cc-Golog: Towards More Realistic Logic-Based Robot Controllers

Henrik Grosskreutz and Gerhard Lakemeyer, Aachen University of Technology

High-level robot controllers in realistic domains typically deal with processes which operate concurrently, change the world continuously, and where the execution of actions is event-driven as in ``charge the batteries as soon as the voltage level is low''. While non-logic-based robot control languages are well suited to express such scenarios, they fare poorly when it comes to projecting, in a conspicuous way, how the world evolves when actions are executed. On the other hand, a logic-based control language like \congolog, based on the situation calculus, is well-suited for the latter. However, it has problems expressing event-driven behavior. In this paper, we show how these problems can be overcome by first extending the situation calculus to support continuous change and event-driven behavior and then presenting \ccgolog, a variant of \congolog\ which is based on the extended situation calculus. One benefit of \ccgolog\ is that it narrows the gap in expressiveness compared to non-logic-based control languages while preserving a semantically well-founded projection mechanism.

This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.