = {a1, . . . , an}.
The weakly-admissible sets will be encoded as an n-
ary predicate wadm(e1, . . . en) where variable ei indicates
whether argument ai is in the extension or not. That is, our
fixed database will be over the Boolean domain {0, 1}.

The encoding closely follows the definition of w-
admissible sets, which of course is recursive. To avoid re-
cursion in the DATALOG program we will exploit that the
recursion depth is bounded by n. We will introduce n-copies
of certain predicates, each of which can only be used on a
certain recursion depth of the w-admissible definition.

t

c1 c2 c3

t̄

x1 x̄1 x2 x̄2 x3 x̄3

b1
d1

f1 b2
d2

f2 b3
d3

f3

Figure 2: Illustration of the AF Hφ, for φ with clauses
{{x1, x2, x3}, {x̄2, x̄3}, {x̄1, x̄2}}.



The input database contains a unary predicate dom =
{0, 1} defining the Boolean domain of our variables and
standard predicates that allow to encode the arithmetic op-
eration we are using in our rules, e.g. the binary predicates
equal = {(0, 0), (1, 1)} and leq = {(0, 0), (0, 1), (1, 1)}
(below we denote them via “=” and “≤” symbols).

We will first introduce certain auxiliary predicates which
we require in order to define wadm(e1, . . . en). In our en-
coding we will use variables {xi, yi, di, ei | 1 ≤ i ≤ n}
to represent whether arguments are in certain sets or not.
We will use the following shorthands to group variables that
together represent a set of arguments: X = x1, . . . , xn,
Y = y1, . . . , yn, D = d1, . . . , dn, and E = e1, . . . , en. We
will use each set of variables to represent a set of arguments
such that the i-th variable is set to 1 iff the i-th argument is
in the set and 0 otherwise. We start with encoding the subset
relation between two sets of arguments X,Y and define a
predicate cf(·) encoding conflict-free sets by a rule which
for each attack checks that not both incident arguments are
in the set.

X ⊆ Y ←
n∧
i=1

xi ≤ yi.

cf(E)←
n∧
i=1

dom(ei),
∧

(i,j)∈R

ei + ej ≤ 1.

Notice that the dom(ei) predicates in the body of the second
rule are used to meet the safety condition of DATALOG.

Next we define the predicate Att(·, ·) which encodes that
the first set of arguments attacks the second set. To this end,
for each attack (aj , ak) ∈ R, we add the following rule to
the DATALOG program (again using dom(·) for safety):

Att(D,E)←
n∧
i=1

dom(di),

n∧
i=1

dom(ei), dj = 1, ek = 1.

In the following we will use F↓X to refer to the sub-AF of
F that is given by the arguments in the set represented byX ,
i.e. F↓X= (A′, R∩(A′×A′)) withA′ = {ai | xi = 1}. We
define a predicateRange(X,E,D) that defines the rangeD
of an extension E in the AF F↓X .

Range(X,E,D)← E ⊆ D,
n∧

(i,j)∈R

min(ei, xj) ≤ dj ,

n∧
i=1

(di ≤ ei + max
(j,i)∈R

ej), D ⊆ X.

The first constraint ensures that each argument inE is also in
the range. The second constraint ensures that each argument
in F ↓X that is attacked by E is in the range (but makes no
statement about arguments not in F↓X ). The third constraint
encodes that an argument is only in the range if it is in E
or attacked by E and the final constraint ensures that only
arguments in F↓X can be in the range.

We are now ready to encode w-admissible semantics. In
a first step we treat the reduct operation and use a predi-
cate Red(X,E, Y ) encoding that when we are in the sub-
AF F ↓X and build the reduct for the argument set E we

obtain the sub-AF F↓Y .

Red(X,E, Y )←Range(X,E,D),

n∧
i=1

yi = xi − di

Range(X,E,D) defines the range of E within the sub-
framework F ↓X and the second constraint makes sure that
exactly those argument which are in X but not in the range
of E are included in the reduct F↓Y (notice that by the defi-
nition of Range we have di ≤ xi ).

In order to define the predicate wadm(E) we intro-
duce predicates Pi(X,E), 1 ≤ i ≤ n that encode the w-
admissible sets of the reducts on the i-th recursion level. Re-
call that the recursion depth of the computation is bounded
by n. The variables X in Pi(X,E) encode the arguments
of the reduct and the variables E encode the extension, i.e.
E represents a w-admissible set of F ↓X . The initial AF F
corresponds to the reduct containing all arguments.

wadm(E)←P1(1, . . . , 1, E).

Next we define the w-admissible sets of each reduct. We
first state the rules for 1 ≤ i ≤ n − 1 and then consider the
special case Pn with at most one argument in the reduct.

Pi(X,E)←E ⊆ X, cf (E),notQi(X,E).

Qi(X,E)←Red(X,E, Y ), D⊆Y,Att(D,E), Pi+1(Y,D).

Pn(X,E)←
n∑
i=1

xi ≤ 1, E ⊆ X, cf (E).

The first two rules are a direct encoding of the definition of
w-admissible sets. That is, a setE is weakly admissible in F
if it is conflict-free in F and there is no weakly-admissible
set D in the reduct FE that attacks that E. The last rule
covers the special case at recursion depth n we have that at
most one argument is left in the reduct.

Notice that our DATALOG encoding is indeed non-
recursive and thus can be solved in PSPACE.

6 Conclusion
In this paper, we investigated the computational complexity
of the standard reasoning problems for weakly admissibility-
based semantics and showed that all of them, except the triv-
ial skeptical acceptance for adw, are PSPACE-complete in
general. In the light of this high computational complexity
we investigated graph classes as tractable fragments and as
a first step towards suitable algorithms we provided a DAT-
ALOG encoding for w-admissible semantics. Directions for
future include: (a) Studying the potential for fixed-parameter
tractable algorithms in particular backdoor approaches on
top of the tractable fragments (Dvořák, Ordyniak, and Szei-
der 2012; Dvořák, Pichler, and Woltran 2012). (b) Settling
the exact complexity of weak-admissible based semantics
for noeven AFs. (c) Extend the DATALOG approach to
the remaining semantics, and provide and evaluate a corre-
sponding implementation. We envision a decomposition ap-
proach where the components belonging to easier fragments
are handed over to dedicated solvers and an extended ver-
sion of our DATALOG encoding takes care of combining
the results with the computation of the remaining parts.
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Bodanza, G. A.; and Tohmé, F. A. 2009. Two approaches to
the problems of self-attacking arguments and general odd-
length cycles of attack. Journal of Applied Logic 7(4): 403–
420. doi:10.1016/j.jal.2007.06.012.

Cadoli, M.; Eiter, T.; and Gottlob, G. 2005. Complexity of
propositional nested circumscription and nested abnormality
theories. ACM Trans. Comput. Log. 6(2): 232–272. doi:
10.1145/1055686.1055688.

Cadoli, M.; and Schaerf, M. 1993. A Survey of Complex-
ity Results for Nonmonotonic Logics. J. Log. Program.
17(2/3&4): 127–160. doi:10.1016/0743-1066(93)90029-G.

Caminada, M. 2014. Strong Admissibility Revisited. In
Proc. COMMA, 197–208. IOS press. doi:10.3233/978-1-
61499-436-7-197.

Coste-Marquis, S.; Devred, C.; and Marquis, P. 2005. Sym-
metric Argumentation Frameworks. In Proc. ECSQARU,
317–328. Springer. doi:10.1007/11518655 28.

Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001.
Complexity and expressive power of logic programming.
ACM Comput. Surv. 33(3): 374–425. doi:10.1145/502807.
502810.

Dauphin, J.; Rienstra, T.; and van der Torre, L. 2020. A
Principle-Based Analysis of Weakly Admissible Semantics.
In Proc. COMMA. IOS press. doi:10.3233/FAIA200502.
Dung, P. M. 1995. On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning, logic pro-
gramming and n-person games. Artificial Intelligence 77(2):
321–357. doi:10.1016/0004-3702(94)00041-X.
Dunne, P. E. 2007. Computational properties of argument
systems satisfying graph-theoretic constraints. Artificial In-
telligence 171(10-15): 701–729. doi:10.1016/j.artint.2007.
03.006.
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