Almost Linear Time Density Level Set Estimation via DBSCAN*

Hossein Esfandiari1, Vahab Mirrokni1, Peilin Zhong2

1Google Research, 2Columbia University
{esfandiari,mirrokni}@google.com, peilin.zhong@columbia.edu

Abstract

In this work we focus on designing a fast algorithm for \(\lambda\)-density level set estimation via DBSCAN clustering. Previous work (Jiang ICML’17, and Jang and Jiang ICML’19) shows that under some natural assumptions DBSCAN and its variant DBSCAN++ can be used to estimate the \(\lambda\)-density level set with near-optimal Hausdorff distance, i.e., with rate \(\hat{O}(n^{-1/(2\beta+D)})\). However, to achieve this near-optimal rate, the current fastest DBSCAN algorithm needs near quadratic running time. This running time is not practical for large datasets. Usually when we are working with large datasets we desire linear or almost linear time algorithms. With this motivation, in this work, we present a modified DBSCAN algorithm with near optimal Hausdorff distance for density level set estimation with \(\hat{O}(n)\) running time. In our empirical study, we show that our algorithm provides significant speedup over the previous algorithms, while achieving comparable solution quality.

Introduction

Density-based clustering is one of the core problems in data science with a wide range of applications in machine learning, computer vision, and medical imaging among others. Intuitively, in density-based clustering, we have a set of \(n\) points in a space and we want to cluster these points by separating the connected dense parts of the space. The celebrated DBSCAN (Ester et al. 1996) is one of the most popular methods for density-based clustering. DBSCAN has been implemented in several data mining tool kits (Team et al. 2013; Hall et al. 2009; Pedregosa et al. 2011; Schubert et al. 2015) and has been successfully used in many applications.

Day after day we are collecting more data and hence have larger datasets to deal with. To the extent that many popular polynomial-time algorithms that we have inherited from the past are not applicable to such massive datasets. For example, an algorithm with a quadratic running time is infeasible when we are dealing with millions of points, let alone hundreds of millions of points. As a result, in the context of large scale algorithm design, it is often desired to have an almost linear time algorithm.

Initially, Ester et al. (Ester et al. 1996) claimed that DBSCAN runs in \(O(n \log n)\) time, however, Gunawan and De Berg refuted this claim and showed that this algorithm needs \(\Omega(n^2)\) time in the worst-case (Gunawan and de Berg 2013). There are several attempts to improve this running time and get closer the ideal \(\hat{O}(n)\) worst-case running time1. However, all of the previous results highly depend on the dimension and hence are only claimed to work well when the dimension of the space is a small constant. For example, in 2D it is possible to implement DBSCAN in \(O(n \log n)\) time (de Berg, Gunawan, and Roeloffzen 2017; Gunawan and de Berg 2013). For larger dimensions the state-of-the-art algorithms (Chen, Smid, and Xu 2005; Gan and Tao 2017) require \(\hat{O}(n^{2-\sigma(1/D)})\) time, where \(D\) is the dimension of the space. This bound is certainly of great theoretical value, but as \(D\) grows, it behaves similar to \(O(n^2)\). Moreover, there are some approximation algorithms for DBSCAN that run in \(O(n \log n)\) and \(O(n)\) when the dimension is a constant (Chen, Smid, and Xu 2005; Gan and Tao 2017). But the running time of these algorithms explicitly depends exponentially on the dimension, which is a drawback.

DBSCAN++ is the state-of-the-art approximation algorithm for DBSCAN that is provably faster than DBSCAN, while interestingly, provides higher quality solutions than DBSCAN in practice (Jang and Jiang 2018). The analysis of DBSCAN++ is based on a standard parameter in level-set analyses called \(\beta\)-regularity2. Specifically, they show that it is possible to approximate DBSCAN in \(O(n^{2-\frac{2}{2+\beta}})\) time. In addition to this, DBSCAN++ can be used to estimate the \(\lambda\)-density level set with near-optimal Hausdorff distance.

Our main result in this paper is to provide a provable \(\hat{O}(n)\)-time approximation algorithm for DBSCAN. The algorithm has two main components: The first part is a near linear time core point set construction based on a novel grid density estimation method which unlike previous work avoids \(k\)-nearest neighbor search which is a bottleneck in previous work. The second part is a graph construction component in which we apply locality sensitive hashing to construct the clusters. Moreover, our algorithm can be used to estimate the \(\lambda\)-density level set with near-optimal Hausdorff distance in

\begin{itemize}
 \item We use \(\hat{O}(f(n))\) to denote \(O(f(n) \cdot \log f(n))\).
 \item See Assumption 7 and the corresponding section for a definition.
\end{itemize}

1All authors contribute equally.
Copyright © 2021, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
Thus, to generate clusters, the goal becomes to estimate the density level set.

The input data is a set of n points, and λ are outside of the λ-level-set, i.e., points that fall into the same component are grouped into the same cluster. For data points which are outside of the λ-level-set, they are put into the cluster corresponding to the closest component in the λ-level-set. Thus, to generate clusters, the goal becomes to estimate the density level set.

Although, the main goal of this paper is to design a fast algorithm in the classical setting, as a side result, we show how to apply our idea to design a distributed algorithm in the MapReduce model using $O(n)$ work and $O(\log n)$ rounds of computation.

In addition to our theoretical guarantees, we provide an empirical study of the algorithms on real and synthetic data sets. Based on our experiments, our algorithm significantly improves the running time of DBSCAN and DBSCAN++. Moreover, even though our algorithm is an approximation algorithm specifically designed to improve the running time, it achieved comparable quality clusterings to that of DBSCAN and DBSCAN++. Furthermore, we observe that speedup increases significantly as the size of data sets increases, e.g., at 10^8 points, we reach $100\times$ speedup.

Algorithm

In this section, we first review the density level set estimation based clustering methods including the classic DBSCAN algorithm (Est et al. 1996) and its current state-of-the-art approximation DBSCAN++ (Jang and Jiang 2018). Then we introduce our new algorithm — near linear time DBSCAN.

Before delving into more detailed discussions, let us introduce some notation used in this paper. We use $\mathbb{R}_{\geq 0}$ to denote the set of non-negative real numbers. We use \mathbb{R}^D to denote D-dimensional Euclidean space. The distance between two points $x, y \in \mathbb{R}^D$ is defined as $d(x, y) := \|x - y\|_2 = \sqrt{\sum_{i=1}^{D} (x_i - y_i)^2}$. We use $\|x - y\|_p$ to denote the ℓ_p distance between x and y, i.e., $\|x - y\|_p = \left(\sum_{i=1}^{D} |x_i - y_i|^p\right)^{1/p}$. In particular, for $p = \infty$, $\|x - y\|_\infty = \max_i |x_i - y_i|$. We use $[m]$ to denote the set $\{1, 2, \ldots, m\}$.

Clustering via Density Level Set Estimation

The input data is a set of n points X in D-dimensional Euclidean space. The goal is to partition X into several clusters. The seminal DBSCAN work (Est et al. 1996) provides a natural way to generate clusters based on the density of the data points. Suppose X are i.i.d. samples drawn from a distribution \mathcal{F} over \mathbb{R}^D. Let $f : \mathcal{X} \to \mathbb{R}_{\geq 0}$ be the density function of \mathcal{F}, where \mathcal{X} is the support of \mathcal{F}. The definition of λ-density level set (or λ-level-set for short) is given in the following.

Definition 1 (Density level set). Given $\lambda \geq 0$, the λ-level-set of f is defined as $L_f(\lambda) := \{x \in \mathcal{X} \mid f(x) \geq \lambda\}$.

Notice that λ-level-set may contain multiple connected components in the space. For a given level λ, an ideal way to partition the data points is via the connected components in the λ-level-set, i.e., points that fall into the same component are grouped into the same cluster. For data points which are outside of the λ-level-set, they are put into the cluster corresponding to the closest component in the λ-level-set. Thus, to generate clusters, the goal becomes to estimate the density level set.

The high level idea of DBSCAN is as the following. Firstly it wants to approximately recognize the points that fall into the density level set. By the definition of the density level set, such points have high density and thus should be in dense regions of the input. Data points in dense regions are called core points. These points are used to estimate the density level set. Next it wants to estimate the connected components of the density level set. Thus, it wants to find connected dense regions. To achieve this goal, it generates a graph by connecting close core points and then it finds connected components of the graph. The remaining data points are clustered by assigning them to the close dense regions. Based on this idea, DBSCAN is described in Algorithm 1.

Algorithm 1 DBSCAN

1: Inputs: $X \subset \mathbb{R}^D$, ε, k
2: Initialize core $C \leftarrow \emptyset$.
3: For each $x \in X$: if $|\{y \in X \mid d(x, y) \leq \varepsilon\}| \geq k$, add x to C.
4: Construct a graph G: each node corresponds to a point in X.
5: For each core point $c \in C$, add an edge in G between c and $x \in X$ which satisfies $d(c, x) \leq \varepsilon$.
6: Return connected components of G.

As shown in Algorithm 1, if there are at least k points in the ε-radius neighborhood of a certain point, it is regarded as a core point. In other words, a core point given by Algorithm 1 has a dense ε-radius neighborhood. To use the output of Algorithm 1 to estimate the connected components of λ-level-set for a given λ, one needs to set k and ε properly according to λ. For detailed related theoretical analysis, we refer readers to (Jiang 2017; Jang and Jiang 2018). In practice, when λ is not explicitly given, k and ε are usually tuning parameters for obtaining good clustering results.

DBSCAN++ (Jang and Jiang 2018) has a simple modification over DBSCAN. It shows that a downsampled subset of core points still estimates the density level set well. Based on this idea, they first select a subset of m points from the entire dataset and only recognize core points among the sampled m points. Then they follow the remaining steps in the DBSCAN algorithm. In their analysis and experiments, they show that if $m \approx n^{1-2\beta/(2\beta+D)}$, the obtained results have good qualities.

Consider the running time of both algorithms. For DBSCAN, it needs to find k-nearest neighbors for each point. Thus, the total running time is n times the time for k-nearest neighbor search over n points. For DBSCAN++, it needs to find k-nearest neighbors for m sampled points. Thus, the total running time is m times the running time for k-nearest neighbor search over n points. As discussed by (Jang and Jiang 2018), although there is a line of work improving the running time of DBSCAN by boosting the k-nearest neighbor search in some certain cases (see e.g., (Kumar and Reddy 2016; Vijayalaksmi and Punithavalli 2012; Huang and Bian 2009)), DBSCAN takes near quadratic time and DBSCAN++ takes $O(mn)$ time in general. These running times are far away from near linear runtime time.
Near Linear Time DBSCAN

We develop a new DBSCAN algorithm which avoids the bottleneck, \(k \)-nearest neighbor search. By rethinking Algorithm 1, there is a natural question to ask: is there any way beyond looking at the \(\varepsilon \)-radius neighborhood to distinguish whether a point is in a dense region or not? Suppose data points are drawn from a continuous distribution. If point \(x \) has high density, then any point which is close to \(x \) must also have high density. Thus, if we look at any small (hyper)cube containing \(x \), the probability that a sample falls into the (hyper)cube will be roughly the volume of the (hyper)cube times the density of \(x \). Thus, if the data set \(X \) is sufficiently large, we will observe a large number of samples in the (hyper)cube, and we can regard such \(x \) as a core point.

Inspired by this observation, we propose a new core point set construction method (Algorithm 2), we give our near linear time DBSCAN algorithm in Algorithm 3.

Algorithm 2 Core Point Set Construction via Rounding

1. **Inputs:** \(X \subseteq \mathbb{R}^D, \varepsilon, k \)
2. Construct \(\tilde{h} : \mathbb{R}^D \rightarrow \mathbb{Z}^D \): for \(x \in \mathbb{R}^D \), \(\tilde{h}(x) := \lfloor \frac{x}{\varepsilon} \rfloor \).
3. Initialize core \(C \leftarrow \emptyset \).
4. For \(x \in X \), if \(\{ y \in X \mid \tilde{h}(x) = \tilde{h}(y) \} \geq k \), add \(x \) into \(C \).
5. Return \(C \).

Once we obtain core points, the next step is to construct the graph over points. Then another question comes: do we really need to restrict on only connecting the points in the \(\varepsilon \)-radius neighborhood? If the distance between any two different dense regions are much larger than \(\varepsilon \), it is safe to connect core points with distance moderately larger than \(\varepsilon \). This observation motivates us to use Locality Sensitive Hashing (LSH), which has broad applications in approximate nearest neighbor search problems. An LSH family is a set of hash functions such that if we draw a hash function from such family, the probability of mapping two close points to the same hash value is high and the probability of mapping two far points to the same hash value is low. We refer readers to a survey (Andoni and Indyk 2008) for more background and literature of LSH. In this work, we use the following LSH in our algorithm.

Lemma 2. Given \(\varepsilon \in \mathbb{R}_{\geq 0} \), let \(\eta \) be a random variable which has uniform distribution over \([0, 2\varepsilon)\). Let \(h : \mathbb{R}^D \rightarrow \mathbb{Z}^D \) be a hash function such that \(\forall x \in \mathbb{R}^D \), \(h(x) := \lfloor \frac{x + \eta \cdot \mathbf{1}_D}{2\varepsilon} \rfloor \), where \(\mathbf{1}_D \) is a \(D \)-dimensional all-one vector. Then, for any two points \(x, y \in \mathbb{R}^D \),

1. \(\Pr[h(x) = h(y)] \geq 1 - \frac{\|x - y\|_2}{2\varepsilon} \).

2. \(h(x) = h(y) \Rightarrow \|x - y\|_\infty \leq 2\varepsilon \).

Proof. Consider two points \(x, y \in \mathbb{R}^D \). Fix a coordinate \(i \in [D] \). The probability that \(\lfloor (x_i + \eta)/2\varepsilon \rfloor \neq \lfloor (y_i + \eta)/2\varepsilon \rfloor \) is at most \(|x_i - y_i|/2\varepsilon \). By taking union bound over all coordinates, the probability that \(h(x) \neq h(y) \) is at most \(\|x - y\|_1/2\varepsilon \), and thus the first claim holds. Now, consider two points \(x, y \in \mathbb{R}^D \) with \(\|x - y\|_\infty > 2\varepsilon \). There exists a coordinate \(i \) such that \(x_i - y_i > 2\varepsilon \) which means that for any \(\eta \in \mathbb{R} \), \(\lfloor (x_i + \eta)/2\varepsilon \rfloor \) can never be equal to \(\lfloor (y_i + \eta)/2\varepsilon \rfloor \). Thus, the second claim holds.

By combining the above LSH with our new core point set construction method (Algorithm 2), we give our near linear time DBSCAN algorithm in Algorithm 3.

Algorithm 3 Near Linear time DBSCAN

1. **Inputs:** \(X \subseteq \mathbb{R}^D, t, \varepsilon, k \)
2. //Conduct core point set:
3. Let core \(C \) be the output of Algorithm 2.
4. //Construct a graph over core points:
5. Draw \(t \) independent hash functions \(h_1, h_2, \ldots, h_t : \mathbb{R}^D \rightarrow \mathbb{Z}^D \), where \(h_i \) is constructed as the same as described in Lemma 2; choose \(\eta_i \in [0, 2\varepsilon) \) uniformly at random, and \(\forall x \in \mathbb{R}^D \), let \(h_i(x) := \left\lfloor \frac{x + \eta_i \cdot \mathbf{1}_D}{2\varepsilon} \right\rfloor \).
6. Construct a graph \(G \): for \(i \in [t] \) and for each maximal subset of core points \(S \subseteq C \) with the same hash value of \(h_i(\cdot) \), choose an arbitrary point in \(S \) and connect it to all other points in \(S \) in the graph \(G \).
7. //Handle non-core points:
8. For each non-core point \(x \in X \setminus C \), find one arbitrary core point \(c \in C \) such that \(\exists y \in [t] \), \(h_i(c) = h_i(x) \). If such point \(c \) exists, connect \(x \) to \(c \) in \(G \).
9. //Final Clustering:
10. Return connected components of \(G \).

Theorem 3 (Running time of Algorithm 3), Algorithm 3 can be implemented in \(\tilde{O}(ntD) \) time. In particular, if \(t = O(\log n) \), it has running time \(\tilde{O}(nD) \) which is near linear in the size of \(X \).

Proof. In the stage of core point set construction, we run Algorithm 2. Algorithm 2 can be implemented in \(\tilde{O}(ntD) \) time: for each \(x \in X \), we use \(O(D) \) time to compute \(\tilde{h}(x) \). Then we use sorting which takes \(O(nD) \) time to group all points by their rounding value \(\tilde{h}(x) \). We can determine the core by looking at the size of each group. In the stage of constructing graph over core points, we use \(t : O(nD) \) time to compute hash value \(h_i(x) \) for each \(i \in [t] \) and \(x \in X \). Similarly, for each \(i \in [t] \), we can use sorting to group all core points by their hash value \(h_i(x) \). We create a star in \(G \) for each group, i.e., we choose a node in the group and connect it to everyone in the group. Thus, the running time in this stage is at most \(t \cdot O(n \cdot D) \). In the stage of handling non-core points, we still use sorting to group points by their hash values. For each core point, we mark the groups it falls in. Since a non-core point only needs to find an arbitrary core point with the same hash value, we only need \(O(t) \) time to
There exist C. We have two assumptions in our theoretical analysis.

Theoretical Analysis for Density Level Set Estimation

It was shown that DBSCAN and DBSCAN++ are consistent estimators of the density level sets (Jiang 2017; Jang and Jiang 2018). In this section, we will show that our near linear time DBSCAN algorithm (Algorithm 3) also achieves similar statistical consistency guarantees. As in (Jiang 2017; Jang and Jiang 2018), our density level set estimator is near optimal under Hausdorff distance. Due to space limits, we will put all missing details into Appendix.

The following is a uniform convergence bound (Chaudhuri and Dasgupta 2010). It plays an important role in our analysis.

Lemma 4 (Theorem 15 of (Chaudhuri and Dasgupta 2010)). Let X be a set of n i.i.d. samples drawn from a distribution F over X. With probability at least $1 - \frac{\delta}{3}$, for any cube $K \subseteq \mathbb{R}^D$, \(\Pr_{x \sim F}[x \in K] \geq C_{\delta,n} \sqrt{\frac{\log n}{n}} \Rightarrow |X \cap K| > 0 \); \(\Pr_{x \sim F}[x \in K] \geq \frac{k}{n} \Rightarrow C_{\delta,n} \sqrt{\frac{k}{n}} \Rightarrow |X \cap K| > k \); \(\Pr_{x \sim F}[x \in K] < \frac{k}{n} \Rightarrow C_{\delta,n} \sqrt{\frac{k}{n}} \Rightarrow |X \cap K| < k \), where $C_{\delta,n} = C_0 \log(1/\delta) \sqrt{D \log n}$, C_0 is a universal constant, and $k \geq C_{\delta,n}$.

Regularity Assumptions

We have two assumptions in our theoretical analysis.

Assumption 5. f is continuous and has convex compact support $X \subseteq \mathbb{R}^D$.

Definition 6. For $x \in \mathbb{R}^D$, $A \subseteq \mathbb{R}^D$, define $d(x,A) := \inf_{x' \in A} \|x - x'\|_2$. For $C \subseteq X$, $r \geq 0$, define $B(C,r) := \{x \in X : d(x,C) \leq r\}$.

Assumption 7 (β-regularity of level-sets). Let $\beta \in (0, \infty)$. There exist $C_1, C_2, \lambda_0 > 0$ such that $\forall x \in L_f(\lambda - \lambda_0) \setminus L_f(\lambda)$, $C_1 \cdot d(x, L_f(\lambda))^\beta \leq \lambda - f(x) \leq C_2 \cdot d(x, L_f(\lambda))^\beta$.

We adopted the same assumptions made by (Jiang and Jang 2018). The first one (Assumption 5) is a natural assumption which asks the distribution to be continuous. The second assumption (Assumption 7) is a standard assumption in level set analysis (see e.g. (Jang and Jiang 2018; Singh et al. 2009)). In high level, it requires that the boundary of the target estimated density level set should have some good properties. One is that the boundary should be salient enough. This is parameterized by the parameter β. Another is that the distance between two different connected components of the density level set should be far enough. This is described by both β and λ_0. (See the following lemma and corollary).

Lemma 8. Under Assumption 5 and Assumption 7, $\forall x \in B(L_f(\lambda), r_c) \setminus L_f(\lambda)$, $C_1 \cdot d(x, L_f(\lambda))^\beta \leq \lambda - f(x) \leq C_2 \cdot d(x, L_f(\lambda))^\beta$, where $r_c = \left(\frac{\lambda}{C_2}\right)^{1/\beta}$.

Corollary 9. The distance between any two connected components of $L_f(\lambda)$ is at least r_c.

Parameters Used in Theoretical Analysis

In this section, we describe our parameter settings. Let n be the size of the point set, i.e., $n = |X|$. Let λ be the desired density level. Define $C_{\delta,n} = C_0 \sqrt{D \log(n/\delta)}$, where δ is a confidence parameter, i.e., the desired probability that our guarantees hold is at least $1 - \delta$. We suppose that n is sufficiently large. We choose k to be in the range: $k_1 \cdot (\log n)^{1.5} \leq k \leq k_2 \cdot (\log n)^{\frac{D+n}{2D+n}}$, for some sufficiently large parameter k_1, and sufficiently small parameter k_2, where k_1,k_2 only depends on D, λ, δ and the density function $f()$. We choose $\varepsilon = \frac{1}{2} \left(\frac{k}{n \lambda (1-2C_{\delta,n}/\sqrt{D})}\right)^{1/D}$ and let $t = C_t \log(n/\delta)$ for some sufficiently large universal constant C_t.

Density Level Set Estimation

In this section, we show that the output of our new core point set construction, Algorithm 2, is indeed a good estimation to the desired density level set. Firstly, we show that if a sampled point is too far away from the desired density level set, it will not be added into the core.

Lemma 10. $\forall x \in X$, if $d(x, L_f(\lambda)) \geq 2 \left(\frac{C_t}{C_1} \cdot 10 \frac{C_{\delta,n}}{\sqrt{\varepsilon}}\right)^{1/2}$, then x is not in the core.

Proof. If $y \in X$ satisfies $\hat{h}(y) = \hat{h}(x)$, then $\|x - y\|_2 \leq \sqrt{D}\|x - y\|_\infty \leq 2\sqrt{D}\varepsilon$. We have $d(y, L_f(\lambda)) \leq d(x, L_f(\lambda)) - 2\sqrt{D}\varepsilon \geq d(x, L_f(\lambda))/2$, where the last inequality follows from that ε is properly chosen and k_2 is sufficiently small. By Assumption 7, we have $f(y) \leq \lambda - \lambda \cdot 10 C_{\delta,n}/\sqrt{X}$. Then, $\int_x f(z) \cdot 1(\hat{h}(z) = \hat{h}(x)) \, dz \leq (2\varepsilon)^D \cdot \frac{1}{n\lambda(1 - 2C_{\delta,n}/\sqrt{X})} \cdot \lambda(1 - 10 C_{\delta,n}/\sqrt{X}) \leq \frac{k}{n \lambda (1-2C_{\delta,n}/\sqrt{X})} \cdot \lambda(1 - \lambda C_{\delta,n}/\sqrt{X})$. According to Lemma 4, we know that $|\{y \in X : \hat{h}(x) = \hat{h}(y)\}| < k$ which means that x will not be added into the core.

Then we show that if a sampled point is in the density level set, or it is sufficiently close to the density level set, it must be added into the core by Algorithm 2.

Lemma 11. $\forall x \in X$, if $d(x, L_f(\lambda)) \leq \frac{1}{2} \left(\frac{C_t}{C_1} \cdot \frac{C_{\delta,n}}{\sqrt{\varepsilon}}\right)^{1/2}$, then x will be added into the core.

Proof. If $y \in X$ satisfies $\hat{h}(y) = \hat{h}(x)$, then $\|x - y\|_2 \leq \sqrt{D}\|x - y\|_\infty \leq 2\sqrt{D}\varepsilon$. Thus, $d(y, L_f(\lambda)) \leq d(x, L_f(\lambda)) + 2\sqrt{D}\varepsilon \leq \left(\frac{C_t}{C_2} \cdot C_{\delta,n}/\sqrt{X}\right)^{1/2}$, where the last inequality follows from that ε is properly chosen and k_2 is sufficiently small. By Assumption 7, we have $f(y) \geq \lambda - \lambda C_{\delta,n}/\sqrt{X}$. Then, $\int_x f(z) \cdot 1(\hat{h}(z) = \hat{h}(x)) \, dz \geq (2\varepsilon)^D \cdot \frac{1}{n\lambda(1-2C_{\delta,n}/\sqrt{X})} \cdot \lambda(1 - C_{\delta,n}/\sqrt{X}) \geq \frac{k}{n} + C_{\delta,n}/\sqrt{X}$. According to Lemma 4, we know that $|\{y \in X : \hat{h}(x) = \hat{h}(y)\}| \geq k$ which means that x will be added into the core.
Next, we show that for any point which is in the desired density level set, there is a close sampled point which will be added into the core.

Lemma 12. \(\forall x \in L_f(\lambda), \exists a \) core point \(x' \in C \) such that \(\|x - x'\|_2 \leq \frac{\varepsilon}{2} \leq \frac{1}{2} \left(\frac{C_{\delta,n}}{C_2} \cdot \sqrt{k} \right)^{1/\beta} \).

Proof. Let \(r_0 = \frac{1}{2} \left(\frac{C_{\delta,n} \sqrt{D} \log n}{n \lambda} \right)^{1/D} \). We have: \(\int_{x'} f(z) \cdot 1(\|z - x\|_\infty \leq r_0)dz \geq (2r_0)^D - \frac{C_{\delta,n} \sqrt{D} \log n}{n \lambda} \). By Lemma 4, there is a point \(x' \in X \) such that \(\|x - x'\|_\infty \leq r_0 \). Since \(\kappa_1 \) is sufficiently large, by analyzing the range of \(k \), we have \(r_0 \leq \frac{\varepsilon}{2 \sqrt{D}} \). Since \(\varepsilon \) is chosen properly and \(\kappa_2 \) is sufficiently small, we have:

\[
\frac{\varepsilon}{2} \leq \frac{1}{2} \left(\frac{C_{\delta,n}}{C_2} \cdot \sqrt{k} \right)^{1/\beta}.
\]

By Lemma 11, \(x' \) is in \(C \).

The Hausdorff Distance is defined as \(d_{\text{Haus}}(A, A') = \max \{\sup_{x \in A} \text{dist}(x, A'), \sup_{x' \in A'} \text{dist}(x', A)\} \). Now, we are able to bound the Hausdorff error of using the core returned by Algorithm 2 to estimate the desired density level set. The theorem follows directly from Lemma 12 and Lemma 10.

Theorem 13. Let \(C \) be the output of Algorithm 2, then, \(d_{\text{Haus}}(C, L_f(\lambda)) \leq 2 \left(\frac{C_{\delta,n}}{C_2} \cdot \frac{10 C_{\delta,n}}{\sqrt{k}} \right)^{1/\beta} \).

Remark 14. If we choose maximum possible \(k \), the above quantity is at most \(O \left(\kappa_3 \cdot \frac{n}{\sqrt{\log D}} \right) \), where \(\kappa_3 \) is a parameter only depends on \(D, \delta, \lambda \) and the density function \(f \). This matches the lower bound shown in Theorem 4 of (Tsybakov et al. 1997). Thus, our density level set estimation is near optimal.

Connected components estimation. After obtaining the core point set, the next step in Algorithm 3 is to construct the graph over the data points. We show that there is actually a one-to-one correspondence between the connected components of \(\lambda \)-density level sets and the connected components of the graph constructed by Algorithm 3. We defer these results to Appendix.

Efficient DBSCAN in Distributed Models

Observe that all operations in our algorithm are highly parallelizable. In theory, beyond classic sequential setting, our algorithm can also be efficiently implemented in parallel setting and distributed setting in general. As one example, our algorithm can be implemented in MapReduce (Dean and Ghemawat 2008). A commonly studied formal model for MapReduce is the (Massively Parallel Computation) MPC model which is introduced by (Karloff, Suri, and Vassilvitskii 2010; Goodrich, Stinchcava, and Zhang 2011; Beame, Koutris, and Suciu 2017). In this model, there are \(p \) machines where each has local memory size \(s = O(N^4) \). Here \(N \) is the total size of the input data and \(\delta \in (0, 1) \) is a constant. It implies that the local memory of each machine is sublinear in the input size. In the most restricted case, the total space \(p \cdot s \) in the system is \(O(N) \), where \(N \) is the total size of the input data, i.e., the total space is slightly larger than the input size. Before the computation starts, the input is distributed on \(\Theta(N/s) \) input machines. The computation proceeds in rounds. In each round, a machine does some local computation and sends messages to other machines at the end of the round. In a round, the total communication of a machine must be bounded by its local memory size \(s \). In the next round, each machine only holds the received messages in its local memory. At the end of the computation, the output data is distributed on the output machines. The goal is to design an algorithm with small number of rounds.

Theorem 15 (DBSCAN in MapReduce). Except final clustering stage, Algorithm 3 can be implemented in the MPC model with \(O(1) \) number of rounds and \(O(n t D) \) total space. In particular, if \(t = O(\log n) \), the total space needed is \(O(n D) \).

Complete Algorithm 3 in the MPC model. The only stage remaining is to compute connected components of the constructed graph \(G \). In the MPC model, this can be done in \(\sim \log(D) \) rounds of numbers (Andoni et al. 2018; Behnezhad et al. 2019a). In a stronger Adaptive Massively Parallel Computation (AMPC) model (Behnezhad et al. 2019b), connected components can be computed in \(O(\log \log n) \) rounds. By combining with Theorem 15, we can run our DBSCAN clustering algorithm in MPC model with \(O(\log n) \) rounds and in AMPC model with \(O(\log \log n) \) rounds. In general, if connected components can be computed in MPC/AMPC model in \(R \) rounds, our algorithm can be implemented in MPC/AMPC model in \(R + O(1) \) rounds.

Experiments

Setup. We evaluated our algorithm, Algorithm 3, on both synthetic and real world datasets. We implemented DBSCAN, DBSCAN++ (Jang and Jiang 2018) and our algorithm. We implemented two versions (indexed as DSv1 and DSv2 respectively) of DBSCAN, where one is exactly the same as Algorithm 1 and another is a natural variant but has a better accuracy in practice (See Appendix for more details). There are also two versions of DBSCAN++, where one (indexed as

<table>
<thead>
<tr>
<th>Datasets</th>
<th>(n)</th>
<th>(D)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) iris</td>
<td>150</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>(B) wine</td>
<td>178</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>(C) spam</td>
<td>4601</td>
<td>57</td>
<td>2</td>
</tr>
<tr>
<td>(D) images</td>
<td>210</td>
<td>19</td>
<td>7</td>
</tr>
<tr>
<td>(E) MINIST</td>
<td>60000</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>(F) Libras</td>
<td>360</td>
<td>90</td>
<td>15</td>
</tr>
<tr>
<td>(G) mobile</td>
<td>2000</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>(H) zoo</td>
<td>101</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>(I) seeds</td>
<td>210</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>(J) letters</td>
<td>20000</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>(K) phonemes</td>
<td>4509</td>
<td>256</td>
<td>5</td>
</tr>
<tr>
<td>(L) YouTube8M</td>
<td>64321</td>
<td>128</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 1: real world datasets summary. In the table, \(n \) denotes the number of data points, \(D \) denotes the dimension, and \(c \) denotes the number of ground truth clusters. We index datasets from (A) to (L).
For experiments on synthetic datasets, we fix k and m on a single machine. All programs are in single thread mode. We use hash functions, to be applied on $\lfloor \sqrt{n} \rfloor$ subsamples. As suggested in [Jang and Jiang 2018], we set $m = \lfloor \frac{0.1 \cdot n^{D/(D+4)} }{\ln(n)} \rfloor$ for all experiments. For our algorithm, we set t, the number of hash functions, to be $[2 \cdot \ln(n)]$. All experiments are done on a single machine. All programs are in single thread mode.

For experiments on synthetic datasets, we fix $\varepsilon = 3 \cdot \sqrt{D}$ for all algorithms. For more detailed experiment setup, we refer readers to Appendix.

Evaluation on small real world datasets.

We evaluate both accuracy and speed for all implemented algorithms on datasets (A) to (K) described in Table 1. The accuracy is evaluated under metrics Adjusted Rand Index scores and Adjusted Mutual Information scores (Vinh, Epps, and Bailey 2010). We ran the same optimal tuning procedure to find the best ε for each algorithm and reported the corresponding scores. As shown in Table 2 and Table 4, the qualities of the clustering results obtained by our algorithm are as good as DBSCAN and DBSCAN++ while the running time of our algorithm is always the fastest.

Speed-up for large-scale datasets.

Table 4 shows that DBSCAN++ and our algorithm can gain significant speed-up even when n is about thousands. It is natural to ask what the behavior of DBSCAN++ and our algorithm is when the size of the dataset becomes much larger. We first test our

Table 2: Scores of algorithms on real world datasets (A)-(K).
For each dataset, the first row corresponds to Adjusted Rand Index scores and the second row corresponds to Adjusted Mutual Information. In each row, the highest score is marked in green and the second highest score is marked in orange. DBSCAN++ with uniform initialization and our algorithm are randomized algorithms. We took 10 runs to report the standard error. Other algorithms are deterministic. As we can see that our algorithm has the highest score on 7 metrics and has top-2 score on 12 metrics. For each compared algorithm, our algorithm has better scores on at least half of the total 22 metrics.

<table>
<thead>
<tr>
<th></th>
<th>DSv1</th>
<th>DSv2</th>
<th>DS++ k-ctr</th>
<th>DS++ unif</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>0.5681</td>
<td>0.6899</td>
<td>0.6634</td>
<td>0.5823±0.07</td>
<td>0.7066±0.01</td>
</tr>
<tr>
<td></td>
<td>0.7316</td>
<td>0.7316</td>
<td>0.7308</td>
<td>0.6512±0.07</td>
<td>0.7316±0.00</td>
</tr>
<tr>
<td>(B)</td>
<td>0.2883</td>
<td>0.3122</td>
<td>0.3694</td>
<td>0.3615±0.02</td>
<td>0.336±0.02</td>
</tr>
<tr>
<td></td>
<td>0.3636</td>
<td>0.4006</td>
<td>0.4246</td>
<td>0.4172±0.01</td>
<td>0.4037±0.02</td>
</tr>
<tr>
<td>(C)</td>
<td>0.1301</td>
<td>0.1453</td>
<td>0.1304</td>
<td>0.1406±0.00</td>
<td>0.1172±0.00</td>
</tr>
<tr>
<td></td>
<td>0.0455</td>
<td>0.1076</td>
<td>0.1210</td>
<td>0.1088±0.00</td>
<td>0.0682±0.00</td>
</tr>
<tr>
<td>(D)</td>
<td>0.3244</td>
<td>0.3378</td>
<td>0.3785</td>
<td>0.3477±0.02</td>
<td>0.3977±0.01</td>
</tr>
<tr>
<td></td>
<td>0.4560</td>
<td>0.6238</td>
<td>0.5380</td>
<td>0.5168±0.02</td>
<td>0.5823±0.01</td>
</tr>
<tr>
<td>(E)</td>
<td>0.1950</td>
<td>0.2203</td>
<td>0.2356</td>
<td>0.256±0.00</td>
<td>0.275±0.01</td>
</tr>
<tr>
<td></td>
<td>0.0760</td>
<td>0.4203</td>
<td>0.4581</td>
<td>0.4779±0.00</td>
<td>0.4223±0.00</td>
</tr>
<tr>
<td>(F)</td>
<td>0.1420</td>
<td>0.1173</td>
<td>0.1883</td>
<td>0.1602±0.01</td>
<td>0.2311±0.01</td>
</tr>
<tr>
<td></td>
<td>0.2037</td>
<td>0.2722</td>
<td>0.4461</td>
<td>0.3505±0.02</td>
<td>0.4554±0.01</td>
</tr>
<tr>
<td>(G)</td>
<td>0.0192</td>
<td>0.3559</td>
<td>0.4087</td>
<td>0.2989±0.02</td>
<td>0.2005±0.01</td>
</tr>
<tr>
<td></td>
<td>0.0618</td>
<td>0.4550</td>
<td>0.4597</td>
<td>0.4143±0.01</td>
<td>0.3196±0.00</td>
</tr>
<tr>
<td>(H)</td>
<td>0.7169</td>
<td>0.6814</td>
<td>0.7171</td>
<td>0.5775±0.06</td>
<td>0.7568±0.00</td>
</tr>
<tr>
<td></td>
<td>0.6832</td>
<td>0.6921</td>
<td>0.7375</td>
<td>0.6140±0.02</td>
<td>0.8262±0.00</td>
</tr>
<tr>
<td>(I)</td>
<td>0.3893</td>
<td>0.6948</td>
<td>0.5738</td>
<td>0.5803±0.04</td>
<td>0.6408±0.02</td>
</tr>
<tr>
<td></td>
<td>0.3647</td>
<td>0.6787</td>
<td>0.6032</td>
<td>0.6067±0.03</td>
<td>0.6230±0.01</td>
</tr>
<tr>
<td>(J)</td>
<td>0.1096</td>
<td>0.1651</td>
<td>0.1185</td>
<td>0.1117±0.00</td>
<td>0.1398±0.01</td>
</tr>
<tr>
<td></td>
<td>0.3457</td>
<td>0.5004</td>
<td>0.4926</td>
<td>0.4875±0.00</td>
<td>0.4664±0.00</td>
</tr>
<tr>
<td>(K)</td>
<td>0.4577</td>
<td>0.7344</td>
<td>0.3558</td>
<td>0.4682±0.02</td>
<td>0.366±0.02</td>
</tr>
<tr>
<td></td>
<td>0.3297</td>
<td>0.8229</td>
<td>0.5506</td>
<td>0.734±0.02</td>
<td>0.2858±0.02</td>
</tr>
</tbody>
</table>

Table 3: Running time for real world dataset (L). We ran our algorithm and all implemented versions of DBSCAN++ on the dataset (L). We report the running time (in seconds) for each listed algorithm on the dataset (L). For each version of DBSCAN++, we report both running time of using and without using KDTree for handling k-nearest neighbor search.

<table>
<thead>
<tr>
<th></th>
<th>DS++ k-ctr</th>
<th>DS++ unif</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L)</td>
<td>9862.41</td>
<td>8982.18</td>
<td>5146.73</td>
</tr>
</tbody>
</table>

3For KDTree part, we used public codes shared here: https://github.com/crvs/KDTree.

4See https://www.kaggle.com/.

5See http://research.google.com/youtube8m/download.html.
Table 4: Running time for real world datasets (A)-(K). We ran each algorithm on each dataset 10 times. We report the mean running time (in seconds) and standard errors for each algorithm on each dataset. For datasets (A), (B), (D), (H), (I), every implemented algorithm can finish in at most 0.01 seconds and has standard error 0.00. For each version of DBSCAN and DBSCAN++, we report both running time of using and without using KDTree for handling \(k \)-nearest neighbor search. In all experiments, our algorithm is the fastest one.

Table 5: Running time (in seconds) for extremely large synthetic datasets. For synthetic datasets with extremely large size, our algorithm only needs about 10 times the time needed to generate the data. Our algorithm can have more than 100 times speed-up comparing with DBSCAN++. In addition, in all experiments, all algorithms have Adjusted Rand Index score 1.0 and Adjusted Mutual Information score 1.0.

Figure 1: Running time vs. number of points. In both above figures, x-axis corresponds to the number of points in the dataset, and y-axis corresponds to the running time. In (a) and (b), we can see that the running time of our algorithm is much faster than DBSCAN++. For these synthetic datasets, KDTree cannot help in improving the running time of DBSCAN++. It even introduces a large overhead. The running time of our algorithm grows almost linearly while the running time of each version of DBSCAN++ grows much faster than linear. In addition, in all experiments, all algorithms have Adjusted Rand Index score 1.0 and Adjusted Mutual Information score 1.0.

Algorithm and all implemented versions of DBSCAN++ on the large real world dataset (L) which has \(n = 764321 \) and \(D = 128 \). We choose \(\varepsilon = 1.5 \) and the running time of each algorithm is shown in Table 3. Since all versions of DBSCAN++ took several hours for even one run on the dataset (L), we cannot afford to run optimal tuning procedure to find the best \(\varepsilon \) for DBSCAN++ on (L). Thus, we did not compare the accuracy on (L). Then we test our algorithm and all implemented versions of DBSCAN++ on two batchs of synthetic datasets. In the first batch of synthetic experiments, we generated mixture of Gaussians in 10-dimensional space with 3 clusters. We enumerate \(n \) from \(10^5 \) to \(8 \times 10^5 \) and see the change of running time of DBSCAN++ and our algorithm when \(n \) increases. In the second batch of synthetic experiments, we ran DBSCAN++ and our algorithm for extremely large number of points and larger dimensions. For all synthetic experiments, all evaluated algorithms always recover the correct number of clusters. We enumerate \(n \) from \(10^5 \) to \(8 \times 10^5 \) and see the change of running time of DBSCAN++ and our algorithm when \(n \) increases. In the second batch of synthetic experiments, we ran DBSCAN++ and our algorithm for extremely large number of points and larger dimensions. For all synthetic experiments, all evaluated algorithms always recover the correct number of clusters. We enumerated \(n \) from \(10^5 \) to \(8 \times 10^5 \) and see the change of running time of DBSCAN++ and our algorithm when \(n \) increases. In the second batch of synthetic experiments, we ran DBSCAN++ and our algorithm for extremely large number of points and larger dimensions. For all synthetic experiments, all evaluated algorithms always recover the correct number of clusters. We enumerated \(n \) from \(10^5 \) to \(8 \times 10^5 \) and see the change of running time of DBSCAN++ and our algorithm when \(n \) increases. In the second batch of synthetic experiments, we ran DBSCAN++ and our algorithm for extremely large number of points and larger dimensions. For all synthetic experiments, all evaluated algorithms always recover the correct number of clusters. We enumerated \(n \) from \(10^5 \) to \(8 \times 10^5 \) and see the change of running time of DBSCAN++ and our algorithm when \(n \) increases. In the second batch of synthetic experiments, we ran DBSCAN++ and our algorithm for extremely large number of points and larger dimensions. For all synthetic experiments, all evaluated algorithms always recover the correct number of clusters. We enumerated \(n \) from \(10^5 \) to \(8 \times 10^5 \) and see the change of running time of DBSCAN++ and our algorithm when \(n \) increases. In the second batch of synthetic experiments, we ran DBSCAN++ and our algorithm for extremely large number of points and larger dimensions. For all synthetic experiments, all evaluated algorithms always recover the correct number of clusters. We enumerated \(n \) from \(10^5 \) to \(8 \times 10^5 \) and see the change of running time of DBSCAN++ and our algorithm when \(n \) increases. In the second batch of synthetic experiments, we ran DBSCAN++ and our algorithm for extremely large number of points and larger dimensions. For all synthetic experiments, all evaluated algorithms always recover the correct number of clusters. We enumerated \(n \) from \(10^5 \) to \(8 \times 10^5 \) and see the change of running time of DBSCAN++ and our algorithm when \(n \) increases. In the second batch of synthetic experiments, we ran DBSCAN++ and our algorithm for extremely large number of points and larger dimensions. For all synthetic experiments, all evaluated algorithms always recover the correct number of clusters. We enumerated \(n \) from \(10^5 \) to \(8 \times 10^5 \) and see the change of running time of DBSCAN++ and our algorithm when \(n \) increases. In the second batch of synthetic experiments, we ran DBSCAN++ and our algorithm for extremely large number of points and larger dimensions. For all synthetic experiments, all evaluated algorithms always recover the correct number of clusters. We enumerated \(n \) from \(10^5 \) to \(8 \times 10^5 \) and see the change of running time of DBSCAN++ and our algorithm when \(n \) increases. In the second batch of synthetic experiments, we ran DBSCAN++ and our algorithm for extremely large number of points and larger dimensions. For all synthetic experiments, all evaluated algorithms always recover the correct number of clusters. We enumerated \(n \) from \(10^5 \) to \(8 \times 10^5 \) and see the change of running time of DBSCAN++ and our algorithm when \(n \) increases. In the second batch of synthetic experiments, we ran DBSCAN++ and our algorithm for extremely large number of points and larger dimensions. For all synthetic experiments, all evaluated algorithms always recover the correct number of clusters. We enumerated \(n \) from \(10^5 \) to \(8 \times 10^5 \) and see the change of running time of DBSCAN++ and our algorithm when \(n \) increases. In the second batch of synthetic experiments, we ran DBSCAN++ and our algorithm for extremely large number of points and larger dimensions. For all synthetic experiments, all evaluated algorithms always recover the correct number of clusters. We enumerated \(n \) from \(10^5 \) to \(8 \times 10^5 \) and see the change of running time of DBSCAN++ and our algorithm when \(n \) increases. In the second batch of synthetic experiments, we ran DBSCAN++ and our algorithm for extremely large number of points and larger dimensions. For all synthetic experiments, all evaluated algorithms always recover the correct number of clusters. We enumerated \(n \) from \(10^5 \) to \(8 \times 10^5 \) and see the change of running time of DBSCAN++ and our algorithm when \(n \) increases. In the second batch of synthetic experiments, we ran DBSCAN++ and our algorithm for extremely large number of points and larger dimensions. For all synthetic experiments, all evaluated algorithms always recover the correct number of clusters. We enumerated \(n \) from \(10^5 \) to \(8 \times 10^5 \) and see the change of running time of DBSCAN++ and our algorithm when \(n \) increases. In the second batch of synthetic experiments, we ran DBSCAN++ and our algorithm for extremely large number of points and larger dimensions. For all synthetic experiments, all evaluated algorithms always recover the correct number of clusters. We enumerated \(n \) from \(10^5 \) to \(8 \times 10^5 \) and see the change of running time of DBSCAN++ and our algorithm when \(n \) increases. In the second batch of synthetic experiments, we ran DBSCAN++ and our algorithm for extremely large number of points and larger dimensions. For all synthetic experiments, all evaluated algorithms always recover the correct number of clusters. We enumerated \(n \) from \(10^5 \) to \(8 \times 10^5 \) and see the change of running time of DBSCAN++ and our algorithm when \(n \) increases. In the second batch of synthetic experiments, we ran DBSCAN++ and our algorithm for extremely large number of points and larger dimensions. For all synthetic experiments, all evaluated algorithms always recover the correct number of clusters.
References

Huang, M.; and Bian, F. 2009. A grid and density based fast spatial clustering algorithm. In 2009 International Conference on Artificial Intelligence and Computational Intelligence, volume 4, 260–263. IEEE.

