One-Shot Procedure Learning from Instruction and Observation

Hyuckchul Jung, James Allen, Nathanael Chambers, Lucian Galescu, Mary Swift, William Taysom

Learning tasks from a single demonstration presents a significant challenge because the observed sequence is inherently an incomplete representation of the procedure that is specific to the current situation. Observation-based machine-learning techniques are not effective without multiple examples. However, when a demonstration is accompanied by natural language explanation, the language provides a rich source of information about the relationships between the steps in the procedure and the decision-making processes that led to them. In this paper, we present a one-shot task learning system built on TRIPS, a dialogue-based collaborative problem solving system, and show how natural language understanding can be used for effective one-shot task learning.

Subjects: 10. Knowledge Acquisition; 13. Natural Language Processing

Submitted: Feb 13, 2006

This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.