Measuring the Hardness of SAT Instances

Carlos Ansótegui, María Luisa Bonet, Jordi Levy, Felip Manyà

The search of a precise measure of what hardness of SAT instances means for state-of-the-art solvers is a relevant research question. Among others, the space complexity of tree-like resolution (also called hardness), the minimal size of strong backdoors and of cycle-cutsets, and the treewidth can be used for this purpose. We propose the use of the tree-like space complexity as a solid candidate to be the best measure for solvers based on DPLL. To support this thesis we provide a comparison with the other mentioned measures. We also conduct an experimental investigation to show how the proposed measure characterizes the hardness of random and industrial instances.

Subjects: 15.9 Theorem Proving; 15.2 Constraint Satisfaction

Submitted: Apr 15, 2008

This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.