Combining Symbolic and Distributional Models of Meaning

Stephen Clark, Stephen Pulman

The are two main approaches to the representation of meaning in Computational Linguistics: a symbolic approach and a distributional approach. This paper considers the fundamental question of how these approaches might be combined. The proposal is to adapt a method from the Cognitive Science literature, in which symbolic and connectionist representations are combined using tensor products. Possible applications of this method for language processing are described. Finally, a potentially fruitful link between Quantum Mechanics, Computational Linguistics, and other related areas such as Information Retrieval and Machine Learning, is proposed.

Subjects: 13. Natural Language Processing

Submitted: Jan 26, 2007

This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.