Abstract
Progress in pre-trained language models has led to a surge of impressive results on downstream tasks for natural language understanding. Recent work on probing pre-trained language models uncovered a wide range of linguistic properties encoded in their contextualized representations. However, it is unclear whether they encode semantic knowledge that is crucial to symbolic inference methods. We propose a methodology for probing linguistic information for logical inference in pre-trained language model representations. Our probing datasets cover a list of linguistic phenomena required by major symbolic inference systems. We find that (i) pre-trained language models do encode several types of linguistic information for inference, but there are also some types of information that are weakly encoded, (ii) language models can effectively learn missing linguistic information through fine-tuning. Overall, our findings provide insights into which aspects of linguistic information for logical inference do language models and their pre-training procedures capture. Moreover, we have demonstrated language models’ potential as semantic and background knowledge bases for supporting symbolic inference methods.

1 Introduction
Pre-trained language models have replaced traditional symbolic-based natural language processing systems on a variety of language understanding tasks, mainly because symbolic-based NLP systems often rely on linguistic properties as features. Those features are hard to acquire. Many types of linguistic information are either hand-written rules or background knowledge extracted from traditional knowledge base, which make symbolic-based systems hard to scale up on large benchmarks such as GLUE (Wang et al. 2018). On the other hand, many recent probing studies have revealed that sentence representations of pre-trained language models encode a large amount of linguistic information and background knowledge (Tenney et al. 2019; Petroni et al. 2019; Bouraoui, Camacho-Collados, and Schockaert 2020). However, it remains unknown if these representations also encode implicit linguistic information for inference crucial to symbolic inference systems.

In this paper, we propose an inference information probing framework (Figure 1). We define a set of probing tasks that focus on different types of linguistic information required by symbolic systems. In particular, we cover linguistic information on syntax, fundamental semantics, and higher-level semantic reasoning. Higher-level semantic reasoning often depends on multiple types of fundamental semantics. For example, relational-knowledge-based semantic alignment requires anaphora resolutions, named entities, and lexical semantics. We are interested in answering two questions: (1) Do pre-trained language models encode linguistic information essential to symbolic inference systems? (2) Do pre-trained language models acquire new linguistic information for inference during the fine-tuning process for the NLI task? For each task, we conducted probing experiments on multiple contextualized language models and compared results to several strong baselines.
Our analysis shows that language models encode diverse types of linguistic information for inference. In particular, they encode more information on syntax and fundamental semantics than higher-level semantic reasoning and monotonicity. Our label-wise qualitative analysis revealed that the amount of information encoded by language models for each task is different across labels which justifies our previous findings. Moreover, we found that pre-trained language models can obtain some types of the missing linguistic information through fine-tuning for the NLI task. Overall, our findings show that pre-trained language models can be potential linguistic knowledge bases supporting symbolic inference systems.

Contributions Our contributions are as follows:

1. Our work expands on prior probing studies for language models by covering more aspects of linguistic information, including syntax, monotonicity, fundamental semantics, and higher-level semantic reasoning.

2. Our experiments allow classifier expressiveness to be analyzed in a more complex setting covering syntactic and semantic linguistic properties beyond prior works.

3. Our study provides insights into what types of new linguistic information pre-trained language models obtain during fine-tuning on large NLI datasets. This contributes to the interpretability of NLI models.

2 Related Work

Recent studies have reported the existence of linguistic properties encoded in the self-attention weights of language models’ contextualized representations. These linguistic properties include syntactic structure, semantic knowledge, and some world knowledge (Rogers, Kovaleva, and Rumshisky 2020). Several studies train and evaluate a probing classifier on top of different language models’ contextualized representations to explore the existence of information about linguistic properties. These studies have shown that pre-trained language models encode some levels of syntactic and semantic knowledge. Hewitt and Manning (2019) recovered syntactic dependencies from BERT’s embeddings by learning transformation matrices. Tenney et al. (2019), which is more directly related to our work, proposed the edge probing framework and found that contextualized embeddings encode information about named entity types, relations, semantic roles and proto roles based on the high accuracy of the probing classifier.

Some probing studies focus on inducing factual knowledge captured in pre-trained language models. A majority of the studies rely on the Masked Language Modeling (MLM) component of the model which can be adapted to induce knowledge easily, since the model only needs to fill in the blanks. Petroni et al. (2019) showed that pre-trained BERT encodes relational knowledge competitive with those that are accessed from knowledge bases using traditional NLP methods. They also found that BERT has strong ability to recall factual knowledge prior to any fine-tuning, making it a good candidate for open-domain QA systems (unsupervised). Bouraoui, Camacho-Collados, and Schockaert (2020) proposed a method to induce relations from pre-trained language models. They first found potential sentences that express a relation in a large corpus. A subset of sentences was used as templates. They then fine-tuned a language model to predict whether a given word pair form some relation. They found strong evidence that relations can be obtained from language models.

Compared to existing work, we extend common syntactic and semantic tasks to a range of tasks that focus on more complex linguistic phenomena. Some of our tasks, such as semantic graph construction and monotonicity polarization, require both syntactic and semantic information. Probing for more complex linguistic tasks allows us to diagnose the particular advantages of language models over conventional NLP systems. It also allows us to study the expressiveness of probing classifiers in a more complex setting beyond syntactic tasks. Moreover, our experiments on fine-tuned NLI language models provides insights into the type of linguistic information they capture through fine-tuning.

3 Probing Methodology

3.1 Edge Probing and Vertex Probing

Edge probing is a simple and useful probing framework proposed by Tenney et al. (2019). It can provide a uniform set of metrics and architectures across diverse task types. Formally, a sentence is defined as a list of tokens \(\{t_0, t_1, t_2, \ldots, t_n\} \) and an edge target as \(\{s_1, s_2, L\} \) where \(s_1 \) and \(s_2 \) are two end exclusive spans with \(s_1 = \{i^{s_1}, j^{s_1}\} \) and \(s_2 = \{i^{s_2}, j^{s_2}\} \). \(L \) is a label assigned to the pair of spans which the classifier needs to accurately predict. The label set for \(L \) is different across tasks including both binary labels and multi labels. Each sentence \(\{t_0, t_1, t_2, \ldots, t_n\} \) is encoded by a language model into contextualized sentence representation \(\{e_0, e_1, e_2, \ldots, e_n\} \). A projection layer concatenated with a self-attention pooling operator will be applied to the representation to extract span representations according to the index position of two spans \(s_1 = \{i^{s_1}, j^{s_1}\} \) and \(s_2 = \{i^{s_2}, j^{s_2}\} \). As Tenney et al. (2019) mentioned, the pooling is fixed-length and only operates within the bounds of a span to ensure that the classifier can only access information of the rest of the sentence from the contextual sentence representation. The two span representations are concatenated and passed to the classifier to predict the label. To ensure we only probe a pre-trained language model without modifying its parameters, we freeze its parameters to not allow for gradient updates.

The vertex probing framework has the same settings and formulations as the edge probing framework, except that vertex probing operates on every token in a sentence. The classifier receives only a single span representation as input. Formally, the definition is very similar to that of the sequence tagging task. With a list of tokens \(\{t_0, t_1, t_2, \ldots, t_n\} \), we define each token as a single span target \(s = \{i^s, j^s\}, L \). The vertex probing is used to predict which words belong to a category in the label set.
3.2 Classifier Selection

Selecting a good probing classifier is essential to the probing process. We first choose the linear classifier. According to Hewitt and Liang (2019), the linear classifier is less expressive and thus is prevented from memorizing the task. However, Pimentel et al. (2020) uses probing to estimate the mutual information between a representation-valued and a linguistic-property—valued random variable. They argue that the most optimal probe should be used to minimize the chance of misinterpreting a representation’s encoded information, and therefore achieve the optimal estimate of mutual information. To lessen the chance of misinterpretation, we conducted probing using a Multi-layer Perceptron (MLP) classifier with one hidden layer.

3.3 Baseline Selection

We selected three strong baselines for comparison to ensure that the probing accuracy can be a good measurement for the existence of linguistic information for inference in language model representations. Random word embedding encodes no linguistic structure since each word has a random embedding. Zhang and Bowman (2018) found that sometimes probing classifiers fail to reflect differences in representations when random baselines’ information are sufficient to support good performance for a task. Pimentel et al. (2020) proposed an information-theoretic operationalization of probing, in which the goal of probing is to estimate the mutual information between a linguistic property and a representation. They claim to compare the mutual information of language models to traditional word embeddings such as FastText. Hewitt and Liang (2019) argue that accuracy cannot fully validate that a representation encodes linguistic information since a highly expressive classifier could have learned the task. They proposed the use of random targets as control tasks to complement probing. An insightful probe should have high selectivity (the difference between the true task accuracy and the control task accuracy) resulting from a high true task accuracy and a low control task accuracy.

3.4 Experiment Setup

To answer both questions 1 and 2 in the introduction, we experiment with five pre-trained language models. We selected BERT-base and BERT-large (Devlin et al. 2019), RoBERTa-base and RoBERTa-large (Liu et al. 2019), and DeBERTa (He et al. 2021). All five models can provide contextualized sentence representations and have shown impressive performance on the GLUE (Wang et al. 2018) benchmark. We first conduct linear classifier probing for the five language models on each probing task. We train the linear classifier on the training set with the parameters of the language model frozen. Then, we evaluate the test set with accuracy as the metric. We compare the probing accuracy with our baselines to determine if language models encode linguistic information for inference required for these tasks. To minimize the opportunity of a linear classifier misinterpreting the information from the language models, we also conduct MLP classifier probing for each task. Next, we conduct experiments on control tasks by assigning random labels for each task. We verify that each probe has high selectivity to ensure the accuracy is an insightful metric for determining if a language model encodes the task-related information. We conduct label-wise qualitative analysis for each task to explore if the amount of information is encoded differently across the task-specific labels. In addition, we conduct experiments using the Information-Theoretic Probing framework to validate that the mutual information between a language model and a linguistic property is more than those in baseline embeddings. Finally, to determine if language models can learn the missing linguistic information for inference, we evaluate NLI models fine-tuned on MultiNLI (Williams, Nangia, and Bowman 2018), using probing tasks that do not benefit from the pre-trained models.

4 Inference Information Probes

In this section, we introduce a list of edge and vertex probing tasks for probing implicit linguistic information for symbolic inference methods in pre-trained language model representations. To discover potential tasks that can provide essential linguistic information for symbolic inferences, we studied four major logical systems for NLI, all with high accuracy on SICK (Marelli et al. 2014), and several challenge datasets for the NLI task. They include NLI systems based on natural logic (Abzianidze 2020), monotonicity reasoning (Hu et al. 2020; Chen, Gao, and Moss 2021), and theorem
proving (Yanaka et al. 2018).

4.1 Semantic Graph Construction (SemGraph)
This task probes the graph-based abstract meaning representation for sentences, a type of knowledge found effective in symbolic systems for acquiring paraphrase pairs and selecting correct inference steps (Yanaka et al. 2018; Chen, Gao, and Moss 2021). The task is to construct a semantic graph that captures connections between concepts, modifiers, and relations in a sentence. Relations are words that form a connection, including verbs and prepositions. Concepts are arguments connected by a relation such as objects and subjects. Each concept connects to a set of modifiers that attribute to it. An example semantic graph is shown in Figure 2. We define this as an edge probing task and assign a label to a pair of tokens. A label is selected from the label set: concept-to-relation, concept-to-modifier, relation-to-concept, relation-to-modifier, relation-to-relation, modifier-to-relation, modifier-to-concept. To construct the dataset, we use dependency parsing and semantic role labeling tools to identify concepts, modifiers, and relations in a sentence and the connection between them. We selected premises from the SNLI test set as our inputs and split them into training and testing sets.

4.2 Semantic Alignment (SA)
This set of tasks probes the linguistic information for inference involving semantically aligned phrase or word pairs. These aligned pairs can often serve as an explanation of the entailment gold-label (Abzianidze 2020; Chen, Gao, and Moss 2021). We cover both fundamental and advanced semantic alignment. Fundamental semantic alignment requires fundamental semantics like lexical semantics and anaphora resolution. Advanced semantic alignment requires higher-level semantic reasoning which also depends on fundamental semantics. Here, lexical (SA-Lex) and anaphora (SA-AP) are types of fundamental semantic alignment; sentiment (SA-ST) and relational knowledge (SA-RK) are types of advanced semantic alignment. Table 2 lists each type of semantic alignment with associated examples. Probing data are first collected from multiple challenge datasets for NLU and then are manually annotated for the edge and vertex probing framework. For the sentiment task, we noticed that the aligned phrases are always part of a person’s saying, leading a model to solve the task quickly by memorization. To avoid this, we concatenated each premise with speech fragments from another randomly selected premise to build a more complex premise. For instance, in the example in Table 2, I found this product to be too big is a speech fragment from another premise sample.

We formulate each task as either an edge probing or a vertex probing task during annotation. For edge probing tasks, we assign either Aligned or Unaligned to a pair of spans. For example, in the sentiment example in Table 2, \((s^1: \{It was terrible!\}, s^2: \{I found this product to be too big\})\) are aligned, and \((s^1: \{It was terrible!\}, s^2: \{I found this product to be too big\})\) are unaligned. In a vertex probing task, we label a token as either Aligned\(_1\) (the token belongs to the first phrase of the aligned pair), Aligned\(_2\) (the token belongs to the second phrase of the aligned pair), or Unaligned (the token is not in any aligned phrases). For example, in the relational-knowledge example in Table 2, \{Dirk, Nowitski, is, a, current, NBA, star\} are tokens in the first phrase of the aligned pair. \{Dirk, Nowitski, plays, in, the, NBA\} are
tokens in the second phrase of the aligned pair, and \{Dallas, Mavericks, as, an, all-purpose, forward\} are unaligned tokens. We consider fundamental semantic alignment (lexical and anaphora) as edge probing tasks and advanced semantic alignment (sentiment and relational knowledge) as vertex probing tasks. In general, vertex probing tests more for higher-level semantic reasoning than edge probing because a model needs to locate the aligned span pair by categorizing every token in a sentence without knowing the locations of aligned spans beforehand.

4.3 Contradiction Signature (ContraSig)

Being able to reason about contradictions between a pair of sentences is a fundamental requirement of Natural Language Inference. To determine a contradictory relationship, systems often rely on contradiction signatures, or possible rationales of contradiction in the sentence pair. Contradiction signature detection tests for both syntax and fundamental semantics. We define this task as vertex probing and manually annotated one dataset for detecting contradiction in text (Marelli et al. 2014) by labeling tokens in the first phrase of a contradiction signature as Contra-sig$_1$, tokens in the second phrase of a contradiction signature as Contra-sig$_2$, and irrelevant tokens as None. Table 2 shows an example, with \{have, each, played, twice\} as irrelevant tokens \{defeats, Germany\} as tokens in the first phrase of the contradiction signature, and \{haven't, beaten, anybody, yet\} as tokens in the second phrase of the contradiction signature.

4.4 Monotonicity Polarization (Monotonicity)

Monotonicity information supports word-replacement-based logical inferences that NLI systems can use. For each token, we assign a monotonicity mark that is either Monotone (↑), Antitone (↓), or None (=). To construct our dataset, we annotated monotonicity information on all sentences in the MED dataset (Yanaka et al. 2019) as training examples using a monotonicity annotation tool called Udep2Mono (Chen and Gao 2021). For testing, we extended a challenging gold-label monotonicity dataset used by Udep2Mono that includes multiple levels of monotonicity changes from different quantifiers and logical operators. For each sentence, we replicate ten sentences following the same syntactic format. Vertex probing is used for monotonicity polarization because a model must predict every token’s monotonicity information.

5 Experiment Results and Findings

5.1 Do LMs encode information for inference?

Here we evaluate the degree to which pre-trained language models encode implicit information of linguistic properties that is essential to logical inference systems. We conducted probes on the five pre-trained language models. Table 3 shows results from the probing experiments.

Semantic Graph Construction

With the linear classifier, all language models achieve high probing accuracy that outperforms the baselines. Together, with high selectivity, this strong evidence that the information in these models’ representations allows the classifier to recover the connectives of concepts, relations, and modifiers. Interestingly, the MLP classifier did not improve on the linear classifier significantly, suggesting that the information is easy to interpret. The performance here is consistent with language models’ good performance on dependency parsing, semantic role labeling, and part-of-speech tagging (Tenney et al. 2019) which are related to semantic graph construction.

Semantic Alignment

We observe that fundamental semantic alignment (lexical and anaphora) benefits more from language models than advanced semantic alignment that requires higher-level semantic reasoning. For fundamental semantic alignment, language models show high probing accuracy that improves over the baselines significantly when using the MLP Classifier. This is evidence that language models encode linguistic information of these two types of semantic alignment since they also show high selectivity. Language models do not improve over the baselines when using the linear classifier, suggesting that these types

<table>
<thead>
<tr>
<th>Model</th>
<th>SemGraph</th>
<th>ContraSig</th>
<th>Monotonicity</th>
<th>SA-Lex</th>
<th>SA-ST</th>
<th>SA-AP</th>
<th>SA-RK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1: Baselines (direct probing, no fine-tuning)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random</td>
<td>68.5</td>
<td>29.7</td>
<td>48.8</td>
<td>45.5</td>
<td>46.8</td>
<td>48.9</td>
<td>45.7</td>
</tr>
<tr>
<td>Word2Vec</td>
<td>68.8</td>
<td>42.4</td>
<td>43.4</td>
<td>59.7</td>
<td>31.4</td>
<td>32.3</td>
<td>42.3</td>
</tr>
<tr>
<td>Glove</td>
<td>71.3</td>
<td>40.2</td>
<td>41.3</td>
<td>60.6</td>
<td>33.4</td>
<td>35.8</td>
<td>50.5</td>
</tr>
<tr>
<td>FastText</td>
<td>69.4</td>
<td>31.7</td>
<td>51.9</td>
<td>50.1</td>
<td>51.3</td>
<td>51.3</td>
<td>52.2</td>
</tr>
</tbody>
</table>

Group 2: Language Models (Linear classifier probing, no fine-tuning; selectivity is shown in parenthesis)

<table>
<thead>
<tr>
<th>Model</th>
<th>SemGraph</th>
<th>ContraSig</th>
<th>Monotonicity</th>
<th>SA-Lex</th>
<th>SA-ST</th>
<th>SA-AP</th>
<th>SA-RK</th>
</tr>
</thead>
<tbody>
<tr>
<td>BERT-base</td>
<td>91.8 (42.0)</td>
<td>58.2 (35.1)</td>
<td>48.3 (35.8)</td>
<td>57.4 (37.0)</td>
<td>56.3 (34.7)</td>
<td>49.8 (30.1)</td>
<td>62.9 (30.3)</td>
</tr>
<tr>
<td>BERT-large</td>
<td>88.9 (39.5)</td>
<td>51.6 (37.9)</td>
<td>44.9 (37.4)</td>
<td>55.5 (4.80)</td>
<td>51.2 (33.1)</td>
<td>50.2 (0.1)</td>
<td>62.1 (49.5)</td>
</tr>
<tr>
<td>RoBERTa-base</td>
<td>"88.3 (39.2)"</td>
<td>"52.7 (33.0)"</td>
<td>"42.8 (32.7)"</td>
<td>"61.3 (1.3)"</td>
<td>"70.7 (38.6)"</td>
<td>"49.4 (0.6)"</td>
<td>"62.3 (46.7)"</td>
</tr>
<tr>
<td>RoBERTa-large</td>
<td>89.6 (40.0)</td>
<td>48.4 (27.6)</td>
<td>38.1 (43.0)</td>
<td>66.2 (16.2)</td>
<td>46.1 (36.6)</td>
<td>49.8 (0.3)</td>
<td>62.9 (50.1)</td>
</tr>
<tr>
<td>DeBERTa</td>
<td>"93.4 (37.7)"</td>
<td>"78.5 (32.7)"</td>
<td>"51.9 (27.7)"</td>
<td>"73.3 (37.8)"</td>
<td>"51.8 (2.5)"</td>
<td>"56.8 (52.8)"</td>
<td></td>
</tr>
</tbody>
</table>

Group 3: Language Models (MLP classifier probing, no fine-tuning; selectivity is shown in parenthesis)

<table>
<thead>
<tr>
<th>Model</th>
<th>SemGraph</th>
<th>ContraSig</th>
<th>Monotonicity</th>
<th>SA-Lex</th>
<th>SA-ST</th>
<th>SA-AP</th>
<th>SA-RK</th>
</tr>
</thead>
<tbody>
<tr>
<td>BERT-base</td>
<td>90.7 (40.7)</td>
<td>91.6 (31.7)</td>
<td>58.1 (41.3)</td>
<td>89.0 (38.8)</td>
<td>67.1 (34.3)</td>
<td>61.5 (17.6)</td>
<td>70.9 (34.7)</td>
</tr>
<tr>
<td>BERT-large</td>
<td>89.3 (38.0)</td>
<td>91.0 (33.0)</td>
<td>57.4 (34.6)</td>
<td>88.8 (38.4)</td>
<td>67.4 (35.5)</td>
<td>77.6 (31.3)</td>
<td>69.0 (53.1)</td>
</tr>
<tr>
<td>RoBERTa-base</td>
<td>"91.3 (39.5)"</td>
<td>"92.5 (27.3)"</td>
<td>"50.1 (29.1)"</td>
<td>"87.2 (36.6)"</td>
<td>"66.3 (37.7)"</td>
<td>"87.7 (38.6)"</td>
<td>"70.9 (52.9)"</td>
</tr>
<tr>
<td>RoBERTa-large</td>
<td>90.1 (40.6)</td>
<td>91.9 (35.5)</td>
<td>55.4 (46.8)</td>
<td>88.9 (37.2)</td>
<td>65.7 (38.2)</td>
<td>\textbf{88.6} (39.3)</td>
<td>70.2 (49.1)</td>
</tr>
<tr>
<td>DeBERTa</td>
<td>"92.5 (37.2)"</td>
<td>"92.9 (2.0)"</td>
<td>"65.7 (58.0)"</td>
<td>"91.0 (41.5)"</td>
<td>"63.0 (39.5)"</td>
<td>"85.2 (31.3)"</td>
<td>"72.9 (48.2)"</td>
</tr>
</tbody>
</table>

Table 3: This table lists results from the probing and fine-tuning experiments. We include in group 1 probing accuracy (%) from two baselines. Group 2 and 3 shows probing accuracy (%) of the linear classifier (group 2) and the MLP classifier (group 3). For each probe, we also record the selectivity score (%) from control tasks.
of linguistic information might be hard to interpret. Language models only improved slightly over the baselines for advanced semantic alignment requiring high-level semantic reasoning (SA-ST, SA-RK). The insignificant improvement suggests that these representations weakly capture the information on advanced semantic alignment for sentiment and relational knowledge. This is consistent with Tenney et al. (2019)’s finding that language models only encode a small amount of information on higher-level semantic reasoning.

Contradiction Signature and Monotonicity
For the task on contradiction signature detection, all language models show poor performance with linear classifier except DeBERTa, which has relatively high accuracy (78.5%), validating that information on contradiction signatures is more accessible from DeBERTa than the other four models. After using the MLP classifier, all models’ accuracy increased significantly (above 90%) while maintaining very high selectivity. We attribute this partly to the fact that many contradictions are simple morphological negation and antonyms, which can be largely detected by using lexical semantics and syntax. The high accuracy is thus strong evidence that language models do encode a good amount of information on syntax and lexical semantics. For the monotonicity polarization task, language models show low accuracy with both the linear classifier and the MLP classifier. This suggests that these language models may not encode much monotonicity information that can support the polarization.

5.2 Label-wise Qualitative Analysis
To further understand the amount of linguistic information that pre-trained language models capture, we analyze label-wise probing quality for each task. Label-wise accuracy per task are shown in figure 3. We first observe that on tasks with syntactic and fundamental semantic information (SemGraph, SA-Lex, SA-AP, ContraSig), language models show high and balanced accuracy across labels. These behaviors are strong evidence that these models encode rich information on syntax and fundamental semantics of lexical and anaphora. On the semantic graph construction task, the accuracy distribution is similar across models. The relatively low accuracy on modifier-to-relation (m-r) and modifier-to-concept (m-c) show the incompleteness of information in language models that support the linking of modifiers to words being modified. Language models seem to encode information for linking concepts to corresponding words since the accuracy is consistently high.

For advanced semantic alignment (SA-ST, SA-RK), the heatmaps show highly imbalanced label-wise accuracy. The models have higher accuracy on words in the hypothesis of an aligned pair than words in the premise, which has a much more complicated context. Since vertex-probing needs to locate phrases in a premise contributing to an entailment, the low accuracy on predicting span locations in a premise suggests that language models only encode very little linguistic information on complex semantic phenomena. For monotonicity polarization, the accuracy on each label is very different. Across language models, the accuracy on monotone polarity is higher than that on antitone and neutral polarity. This is consistent with other findings from other probing studies on monotonicity reasoning. (Yanaka et al. 2019; Geiger, Richardson, and Potts 2020).

5.3 Discussions
Information-Theoretic Probing We conducted additional experiments on information-theoretical probing to validate our findings based on probing accuracy. The main method is to estimate the mutual information between a language model and a linguistic property of a task and then compare it with a baseline word embedding. We want to estimate the amount of extra information a language model encodes compared to a baseline. We followed Pimentel et al. (2020)’s practice by using a more powerful probing classifier (MLP). We compared each language model to the
best-performed baseline embedding. As Table 4 shows, pretrained language models on average encode more than 50% of extra information on the eight probing tasks. Overall, pre-trained language models encode more information than baseline embedding consistently across all tasks. Among these, the highest information gain of language models is on lexical alignment (more than 100% of increase). This is surprising since baseline word embeddings are representations of word semantics. We hypothesize that this is due to the proximity of words that contradict each other in the embedding space. Based on the results, we conclude that pre-trained language models encode significantly more information on linguistic inference of logical inference than conventional word embeddings.

Classifier Expressiveness Some of our findings contradict several statements made by Hewitt and Liang (2019) regarding classifier expressiveness. First, they claim that one should choose a less expressive classifier over a highly expressive one (linear over MLP) since the prior one has higher selectivity. However, based on the accuracy, we observe that the linear classifier has worse performance for semantically-oriented tasks than the MLP classifier. We also found that the MLP classifier can achieve similar selectivity as a linear classifier for these tasks while achieving higher accuracy. These findings suggest that linear classifiers could misinterpret semantic information from a representation, which supports Pimentel et al. (2020)’s arguments on using a more powerful classifier. Secondly, they claim that a probing classifier with sufficient expressiveness can learn any task on top of a lossless representation with enough training examples. However, we found that even high expressive classifiers like MLP fail to perform well on tasks with monotonicity and higher-level semantic reasoning.

5.4 Can LMs learn missing information?

Here we evaluate whether pre-trained language models can obtain linguistic information for inference, missing from their pre-trained representations, through fine-tuning for the NLI task. We select a version fine-tuned on the MultiNLI dataset for each language model. We probed these fine-tuned models for three tasks that did not benefit from the pre-trained language models. Our probing results are shown in Table 5, and we only record probedings with the best performance here. We observe that all language models’ fine-tuned representations improve over their pre-trained representations significantly on the sentiment (SA-ST) and relational-knowledge-based (SA-RK) semantic alignment. In contrast, they do not improve the performance on monotonicity polarization (Monotonicity). The results show that language models can capture linguistic information on some types of semantic reasoning but not on monotonicity. Possible explanations are that these models could not obtain monotonicity information during fine-tuning, or the training data of MultiNLI does not contain enough examples about monotonicity.

6 Conclusions and Future Work

We presented a systematic study on determining if pre-trained language models encode implicit linguistic information essential to symbolic inference methods. For each probing task, we constructed associating datasets. We then conducted probergs on pre-trained language models using both linear and MLP classifiers for each task. In general, we found that contextualized representations of language models encode some levels of linguistic information for inference. They encode information more so on syntax and fundamental semantics than on higher-level semantic reasoning and monotonicity. These findings confirm Tenney et al. (2019)’s result and also go beyond their result by showing that language models encode much information on fundamental semantics in addition to syntax. Moreover, we found that linear classifiers can predict correctly under syntactical information but often misinterpret information on semantics resulting in low classification accuracy. Our label-wise qualitative analysis found that the amount of linguistic information being encoded is different across task-specific labels. In particular, language models encode more linguistic information for one label than other labels. This label-wise information difference again justifies the absence and incompleteness of some linguistic information for inference in language models. Furthermore, we found that language models can effectively learn some types of missing information on higher-level semantic reasoning through fine-tuning for the NLI task. Overall, language models show potential to serve as knowledge bases of linguistic information that supports more robust symbolic reasoning.

We believe that our probing and analysis provide an adequate picture of whether critical linguistic information for inference exists in pre-trained language models. Moreover, our probing can inspire future systems on combining neural and symbolic NLP methods. For future work, one could conduct further analysis on each type of linguistic information in language models by constructing more detailed probing datasets. One could also design logical systems that can access linguistic information from pre-trained language models and apply them in the inference process for improved performance on large benchmarks.

7 Acknowledgments

We thank the anonymous reviewers for their thoughtful comments and constructive feedback. Thanks also to our advisors Laurence S. Moss and Michael Wollowsi for their helpful feedback on earlier drafts of this work. Special thanks to the Machine Learning for Language Group at NYU for their wonderful NLP toolkit, JIANT.

Table 5: Probing accuracy (%) of fine-tuned NLI models on probing tasks that did not benefit from pre-trained models.

<table>
<thead>
<tr>
<th>Model</th>
<th>Monotonicity</th>
<th>SA-ST</th>
<th>SA-RK</th>
</tr>
</thead>
<tbody>
<tr>
<td>BERT-base</td>
<td>60.9 (▲ 2.8)</td>
<td>79.8 (▲ 12.7)</td>
<td>81.4 (▲ 14.2)</td>
</tr>
<tr>
<td>BERT-large</td>
<td>60.2 (▲ 2.8)</td>
<td>77.6 (▲ 10.2)</td>
<td>80.5 (▲ 14.6)</td>
</tr>
<tr>
<td>RoBERTa</td>
<td>58.0 (▲ 2.6)</td>
<td>76.1 (▲ 10.4)</td>
<td>89.7 (▲ 27.7)</td>
</tr>
<tr>
<td>DeBERTa</td>
<td>68.7 (▲ 3.0)</td>
<td>78.9 (▲ 12.9)</td>
<td>89.6 (▲ 27.7)</td>
</tr>
</tbody>
</table>

Conclusions and Future Work

We presented a systematic study on determining if pre-trained language models encode implicit linguistic information essential to symbolic inference methods. For each probing task, we constructed associating datasets. We then conducted probergs on pre-trained language models using both linear and MLP classifiers for each task. In general, we found that contextualized representations of language models encode some levels of linguistic information for inference. They encode information more so on syntax and fundamental semantics than on higher-level semantic reasoning and monotonicity. These findings confirm Tenney et al. (2019)’s result and also go beyond their result by showing that language models encode much information on fundamental semantics in addition to syntax. Moreover, we found that linear classifiers can predict correctly under syntactical information but often misinterpret information on semantics resulting in low classification accuracy. Our label-wise qualitative analysis found that the amount of linguistic information being encoded is different across task-specific labels. In particular, language models encode more linguistic information for one label than other labels. This label-wise information difference again justifies the absence and incompleteness of some linguistic information for inference in language models. Furthermore, we found that language models can effectively learn some types of missing information on higher-level semantic reasoning through fine-tuning for the NLI task. Overall, language models show potential to serve as knowledge bases of linguistic information that supports more robust symbolic reasoning.

We believe that our probing and analysis provide an adequate picture of whether critical linguistic information for inference exists in pre-trained language models. Moreover, our probing can inspire future systems on combining neural and symbolic NLP methods. For future work, one could conduct further analysis on each type of linguistic information in language models by constructing more detailed probing datasets. One could also design logical systems that can access linguistic information from pre-trained language models and apply them in the inference process for improved performance on large benchmarks.

Acknowledgments

We thank the anonymous reviewers for their thoughtful comments and constructive feedback. Thanks also to our advisors Laurence S. Moss and Michael Wollowski for their helpful feedback on earlier drafts of this work. Special thanks to the Machine Learning for Language Group at NYU for their wonderful NLP toolkit, JIANT.
References

