HoD-Net: High-order Differentiable Deep Neural Networks and Applications

Siyuan Shen¹, Tianjia Shao¹*, Kun Zhou¹, Chenfanfu Jiang², Feng Luo³, Yin Yang³

¹State Key Lab of CAD&CG, Zhejiang University
²Department of Mathematics, University of California, Los Angeles
³School of Computing, Clemson University
{shensiyuan|tshao|kunzhou}@zju.edu.cn, cffjiang@math.ucla.edu, {luofeng|yin5}@clemson.edu

Abstract

We introduce a deep architecture named HoD-Net to enable high-order differentiability for deep learning. HoD-Net is based on and generalizes the complex-step finite difference (CSFD) method. While similar to classic finite difference, CSFD approaches the derivative of a function from a higher-dimension complex domain, leading to highly accurate and robust differentiation computation without numerical stability issues. This method can be coupled with backpropagation and adjoint perturbation methods for an efficient calculation of high-order derivatives. We show how this numerical scheme can be leveraged in challenging deep learning problems, such as higher-order network training, deep learning-based physics simulation, and neural differential equations.

Introduction

The prosperity of deep learning (DL) is unlikely without the development of underlying differentiation methods. Indeed, the concept of neural networks has a long history dated back to WW2, which was originally designed as a computational modality for logical calculus (McCulloch and Pitts 1943). However, the actual deployment of the deep neural network or DNN for machine learning is neither common nor feasible until differentiation techniques, i.e., the automatic differentiation (AD) method (Baydin et al. 2018; Rall and Corliss 1996; Bücker et al. 2006), become fledged. A multilayer net is then treated as a compositional function, and we can practically calculate its gradient via the backpropagation (BP) (Hecht-Nielsen 1992; Rumelhart et al. 1995), which is a dedicated implementation of reverse AD.

AD computes the analytic derivative of a function, using “exact formulas along with floating-point values” (Neidinger 2010). When higher-order differentiation is needed, the computation complexity along the chain rule escalates at a super-polynomial rate (w.r.t. the order of differentiation) bringing practical difficulties in AD implementations (Margossian 2018). As a result, many existing AD packages (e.g., Adept (Hogan 2014)) only deals with the first-order derivative. While one may perform first-order differentiation multiple times to obtain a high-order derivative, it has been argued that recursive AD leads to inefficient and numerically unstable code (Margossian 2018; Betancourt 2018). Higher-order AD is often not well supported or could be much slower (like JAX (Schoenholz and Cubuk 2019)), which stands as a major technical obstacle in many applications.

We propose a new set of differentiation toolkit named HoD-Net to close the gap of high-order differentiability of DL. Our method is based on complex-step finite difference method or CSFD (Squire and Trapp 1998). Unlike the classic finite difference method (Morton and Mayers 2005), CSFD lifts differentiation computations to the complex domain. This strategy avoids the notorious numerical issue of subtraction cancellation (Muller et al. 2018). As a result CSFD computes differentiations highly accurately albeit being a numerical method. Based on CSFD, we approach higher-order differentiable deep networks by generalizing regular complex arithmetic to multicomplex domains, designing an efficient adjoint perturbation scheme, and showing its applications in several learning problems.

To make the paper self-contained, we start with a brief review of classic finite difference method, its numerical issue, and CSFD alternatives. Related literatures will be discussed when introducing the relevant topics.

Background

Evaluating the differentiation of a function is often through inferring the exact form of its derivative. While it is possible to automatically obtain the analytic derivative formulation with symbolic differentiation packages like Mathematica (Wolfram et al. 1996) and Maple (Maple 1994), AD is more widely used in practice. AD decomposes a general computation procedure into multiple basic steps, and each step corresponds to a node on its computation graph. AD analytically computes the derivative of each step either using source code transformation (Utké et al. 2008; van Merrienboer, Moldovan, and Wiltschko 2018) or operator overloading (Phipps and Pawlowski 2012). The latter option is natively supported by most modern programming languages like C++ and Python (e.g., see (Hogan 2014)). Following the differentiation chain rule, it is possible to accumulate the final result in two directions, namely the forward mode and backward/reverse mode (Linnainmaa 1976; Griewank 2012). Being widely used in DL, BP is essentially AD of the reverse mode.

Numerical differentiation is another differentiation tech-
nique, where one needs to neither derive the analytic formula of the differentiation nor to apply the chain rule over the computation graph. Given a function f with a small perturbation h applied, the forward finite difference (FFD) approximates the derivative as the ratio between the function variation and perturbation size:

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \frac{f(x_0 + h) - f(x_0)}{h} + O(h). \quad (1)$$

It appears that the smaller h is, the better approximation Eq. (1) delivers. However, we are not allowed to make h arbitrarily small to improve the precision of Eq. (1). This is because the subtraction between two nearly equal numbers (i.e., $f(x_0 + h) - f(x_0)$) eliminates many of their significant digits and contaminates the result. This numerical issue is known as the subtraction cancellation (Muller et al. 2018). For instance, with a simple four-digit decimal floating-point system, a real number $a = 1.999.99$ is encoded as $\tilde{a} = 1.999 \times 10^3$ i.e., only a four-digit mantissa. Here, we use $(\)$ to denote a digitized number in this floating-point system. We simply choose the round-by-chop rule that discards all the out-of-precision digits. The corresponding round-off error is $E_{\text{round}} = |a - \tilde{a}|/|a| = [1999.99 - 1.999 \times 10^3]/[1999.99] \approx 4.95 \times 10^{-4}$. Next, let $b = 1.998.88$, which is represented as $\tilde{b} = 1.998 \times 10^3$. The error of calculating $a - b$ becomes $E_{\text{subtraction}} = |(a - \tilde{b}) - (a - b)|/|a - b| \approx 0.1$, a thousandfold increase! Clearly, the rounding loses the least important significant digit, and it only yields an error at the order of the floating-point precision (10^{-4}). However, the subtraction between \tilde{a} and \tilde{b} eliminates three leading significant digits, which yields a much more substantial error. This is why the cancellation of subtracting numbers of similar magnitude is also called catastrophic cancellation. Some numerical literature (e.g., see (Nocedal and Wright 2006)) considers that the central finite difference method (CFD) in the form of:

$$f(x_0) = \frac{2f(x_0 + h) - f(x_0 - h)}{h} + O(h^2),$$

has higher accuracy. This conclusion is only valid when the subtractive cancellation does not occur. In reality, CFD could be even more sensitive to a smaller h because of its faster convergent rate (Fig. 1).

CSFD and Generalization

The subtractive cancellation can be avoided by CSFD (Squire and Trapp 1998; Lyness 1968; Martins, Sturdza, and Alonso 2003). Let $(\)^*$ denote a complex variable, and suppose $f^* : C \to C$ is differentiable around $x_0 + 0i$. Setting the perturbation hi imaginary, f^* can be expanded via the complex Taylor expansion as:

$$f^*(x_0 + hi) = f^*(x_0) + f^{''*}(0i)\cdot hi + \frac{1}{2} f^{''''*}(0i)^2 + O(h^3). \quad (2)$$

Any elementary function can be “promoted” to be a complex-value one by allowing complex inputs while retaining its original computation. As long as the input of f^* is real, f^* overlaps with f such that $f^*(x_0) = f(x_0) \in \mathbb{R}$ and $f^*(x_0) = f'(x_0) \in \mathbb{R}$, etc. Extracting imaginary parts of both sides of Eq. (2) yields: $\mathrm{Im}(f^*(x_0 + hi)) = \frac{1}{2} f^{''''*}(0i)^2 + O(h^3)$, and we then have the first-order CSFD approximation:

$$f'(x_0) = \frac{\mathrm{Im}(f^*(x_0 + hi))}{h} + O(h^2). \quad (3)$$

Comparing with Eq. (1), Eq. (3) does not have a subtractive numerator suggesting it only has the round-off error regardless of the size of the perturbation. In addition, the operation of $\mathrm{Im}(\cdot)$ removes the $(hi)^2$ term in the complex Taylor expansion suppressing the approximation error to $O(h^2)$. We know that any floating-point computation could induce a rounding error ϵ a.k.a. *machine epsilon*. For the double precision according to IEEE 754 (IEEE 1985), $\epsilon \approx 1.11 \times 10^{-16}$. CSFD approximation error reaches the order of ϵ if $h \leq \sqrt{\epsilon}$.

An example is plotted in Fig. 1, where we compare the relative error of numerical derivatives of $f(x) = e^{x}/(x^2 + 1)$ using FFD, CFD, and CSFD with its analytic derivative at $x = 10$. The numerical behavior of FFD and CFD is consistent with our analysis: when h decreases, CFD converges faster than FFD initially. Both soon hit the threshold of subtractive cancellation. After that, the relative error bounces back. CSFD lowers the error as quickly as CFD does, and the relative error stably remains at the order of ϵ.

It is noticeable that analytic differentiation of basic operators can also be obtained via *dual number* (Revels, Lubin, and Papamarkou 2016). The concept of dual number is similar to complex number but the imaginary part of a dual number vanishes at the second order (i.e., $i^2 = 0$ for dual numbers whereas $i^2 = -1$ for complex numbers). This specification automatically eliminates high-order terms in the Taylor expansion of f^* (Eq. (2)), and dual number thus gives the exact differentiation formulation. From this perspective, dual number is more of a man-crafted algebraic rule. Unlike complex numbers, generalizing dual number arithmetic to trigonometric, exponential, or logarithmic functions is ill-defined.

High-order complex-step finite difference

There are several generalizations of complex arithmetics. A well-known one is quaternion (Hamilton 1848), which is often used to represent 3D rotations. Another extension is commonly named as multicomplex number. It has been studied in detail numerical textbooks such as (Price 2018) and could be regarded as an implementation of Clifford algebra (Garling 2011).

The multicomplex number is defined recursively: its base cases are the real set $\mathbb{C}^0 = \mathbb{R}$, and the regular complex set
\(\mathbb{C}^1 = \mathbb{C} \), \(\mathbb{C}^1 \) extends the real set \((\mathbb{C}^0) \) by adding an imaginary unit \(i \) as: \(\mathbb{C}^1 = \{ x + yi | x, y \in \mathbb{C} \} \). The multi-complex number up to an order of \(n \) is defined as: \(\mathbb{C}^n = \{ z_1 + z_2 i_n | z_1, z_2 \in \mathbb{C}^{n-1} \} \). Under this generalization, the multicomplex Taylor expansion becomes:

\[
\begin{align*}
 f^*(x_0 + h_1 + \cdots + h_n) &= f^*(x_0) + f'^* h \sum_{j=1}^{n} i_j \\
 &+ \frac{f''^*}{2} h^2 (\sum_{j=1}^{n} i_j)^2 + \cdots + \frac{f^{(k)}^*}{k!} h^k (\sum_{j=1}^{n} i_j)^k \cdots.
\end{align*}
\] (4)

Here, \((\sum_{j=1}^{n} i_j)^k\) can be computed following the multinomial theorem (Bolton 1968), and it contains products of mixed \(k \) imaginary directions for \(k \)-order terms. Based on Eq. (4), derivative of an arbitrary order can be conveniently obtained by extracting the coefficient at the corresponding imaginary direction. For instance, the second-order CSFD formulation can be obtained from Eq. (4) as:

\[
\begin{align*}
 \frac{\partial^2 f(x, y)}{\partial x^2} &\approx \Im^{(1,2)}(f(x + hi_1 + hi_2, y)) \\
 \frac{\partial^2 f(x, y)}{\partial x \partial y} &\approx \Im^{(1,2)}(f(x + hi_1 + ih_1, y + hi_2)),
\end{align*}
\] (5)

where \(\Im^{(1,2)} \) picks the mixed imaginary direction of \(i_1i_2 \). One can easily tell from Eq. (5) that high-order CSFD is also free of subtractive cancellation making it as robust/accurate as the first-order case (e.g., see Fig. 1). Its recursive definition also greatly eases the implementation.

HoD-Net: High-order Differentiable DNNs

With CSFD, it becomes straightforward to build HoD-Nets. Basically, one can promote network inputs or parameters to the complex domain and obtain its high-order differentiation by extracting the imaginary part of the output. Sometimes, the network already involves complex or multi-value neurons (Hirose and Yoshida 2012; Aizenberg, Aizenberg, and Krivosheev 1996). Its differentiability should be enabled with higher-order CSFD. Unfortunately, such naïve strategy could be inefficient making HoD-Net less useful in practice. Recently, Shen and colleagues (2021) give a paradigm of differentiating network input with CSFD for finite element simulation. We show that this idea could be generalized to enable efficient, scalable, and convenient HoD-Net scheme.

CSFD-BP for more effective perturbation

For a function \(f : \mathbb{R}^N \rightarrow \mathbb{R}^M \), CSFD is more effective if \(M > N \). In this setting, an argument perturbation yields an \(M \)-dimension differentiation vector (i.e., one column of \(\nabla f \in \mathbb{R}^{M \times N} \)). We suspect this is why CSFD is somewhat overlooked, since many DL applications map high-dimension inputs (e.g., an image) into a lower-dimension space (e.g., a classification label). When \(N \gg M \), BP is a more efficient solution for the first-order derivative. However, if high-order derivatives are needed, how can we leverage CSFD with maximized efficiency?

Our answer is to integrate CSFD into BP to differentiate along the optimal direction (i.e., forward or backward). Specifically, we consider BP as a generic function which maps network inputs to its first-order derivative. As a result, the second- or higher-differentiation can be obtained by a CSFD-perturbed BP procedure (CSFD-BP). The perturbation is applied at the beginning of the forward pass. Along with the forward pass, the perturbation leads to imaginary values to all the neurons it influences. As \(h \) can be understood as the numerical differential of the input parameter, the imaginary parts at other neurons represent the corresponding (partial) differentials induced by \(h \). During the backward pass, BP calculates how such differential is changed along the network, which becomes the second-order derivative of the parameter.

The choice of CSFD or CSFD-BP should be made based on the dimensionality of the network input/output i.e., \(N \) and \(M \). If a network yields a higher-dimension output (e.g., image super-resolution (Zhang et al. 2018; Ledig et al. 2017)), CSFD should be preferred over CSFD-BP. Both CSFD and CSFD-BP readily generalize to a higher order with multi-complex perturbations.

Parallelization using Cauchy-Riemann formula

The dominant network modules of DNNs are often fully connected (FC) layers and convolutional (CNN) layers, where the inter-layer computation mainly consists of BLAS operations and can be parallelized on GPU (e.g., via cuBLAS (Barrachina et al. 2008)). The recent version of PyTorch (Paszke et al. 2019) and TensorFlow (Abadi et al. 2016) does include the support of regular complex operations. However, the complex-based parallelization in BLAS form still lacks, no to mention the multicomplex generalization. We show that CSFD and CSFD-BP can be significantly accelerated by using a complex-free formulation, namely the Cauchy-Riemann (CR) formula (Lang 2013).

In CR formula, a multicomplex number can be represented in the form of a real matrix. Specifically, the recursive definition of \(\mathbb{C}^n \) allows us to express a rank-\(n \) complex number in terms of a matrix of lower-rank complex quantities:

\[
\begin{pmatrix}
 z_0 \\
 z_1 \\
 \vdots \\
 z_{n-1}
\end{pmatrix} = z_0^{n-1} + z_1^{n-1} \mathbb{C}^n :=
\begin{pmatrix}
 z_0^{n-1} & -z_1^{n-1} \\
 z_1^{n-1} & z_0^{n-1}
\end{pmatrix}.
\] (6)

Here, we use the superscript \((\cdot)^n\) to denote the order of a complex number. Each of the \(2 \times 2 \) blocks in Eq. (6) is a \((n-1)\)-order complex number, which can be further expanded with \((n-2)\)-order multicomplex numbers and so on until all the matrix elements are real.

Based on CR forms, we re-organize the network into a real and (multiple) imaginary layers so that the imaginary
parts of all the neurons are stored in dedicated layers, and all the neurons, including the ones in imaginary layers are all real-value. As shown in Fig. 2, the original network is “duplicated” with an imaginary copy, which is used to house the imaginary values of all the neurons. If a high-order differentiation is needed, more of such duplicates will be created, corresponding to high-order mixed imaginary directions. The real-to-real computation is identical to the original net (i.e., black arrows in the figure). The CR-based net also handles real-to-imaginary and imaginary-to-imaginary propagations. They are just Eq. (6) in the matrix form. For example, assume \(R_i \) and \(R_{i+1} \) is related by a weight matrix \(W \) as \(R_{i+1} = WR_i \) originally. With CR formula, \(R_{i+1} \) and \(I_{i+1} \) are computed via:

\[
\begin{bmatrix}
R_{i+1} & -I_{i+1} \\
I_{i+1} & R_{i+1}
\end{bmatrix} =
\begin{bmatrix}
W & -V \\
V & W
\end{bmatrix}
\begin{bmatrix}
R_i & -I_i \\
I_i & R_i
\end{bmatrix}
\Rightarrow R_{i+1} = WR_i, I_{i+1} = VR_i + WI_i.
\]

\(V \) stores possible imaginary perturbations at network parameters. Therefore, \(V \cdot \) is \(O(h^2) \) and truncated in Eq. (7). In other words, the real portion of HoD-Net is always identical to the original network. If \(V = 0 \), computations at \(R \) and \(I \) are fully independent, indicating the linearity between \(R_i \) and \(R_{i+1} \). As all the computations are now in real values, the parallelization is convenient. As reported in our experiment, CR-based implementation outperforms built-in BP method from existing DL frameworks including PyTorch and TensorFlow.

The activation and some other network modules like batch normalization (BN) (Ioffe and Szegedy 2015) need to be taken care of separately. In general, the activation is applied at each neuron individually, making the parallelization straightforward. We overload nonlinear activation with CSFD to output necessary imaginary information. BN is also treated as a special batch-wise activation with CSFD.

Adjoint Perturbation in HoD-Net

The \(n \)-order derivative of \(f : \mathbb{R}^N \rightarrow \mathbb{R}^M \) yields an \(M \times N^n \) tensor with a prohibitive complexity of \(O(N^N) \). Thus, high-order differentiation of a deep network appears infeasible at the first sight. A closer look however, reveals otherwise. This \(M \times N^n \) tensor is seldom needed in its original high-rank form. Its rank is often reduced via follow-up contractions, and all the way down to a matrix or a vector. A good example is the adjoint analysis (Giles and Pierce 2000), which avoids an explicit assembly of the Jacobian matrix w.r.t. a large number of parameters. We show that this idea can also be exploited in CSFD as the real-part computations of the network remain unchanged for differentiations under different perturbations. Following the naming of the adjoint method, we refer to our strategy as \textit{adjoint perturbation}.

Adjoint perturbation for right contraction

We now elaborate our method with \(M = 1 \) or \(f : \mathbb{R}^N \rightarrow \mathbb{R} \). Computing its Hessian \((\nabla^2 f) \) will need \(N^2 \) perturbations with second CSFD. However, if \(\nabla^2 f \) is (single) contracted with a right vector \(a \), \(\nabla^2 f \cdot a \) can actually be evaluated as:

\[
(\nabla^2 f \cdot a)_k = \sum_{l=0}^{N-1} \lim_{h \rightarrow 0} \frac{[\nabla f(x + he_l) - \nabla f(x)]_k \cdot [a]_l}{h} = \sum_{l=0}^{N-1} \lim_{h \rightarrow 0} \frac{[\nabla f(x + [a]_l_he_l) - \nabla f(x)]_k}{h},
\]

where \([.]_k\) gives \(k \)-th element of the vector, and \(e_l \) is the \(l \)-th canonical basis. Here, we substitute \(h \) with \([a]_l/h\) to cancel the multiplication of \([a]_l\). In the vector form, we have

\[
\nabla^2 f \cdot a = \lim_{h \rightarrow 0} \frac{\nabla f(x + ha) - \nabla f(x)}{h} = \frac{\mathfrak{Im}(\nabla f(x + hi \cdot a))}{h} + O(h^2).
\]

One may immediately recognize that \(\nabla^2 f \cdot a \) is essentially the directional derivative of \(\nabla f \). The observation of Eq. (9) is not new, and it leads to a collection of so-called Jacobian-free or Hessian-free algorithms (Knoll and Keyes 2004). Some of them have also been used for DL training (Pearlmutter 1994; Martens 2010; Martens and Sutskever 2011).

Due to the linearity of differential, Eq. (9) can be generalized to high-order cases and high-rank tensor contractions. For instance, consider the third-order differentiation \(\nabla^3 f = \partial^3 f/\partial x^3 \in \mathbb{R}^{N \times N \times N} \), followed by a right double contraction of a matrix \(A \in \mathbb{R}^{N \times N} \). \(\nabla^3 f : A \) is a vector, and it can be efficiently computed by a single adjoint perturbation – a third-order complex perturbation over all the \(N \) elements of promoted function input \(x^* \). The second and the third imaginary directions of this adjoint perturbation is scaled by the corresponding element in \(A \). The same strategy can be used if \(\nabla^3 f \) is right contracted twice by vectors \(a \) and \(b \) since \((\nabla^3 f \cdot a) \cdot b = \nabla^3 f : (a \otimes b)\). If \(f \) has a vector output with \(M > 1 \), we arrange \(M \) adjoint perturbations into batches, which can be parallelized on GPU with ease.

Adjoint perturbation for left contraction

Now, consider left contractions like \(a \cdot \nabla^3 f \). Unlike right contractions, a left contraction occurs at the dimension which is not expanded by the differentiation. Hence, the strategy of adjoint perturbation does not apply directly. We carry out our computation with an auxiliary function \(g(x) = a \cdot f(x) \in \mathbb{R} \). This auxiliary function can also be viewed as appending an FC layer at the end of the net reducing its \(M \)-dimension output to a single scalar. Because \(a \) is independent on \(f \), \(a \cdot \nabla^3 = \nabla^3 g \). Knowing \(g \) is a scalar-value network \((N > M = 1)\) suggests CSFD-BP more effective for the differentiation. \(a \cdot \nabla^3 f \) is then computed via a single CSBP-BP pass using third-order complex perturbations. Adjoint perturbation can be applied with both left and right contractions simultaneously. Using this technique, the time complexity no longer depends on the differentiation order. This makes the high-order differentiation of DNNs tangible in practice.

Results and Applications

We implement HoD-Net with PyTorch in CR form on a workstation computer with Intel i9-10980XE CPU and
an nVidia 3090 GPU with 24G G-memory. In time critical applications, we port the trained network to CUDA, and use cuBLAS (Nvidia 2008) for CR-based network pass.

Time performance comparison

We first investigate the time performance of HoD-Net with off-the-shelf AD routines in PyTorch (torch) and TensorFlow (GradientTape) for gradient computation. We also compare HoD-Net with JAX (Schoenholz and Cubuk 2019) in Hessian computation. In this experiment, we use three networks with three representative input/output configurations: 1) \(N = 40, M = 400 \); 2) \(N = 200, M = 200 \); 3) \(N = 400, M = 40 \). All the nets have 8 FC layers, and each layer is activated by ELU.

![Figure 3: Time performance comparison among HoD-Net, built-in AD routines from PyTorch (Torch) and TensorFlow (TF), and JAX. We also compare HoD-Net and JAX in Hessian calculation. The networks tested have 8 FC layers with ELU activations. All the timing statistics are in millisecond.](image)

The result is reported in Fig. 3. In the first-order case, CSFD-BP is not an option, and we only use CSFD-based HoD-Net implementation. This is a forward process. As a result, 40 → 400 is faster than 400 → 40 on both CPU and GPU. In general, HoD-Net significantly outperforms AD-based packages. This is because AD needs to build the computation graph, which is not required with HoD-Net. In JAX and TensorFlow, it is possible to pre-build this graph in the forward AD mode. If this option is on, the performance of HoD-Net is comparable to JAX and TensorFlow. However, the computation graph is always needed in reverse AD mode in current version of JAX. In Hessian computation, HoD-Net outperforms JAX when the differentiation direction is probably set. For instance, if the net is 40 → 400, CSFD-based HoD-Net should be adopted; and if the net is 400 → 40, CSFD-BP should be used. JAX recursively uses first-order AD, and it is not sensitive to the differentiation order in Hessian calculation (as it will always need one reverse accumulation and one forward accumulation). Higher-order differentiation with JAX is orders of magnitude slower than HoD-Net (even using the Taylor-mode (Bettencourt, Johnson, and Duvenaud 2019)). This is because HoD-Net does not need to perform high-order chain rule as in (Bettencourt, Johnson, and Duvenaud 2019).

Applications of HoD-Net

We now showcase how to leverage high-order differentiability of HoD-Net in a few concrete applications. It is not our intention to claim that HoD-Net should always be used in any differentiation scenarios. However, HoD-Net provides novel and orthogonal perspectives to high-order differentiation and enables a wide range of applications.

Application I: High-order DL finetuning

It has been noticed that training deep networks with gradient-based algorithms exhibits distinct behaviors at early and late stages (usually empirically divided by the validation error plateau, or by the learning-rate switch points) (Li, Wei, and Ma 2019; Frankle, Schwab, and Morcos 2029; Leclerc and Madry 2020). Many observations of “simplicity bias” by SGD and variants (Arpit et al. 2017; Kalimeris et al. 2019; Valle-Perez, Camargo, and Louis 2019) endorse their roles to contribute to the early stage. High-order optimization on the other hand, could benefit the second stage (a.k.a. network finetuning). To this end, we design a Newton-Krylov-based (Knoll and Keyes 2004) training algorithm with HoD-Net. Unlike pseudo-second-order methods (e.g., (Gupta, Koren, and Singer 2018; Martens and Grosse 2015; Osawa et al. 2019)), where low-rank Hessian approximations are used, HoD-Net allows us to access the full information of \(\nabla^2 f \) during the training.

![Figure 4: Training curves among different training methods. The x axis is the epoch index.](image)

Our HoD-Net-based second-order finetuning algorithm is given in Alg. 1. Basically, our method performs the training in a Newton-Krylov way — the linear system at each Newton step is solved with a conjugate-gradient (CG)-like procedure. In DL, \(f \) exhibits high nonlinearity, and the vanilla CG is infeasible. If a problematic search direction is identified (i.e., see Fig. 5), we skip the current Hessian sample and move to the next batch.
We compare our method with several well-known algorithms including Adam (Kingma and Ba 2014), AdaGrad (Duchi, Hazan, and Singer 2011), Shampoo (Gupta, Koren, and Singer 2018), and Hessian-free method (HF) (Martens 2010) during the training of autoencoder (AE) (Kramer 1991), LeNet-5 (LeCun et al. 1998), VGG-11 (Simonyan and Zisserman 2014), and ResNet-20 (He et al. 2016). The datasets used are MNIST, SVHN, and CIFAR10. The training curves are plotted in Fig. 4. In a nutshell, HoD-Net provides an efficient approach to extract curvature information of the optimization manifold, and our method shows a superior performance in those DL tasks.

Application II: High-order contractive autoencoder

Contractive autoencoder or CAE (Rifai et al. 2011b) extracts more robust features by penalizing the Frobenius norm of the Jacobian matrix of an encoder (w.r.t. the input). This regularization helps to make the features more consistent in different directions around the training data. It is measured by the *contractive ratio* i.e., the ratio between the distance of two points in the feature space and the original space. By extending Jacobian-based penalty term to the second order, we show that better contractive ratios could be achieved.

A practical issue is the dimensionality of the Hessian $\nabla^2 f$ – building the Hessian explicitly consumes significant memory for large-scale CAE nets. As a compromise, we only extend the gradient-based penalty term to the second order, i.e.,

$$Tr(\nabla^2 f \cdot \nabla^2 f) = \sum_{i,j} \left(\frac{\partial^2 [f(x)]}{\partial x^2} \right)^2. \quad (10)$$

The final loss includes both the norm of Jacobian and Hessian trace:

$$L_{CAE} = \text{MSE}(x, \overline{x}) + \alpha ||\nabla f(x)||^2_F + \beta Tr(\nabla^2 f \cdot \nabla^2 f), \quad (11)$$

where \overline{x} is the reconstructed signal. α and β are two hyperparameters controlling the strength of the regularization.

![Figure 5: We skip unreliable batch by comparing local and global gradients.](image)

![Figure 6: Contractive ratios on different datasets. The x axis represents the radius.](image)

The results are reported in Fig. 6. We compare HoD CAE with the traditional autoencoder and Jacobian-penalized CAE (Rifai et al. 2011b) on MNIST, MNIST-rot (Vincent et al. 2010), and CIFAR-bw, a grey-scale version of CIFAR-10. The network is a 4-layer MLP activated by ELU, which maps the input to a hidden feature with dimension of 400. For the first-order regular CAE, HoD-Net trains this MLP 2.4 times faster than PyTorch. Unlike existing Hessian-based CAE (Rifai et al. 2011a), HoD CAE is not stochastic. The decoder net always produces a high-dimension output from a low-dimension hidden representation. More importantly, HoD-Net does not rely on analytic solution for the gradient of each penalty, and is capable to evaluate high-order derivatives of an encoder with any number of layers.

We generate random samples with different radius as the input to different CAE methods. The radius is shown in the x axis of the figure. The y axis represents the mean of the contractive ratios on different datasets. The contractive ratios are plotted in Fig. 4. In a nutshell, HoD-Net provides an efficient approach to extract curvature information of the optimization manifold, and our method shows a superior performance in those DL tasks.

Algorithm 1: HoD-Net Newton-Krylov training.

```python
Input: minibatch set $\{B_1, B_2, \ldots, B_i\}$, $\eta$
1: compute $\nabla f / \nabla \nabla f$ is the global gradient
2: $j \leftarrow 0$; // minibatch index
3: for each $B_j$ do
4:    compute $\nabla f_j$; // $\nabla f_j$ is the local gradient sampled
5:    at mini-batch $B_i$
6:    if $\nabla f_j \cdot \nabla f < 0$ then
7:        $j \leftarrow j + 1$;
8:        continue; // skip this loop for $B_j$
9:    end
10:   $i \leftarrow 0$. $\Delta w \leftarrow \Delta w$;
11:   $(\nabla f, h_i) \leftarrow \text{CSFDP}(w, \Delta w)$; // $h_i$ is the directional derivative of $f(w)$ under $\Delta w$
12:   $r_i \leftarrow -(\nabla f + h_i)$. $p_i \leftarrow r_i$; // $r_i$ is the residual; $p_i$ is the search direction
13:   while $||r_i||$ is not small enough do
14:       $\kappa = p_i \cdot \nabla^2 f \cdot p_i$; // $\kappa$ is computed via adjoint perturbation with left and right contractions
15:       if $\kappa < 0$ then
16:           break; // negative curvature, early termination
17:       if $0 < \kappa < 1.0 \times 10^{-6}$ then
18:           $\kappa = 0.01 \cdot ||p_i||$; // local flatness, move forward with momentum
19:       end
20:       $\alpha_i \leftarrow ||r_i||/\kappa$;
21:       $\Delta w \leftarrow \Delta w + \alpha_i p_i$;
22:       $q_i \leftarrow \text{CSFDP}(w, p_i)$; // $q_i = \nabla^2 f \cdot p_i$
23:       $r_{i+1} \leftarrow r_i - \alpha_i q_i$;
24:       $\beta_i \leftarrow ||r_{i+1}/||r_{i+1}||^2$;
25:       $p_{i+1} \leftarrow r_{i+1} + \beta_i p_i$;
26:       $i \leftarrow i + 1$;
27:   end
28:   if $\Delta w \cdot \nabla f > 0$ then
29:       $\Delta w \leftarrow (1 + \Delta w) / (\nabla f \cdot \nabla f)$
30:   end
31:   $\gamma \leftarrow 1$; // the default step size
32:   compute $\eta$;
33:   if $\eta < 0.5$ then
34:       $s \leftarrow ||r_i||/\eta$; // an initial test size
35:       while $\eta \in [0.5, \bar{\eta}]$ do
36:           $\gamma \leftarrow 0.5 \cdot \gamma$; // shrink a step
37:           end
38:       else
39:           $\gamma \leftarrow 1.5 \cdot \gamma$; // stretch a step
40:       end
41:       update $\eta$ with $f(w + \gamma \cdot \Delta w)$;
42:   end
43:   $w \leftarrow w + \gamma \cdot \Delta w$;
44:   compute $\eta$;
45:   $j \leftarrow j + 1$;
46: end
```
test samples, and compare the distance on the hidden representation. The lower contractive ratios show that HoD CAE is more robust to the directions orthogonal to the manifold. We take the trained encoder as a head of an MLP for the classification task on the same datasets. As shown in Table 1, HoD CAE leads to higher test accuracy than CAE. The advantage of HoD CAE is more noticeable with bigger and complex data sets.

<table>
<thead>
<tr>
<th>Data set</th>
<th>Vanilla AE</th>
<th>Jacobian CAE</th>
<th>HoD CAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST</td>
<td>1.61</td>
<td>1.30</td>
<td>1.25</td>
</tr>
<tr>
<td>MNIST-rot</td>
<td>10.9</td>
<td>10.4</td>
<td>10.1</td>
</tr>
<tr>
<td>CIFAR-bw</td>
<td>54.7</td>
<td>50.2</td>
<td>49.3</td>
</tr>
</tbody>
</table>

Table 1: Test error on different datasets. HoD CAE makes use of both Jacobian and Hessian trace to enhance the contractive ratio.

Application III: Reduced-order finite element simulation Physics simulation has been widely used in modern science and engineering disciplines. Full-scale simulation is known to be costly and often prohibitive for interactive applications. To relieve the computation burden, reduced-order simulation (Przekop and Rizzi 2006; Sifakis and Barbic 2012) defines a compact set of generalized coordinates to prescribe the dynamics of the model. Classic reduced simulations use linear maps like PCA (Treuille, Lewis, and Popović 2006) and modal analysis (Hurty 1960). Recently, DL has also been exploited to establish the nonlinear map between generalized and fullspace coordinates, often in the structure of encoder-decoder (Fulton et al. 2019; Shen et al. 2021).

Clearly, HoD-Net is a powerful tool for this purpose. In Newtonian dynamics, any map of model’s trajectory takes at least second-order differentiation to extract necessary inertia information (i.e., the acceleration-triggered dynamics). Unlike (Shen et al. 2021), our model reduction is fully network based (i.e., without using PCA). Under FEM discretization, the motion of a deformable solid can be described with the Euler-Lagrange equation: \(M \ddot{u} + f_{int}(u) = f_{ext} \). Here, \(M \) is the mass matrix; \(u \) is the unknown displacement of the mesh; \(f_{int} \) and \(f_{ext} \) are the nonlinear internal force and the external force. We use the generalized coordinate \(q \) such that \(u = f(q) \), and \(f \) is a HoD-Net trained from existing simulation poses of the model. Applying time differentiation at both sides yields:

\[
\dot{u} = \frac{df(q)}{dt} = \frac{\partial f(q)}{\partial q} \dot{q} = \nabla f \cdot \dot{q},
\]

\[
\ddot{u} = \frac{d}{dt} \left(\frac{\partial f(q)}{\partial q} \dot{q} \right) = \nabla^2 f : (\dot{q} \otimes \dot{q}) + \nabla f \cdot \ddot{q}.
\]

Eq. (12) is then used to build the reduced equation of motion. During the simulation, we need third-order differentiation of \(f \) in order to use Newton’s method to compute \(u \), which is only possible with HoD-Net. The snapshots of a reduced-order simulation are reported in Fig 8. HoD-Net maps a 1542-dimension problem to a 6-dimension latent space and achieves a 30\(\times \) speedup with lower accuracy loss than PCA.

Application IV: Physics-informed neural network As a differentiation modality, HoD-Net is also useful for solving neural PDEs problems (Hsieh et al. 2019; Yang, Meng, and Karniadakis 2021) a.k.a. physics-informed neural networks (PINNs). In PINN, the network takes a coordinate vector as input and predicts the value of the PDE at the input coordinate, for which the network is representing. With HoD-Net, PINNs are more expressive for high-dimension and high-order PDEs.

A concrete example is shown in Fig. 7. In this experiment,
we solve a high-dimension Poisson $\nabla^2 \phi(x) = f$:

$$
[f]_k = -2k^2 \sin(kx_1) \sin(kx_2) - k^2 x_1^2 \cos(kx_1x_2) - k^2 x_2^2 \cos(kx_1x_2),
$$

(13)

for k from 1 to 8. The boundary conditions are $[\phi]_k(0, x_2) = 1$, $[\phi]_k(x_1, 0) = 1$, $[\phi]_k(1, x_2) = \sin(k) \sin(kx_2) + \cos(kx_2)$, and $[\phi]_k(x_1, 1) = \sin(k) \sin(kx_1) + \cos(kx_1)$. For this specific driving function, the Poisson problem has an analytic solution of $[\phi]_k(x_1, x_2) = \sin(kx_1) \sin(kx_2) + \cos(kx_1x_2)$, which is used as the ground truth. The network structure is $2 \rightarrow 100 \rightarrow 100 \rightarrow 100 \rightarrow 100 \rightarrow 100 \rightarrow 8$, and each hidden layer is activated by \tanh. With HoD-Net, we can directly access the Laplacian of the network (and its derivative) to supervise the training based on the MSE loss.

Conclusion

HoD-Net is a numerical differentiation method for neural networks. It uses CSFD as primary differentiation mechanism. By extending the complex arithmetic to multicomplex realms, we can achieve network differentiation of an arbitrarily high order with a similar complex-like computation procedure. This makes HoD-Net fundamentally different from AD or BP. HoD-Net does not need to build the computation graph and does not rely on high-order chain rule, making its computation lightweight. In fact, we show that HoD-Net synergizes well with AD to maximize the information of differential obtained from each perturbation. We also present a novel scheme of adjoint perturbation, which reduces the time complexity of high-order differentiation by orders. In addition, CR-form based HoD-Net can be efficiently parallelized on GPU.

HoD-Net also has limitations. For instance, CR formula duplicates network copies for storing the perturbations at imaginary directions, which could be memory demanding for large-scale networks. Fortunately, HoD-Net also removes the need of computation graph, which saves memory and computations back. HoD-Net allows applications to better use the information hidden in the high-order differentiations such as geometry curvature (Michalkiewicz et al. 2019), motion acceleration (Shen et al. 2021), shape sensitivity (Kubilius, Bracci, and Op de Beeck 2016), light reflectance (Zhang et al. 2019) etc.

Acknowledgements

We thank anonymous reviewers and AC for their constructive comments. Tianjia Shao is partially supported by NSF of China (No. 61772462, U1736217), and the 100 Talents Program of Zhejiang University. Kun Zhou is partially supported by NSF of China (No. 61890954). Chenzhanfu Jiang is supported in part by NSF (1943199, 1813624, 2023780) and DOE (4000171342). Feng Luo is supported in part by NSF (AB1-1758956 and MTM2-2025541 to FL). Yin Yang is partially supported by NSF (2016414, 2011471).

References

