Identifying Direct Causal Effects in Linear Models

Jin Tian

This paper deals with the problem of identifying direct causal effects in recursive linear structural equation models. Using techniques developed for graphical causal models, we show that a model can be decomposed into a set of submodels such that the identification problem can be solved independently in each submodel. We provide a new identification method that identifies causal effects by solving a set of algebraic equations.

Content Area: 5. Automated Reasoning

Subjects: 3.4 Probabilistic Reasoning; 9.1 Causality

Submitted: May 10, 2005

This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.