
Episodic Learning 

Dennis Kibler 
Bruce Porter 

Information and Computer Science Department 
University of California alt Irvine 

Irvine, California 

Abstract 

A system is described which learns to compose 
sequences of operators into episodes for problem 
solving. The system incrementally learns when and 
why operators are applied. Episodes are segmented 
so that they are generalizable and reusable. The 
idea of *augmenting the instance language with 
higher level concepts is introduced. The 
technique of perturbation is described for 
discovering the essential features for a rule with 
minimal teacher guidance. The approach is applied 
to the domain of solving simultaneous linear 
equations. 

1. Introduction 
With the aid of a teacher, junior high school 

students can learn to solve simultaneous linear 
equations. Operators that are applied in solving 
these problems include multiplying an equation by 
a constant and combining like terms. The students 
are already familiar with & these operators are 
applied. Moreover, the teacher assumes that the 
students understand basic concepts about numbers, 
such as a number being positive, negative, or 
non-zero. 

Our system, nicknamed PETr2 incrementally 
(defined in [7]) induces correct rules from the 
training instances presented. The rules are 
correct in the sense that at any point in the 
learning process: 

- the knowledge is consistent with all 
past training instances. 

- sequences of rules (episodes) are 
guaranteed to simplify the problem state 
if they apply. 

Learning rules for applying operators involves 
two stages of learning: 

1Thi.s research was supported by the Naval Ocean 
System Center under contract NO6123-81-C-1165. 

2 Please refer to [41 for a complete description 
of our approach including a PDL d;scription of the 
learning algorithm and multiple examples of its 
use. PET is implemented in Prolog on Dec2020. 
Available upon request. 

- Stage 1 learning involves understanding 
&.en each available operator should be 
applied. The concern here is with 
learning the enabling conditions for 
individual operators, without knowledge 
of the other operators in the solution 
path to provide context. 

- Stage 2 learning involves understanding 
J&Y each operator is applied with 
emphasis on the sequencing of operators. 
We refer to this as episodic learning. 
Episodic segmentation is the grouping of 
operators to form an episode. Episodes 
are discrete, reusable compnents for 
plan generation and each simplifies the 
problem state. 

The main features of our approach to episodic 
learning are: 

- segmentation of operator sequences into 
meaningful, reusable episodes. 

- augmentation of the instance language to 
include higher-order concepts not 
present in the training instance itself. 

- perturbation of a training instance to 
create new instances. 

2. Related Work 
Related work in stage 1 learning includes 

Neves's [lo] system which learned to solve one 
equation in one unknown from textbook traces. The 
system learned both the context (preconditions) of 
an operator as well as which operator was applied, 
although the operator had to be known to the 
system. His generalization language was simpler 
than ours in that a constant could only be 
generalized to a variable. The program LEX [8] 
uses version spaces to describe the current 
hypothesis space as well as concept trees to 
direct or bias the generalizations. As it is not 
the main point of our work, we keep only the 
minimal (maximally specific) generalization [ll] 
of the examples. 

MACROPS [2] is an example of stage 2, or 
episodic learning. This system remembers robot 
plans that have been generated so that the plan 
can be reused without re-generation. The plans 
are stored in triangle tables which record the 

191 

From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved. 



order of application of operators in the plan and 
how their pre-conditions are satisfied. The plans 
are generalized to be applicable to other 
instances (as are episodes). 

While effective in learning plans, MACROPS has 
difficulty applying its acquired knowledge [l]. 
The central problem is that the operators in a 
MACROPS plan are not segmented into meaningful 
sequences. Any sequence of operators can be 
extracted from the triangle table and reused as a 
macro operator. A sequence of length N defines 
N(N-1)/2 macros. However, few of these sequences 
are useful. MACROPS offers no assistance in 
selecting the useful sequences from a plan. If 
sequences are not extracted from the triangle 
table then the entire plan must be considered an 
episode. This results in a large collection of 
opaque, single-purpose, macro operators. 
Branching within an episode is made impossible. 
In either case, combinatorial explosign makes 
planning with the macros impractical. 

3. Operators for Solving Linear Fquations 
The operators applicable to solving 

simultaneous linear equations are described in the 
following table: 

rator 
ccPnbinex(Eq) 
combiney(Fq) 
combinec(Eq) 

deletezero 

=-wEql,Eq2) 

addU%&W) 

mult @WJ) 

Semantics 
Combine x-terms in Eq. 
Combine y-terms in Eq. 
Combine constant terms 
in Eq. 
Delete term with 0 coeff. 
or 0 constant from Eq. 
Replace E42 by the result 
of subtracting Eql from IQ2 
Replace EQ2 by the result 
of adding Eql and Eq2 
Replace IQ by the result 
of multiplying Q by N 

4. Description Languages 

4.1. Instance Language 
The instance language serves as "internal form" 

for training instances. We adopt a relational 
description of each equation, so the training 
instance: 

a: 2x-5y=-1 
b: 3x+4y=lO 

is stored as: 

{term(a,2*x),term(a,-53),term(a,l), 
term(b,3*x),term(b,4*y),term(b,-10)) 

where a,b are equation labels and x,y are 

31t should be recognized that MACROPS was 
designed to control a physical robot, not a 
simulation. For this reason, the designers 
thought it important to permit the planner to skip 
ahead in a plan if situation permits or to repeat 
a step in a plan if the operation failed due to 
physical difficulties. 

variables in the instance language. 

4.2. Generalization Language 
Following Mitchell [81 and Michalski [61 we 

have concept trees for integers, equation labels, 
and variables (figure 4-l). Basically we are 
using the typed variables of Michalski [61. 

integer 
3 

variable 
/ \ /\ 

non-zero zero 
/ \ \ a 

b x Y 

positive negative 0 
/I\ /I 
1 2 3 ..e -1 -2 . . . 

Figure 4-l: Concept trees 

We permit generalizations by 1) deleting 
conditions, 2) replacing constants by variables 
(typed), and 3) climbing tree generalization. 
Disjunctive generalization is allowed by adding 
additional rules. This covers all the 
generalization rules discussed by Michalski 161 
except for closed interval generalization. 

4.3. Rule Language 
Knowledge is encoded in rules which suggest 

operators to apply. Rules are of the form: 

<score> -- <bag of terms expressed in 
generalization language> => <operator> 

(The score of a rule is described in section 6.2.) 
PET does not learn "negative" rules to prune the 
search tree, as in [3]. 

5. Perturbation 
Perturbation is a technique for stage 1 

learning which enables a learning system to 
discover the essential features of a rule with 
minimal teacher involvement. A perturbation of a 
training instance is created by: 

- deleting a feature of the instance to 
determine whether its presence is 
essential. 

- if a feature is essential, modifying it 
slightly to determine if it can be 
generalized. Perturbation operators, 
which are added to the concept tree used 
for generalization, make these minor 
modifications. 

For example, given the problem (a) 2x+3y=7 (b) 
2x+3~-5y=5, the advice to cambinex(b), and an 
empty rule base, PET first describes the rule as: 

(term(a,2*x),term(a,3*y),term(a,-7), 
term(b,2*x),term(b,3*x),term(b,-5*y), 
term(b,-5)) => combinex(b). 

Now PET perturbs the instance by modifying each 
of the coefficients individually. This is done by 
zeroing, incrementing and decrementing each 
coefficient. Same of the instances created by 
perturbation are: 

192 



(i) (ii) (iii) 
3y=7 2x+3y=7 2x+3y=7 

2x+3x-5y=5 3x-5y=5 2x+4x-5y=5 

Since ccmCnex(b) is effective in example i, PET 
generalizes (minimally) its current rule 
conditions with this example yielding the new 
rule: 

{tem(aJjcy) ,temb,-7) I 
term(b,2*x),term(b,3*x),term(b,-5*y), 
term(b,-5)) => ccmbinex(b). 

The major effect is to delete the condition on the 
x-term of equation(a). 

The operator is not effective for example ii, 
and the negative information is (in the current 
system) unused. Generalizing with example iii, 
the rule becomes: 

term(b,2*x),term(b,pos(N)*x),term(b,-5"y), 
term(b,-5)) => combinex(b). 

And after all positive instances of the operator 
c&inex(b) have been generated by the 
perturbation technique and generalized, the rule 
is formed: 

term(b,pos(M)*x)) => cambinex(b). 

Essentially, perturbation is a technique for 
creating near-examples and near-misses [13] with 
minimal teacher involvement upon which standard 
generalization techniques can be applied. 
Mitchell's LEX system [91 uses a similar method 
for creating training instances. Note that in our 
technique we perturb an instance and try the same 
operator that worked before. The perturbation is 
used to guide the generalization process. In LEX, 
perturbation is used to generate new, possibly 
solvable, problems. Heuristics are needed to 
select appropriate problems as the cost of 
applying the problem solver is high. See [5] for 
more detail on our perturbation technique. 

6. Episodic Learning 

6.1. Importance for Learning 
As we noted in the MACROPS use of operator 

sequences, unless the system can select 
meaningfully useful sequences from the set of 
candidate sequences, combinatorial explosion makes 
reuse of generalized plans infeasible. We define 
an episode to be a sequence of rules which, when 
applied, simplifies a problem state. Our episodes 
are "loosely packaged" to allow branching. Rather 
than storing an entire plan for reaching a goal 
state from the start state, we segment the 
solution path into small, re-usable, generalizable 
episodes, each accomplishing a simplification of 
the problem. 

Episodic, or stage 2, learning is concerned 
with these sequences of rules and their 
connections. These sequences are learned 
incrementally. Learning a rule for an operator 
depends on an understanding of J&Y the operator is 

applied. 4 PET understands 
selecting an operator: 

tW0 reasons for 

1. 

2. 

By applying the operator, the problem 
state is simplified. In the domain of 
algebra problems, a state is simplified 
if the number of terms in the equations 
is reduced. 

By applying the operator, the 
preconditions of an existing rule are 
satisfied. The rule being formed for 
the operator is then loosely linked 
with the rule that the operator 
enables. If more than one rule is 
enabled, then multiple branches through 
the episode are allowed. 

PET adds a rule to the rulebase when the 
purpose of the rule's action (the "why" component 
of the operator) is understood. The first 
operators for which rules can be learned are those 
which simplify the problem state, such as 
combining like terms. Any operators applied 
before combine cannot be understood and PET must 
"bear with" the teacher. After rules are formed 
for the combine operators, subtract can be 
learned. For instance, sub(a,b) applied to: 

a: 2x+3y=5 
b: 2x+=1 

yields: 
a: 2x+3y=5 
b: 2x-2x -ly-3y=l-5 

Now PET can learn sub(a,b) for reason (2) above: a 
rule which is already understood (for a combine 
operator) is enabled by the subtraction. An 
episode can be formed connecting the rules for 
sub(a,b) and combine(b). 

6.2. Scoring Operators 
A simple scoring scheme connects rules into 

episodes and resolves conflicts when more than one 
rule is enabled. A natural scheme is to score 
each rule by its position in an episode. The 
rules for the ccmbine operators are given a score 
of 0. The rule for subtract, which enables a 
ccnnbine operator, is given a score of 1 (O+l). 
Intuitivelyr the score is the length of the 
episode before something good happens (i.e. the 
equations get simplified). When selecting a rule, 
PET selects the one with the lawest score among 
those enabled. Ties are resolved arbitrarily. 

4 "Understand" is used here to mean "know-how" 
encoded in production rules. We do not mean to 
suggest a deep model of understanding which might 
include causality and analogy. 

193 



7. Augmentation 
A description in the instance language is 

basically a translation of a training instance. 
This description is in an instance language more 
appropriate to computation than the surface 
language used to input the instance. In complex 
domains, more knowledge needs to be represented 
than is captured in a literal translation of a 
training instance into the instance language. 

In the domain of algebra problems, augmentation 
serves to relate terms in the instance language. 
For example, a relevant relation between 
coefficients is productof(N,M,P) (the product of N 
and M is P). Augmentation of the instance 
language is necessary when the terms or values 
necessary for an operation (the RHS of a rule) are 
not present in the pre-conditions for the 
operation (the LHS of the rule). For example, 
consider the training instance: 

a: 6x-15y=-3 
b: 3x+4y=lO 

with the teacher advice to apply mult(b,2). The 
problem is that the rule formed by PET will have a 
2 on the RHS (for the operation) but no 2 on the 
LHS. In this case, we say that the rule is not 
predictive of the operator. 

An augmentation of the instance language is 
needed to relate the 2 on the PHS with some term 
on the LHS. In this case, the additional 
knowledge needed is the 3-ary predicate productof, 
specifically productof(2,3,6). Now the rule to 
cover the training instance can be formed (after 
perturbation and augmentation): 

{term(a,G*x),term(b,3*x), 
productof(2,3,6)) => mult(a,2) 

Concepts in the augmentation language form a 
second-order search space (figure 7-1) for 
generalizing an operation. The space consists of 
a (partial) list of concepts that a student might 
rely on for understanding relations between 
numbers. When a predictive rule cannot be found 
in the first-order search space then PET tries to 
form a rule using the augmentation as well. 
Concepts are pulled from the list and added to a 
developing rule. If the concept makes the rule 
predictive, then it is retained. Otherwise, it is 
removed and another concept is tried. If no 
predictive rule can be found then PET ignores the 
training instance. 

sumof(L,M,N) (sum of L and M is N) 
productof(L,M,N) (product of L and M is N) 
squareof(~,~) (square of M is N) 

Figure 7-l: augmentation search space 

Vere [12] has also addressed the problem of 
learning in the presence of "background 
information." For example, learning a general 
rule for a straight in a poker hand requires 
knowledge of the next number in sequence. This is 
considered background to the knowledge in the 
poker domain. Vere describes an 'association 
chain" which links together each term in a rule. 
If a term in the rule is not linked in the chain 

(analogous to our test for predictiveness), then 
more background information must be "pulled in" 
until it is associated. 

Augmentation is similar to selecting background 
knowledge. One problem with both approaches is 
determining how much background knowledge to 
incorporate. Incorporating too little kncwledge, 
which results in an over-generalized rule, can be 
detected by an association chain violation or' in 
PET, by a non-predictive rule. However, detecting 
when too much knowledge has been pulled in is 
difficult. In this case, the rule formed will be 
over-specialized. We overcome this problem (to a 
large extent) by perturbation. Vere relies solely 
on forming a disjunction of rules (each overly 
specialized) for the correct generalization. 

Vere allows only one concept in the background 
knowledge. This further simplifies the task of 
knowing haw much knowledge to pull in. However, 
as the complexity of problem domains increase, 
more background knowledge must be brought to bear. 
Our augmentation addresses some of the problems of 
managing this knowledge. 

8. Examples of System Performance 
This section discusses highlights from PET's 

episodic learning for problem solving in the 
domain of linear equations. 

8.1. Example l-Learning Combine 
The rulebase is initially empty and, as PET 

learns, rules are added, generalized, and 
supplanted. PET requests advice whenever the 
current rules do not apply to the problem state. 

The teacher presents the training instance: 

a: 2x+3y=5 
b: 2x+4y=6 

with the advice sub(a,b). PET applies the 
operator which yields: 

a: 2x+3y=5 
b: 2x-2x+4y-3y=6-5 

PET must understand why an operator is useful 
before a rule is formed. The operator failed to 
simplify the equations (in fact the number of 
terms in the equations went from six to nine) and 
did not enable any other rules (since the rulebase 
is empty). PET cannot form a rule and waits for 
something understandable to happen. 

The teacher now suggests that combinex(b) be 
applied, yielding: 

a: 2x+3y=5 
b: Ox+4y-3y=6-5 

The number of terms is reduced, so PET 
hypothesizes a rule. Perturbation tests each term 
in the equations to determine which are essential 
and which can be generalized. PET forms the rule: 

kern'hpos (N) *xl , 
term(b,neg(M)*x)) => combinex(b) 

which means: 

194 



given a problem state, whenever 
equation b contains an x-term with a 
positive coefficient and an x-term with a 
negative coefficient, then combine the two 
terms. 

PET is unable to apply current knowledge (i.e. 
the rule for combinex(b)) to the current problem 
state so the teacher suggests combiney(b) which 
yields: 

a: 2x+3y=5 
b: Ox+ly=6-5 

Stage 1 learning produces the rule: 

{term b,pos (N) 9) I 
term(b,neg(M)*y)) => c&iney(b) 

This rule cannot be generalized 
rulelist and is simply added. 

with the current 

Learning rules for the operators ccrmbinec(b) 
and deletezero are similar and will be assumed 
to be completed. 

Stage 2 learning of the combine operators 
involves relating them to episodes, or sequences 
of rules. Since combine simplifies a problem 
state immediately, it is given a score of zero. 
The current rulelist (with scores) is: 

0 -- {term(b,pos(N)*x), 
term(b,neg(M)*x)} => combinex(b) 

O- {term bps (NJ 9) I 
term(b,neg(M)*y)) => combiney(b) 

0 -- bmb,posW 1 I 
term(b,neg(M)) => combinec(b) 

0 -- (term(b,O*x)) => deletezero 
0 -- (term(b,O)) => deletezero 

With further training instances for the combine 
operators, PET forms the rules: 

0--{term(egn(L),int(N)*x), 
term(egn(L),int(M)*x))=>ccPnbinex(egn(L)) 

O-hmn(eqn(L) ,int(N) %I, 
term(egn(L)lint(M)%)]=>ccmbiney(egn(L)) 

0-(term(eqn(L),int(N)), 
term(egn(L),int(M)) => combinec(egn(L)) 

0-(term(egn(L),O*var(X))} 
=> deletezero(egn(L)) 

0--(term(egn(L),O)) => deletezero(egn(L)) 

8.2. Example a--Learning Subtract 
Now that the ccmbine operators are partially 

learned, PET can begin to learn subtract. Since 
our episodes are loosely packaged, there is not a 
problem with further generalizing the rules for 
the combine operators once subtract is affiliated 
with them. Learning for each operator can proceed 
independently. 

Naw the training instance above which PET had 
to ignore can be understood. The instance with 
teacher advice sub(a,b) is: 

'deletezero (b) could also be suggested, but we 
continue with a combine operator for continuity. 

a: 2x+3y=5 
b: 2x+4y=6 

The operator enables the partially-learned rule 
for combinex(b), so PET employs perturbation to 
form the rule: 

{term(a,2*x),term(b,2*x), 
term(b,pos(N)*'y) 1 => sub(a,b) 

The rule is assigned a score of 1, loosely linking 
it with the rules for combine and deletezero. 

Presented with 
induces the rule: 

further training instances, PET 

(term(egn(Ll),nonzero(N)*var(X)), 
term(eqn(L2),nonzero(M)*var(X)), 
term(egn(L2),nonzero(O)*var(Y))) 

=> =Jweqmu ,eqnW) 1 

8.3. Example 3-Learning Multiply 
The teacher presents PET with an example of 

multiply with the training instance: 

a: 3x+4y=7 
b: 6x+2y=8 

No rule in the kncwledge base applies, so PET 
requests advice. mult(a,2) is suggested which 
yields: 

a: 6x+8y=14 
b: 6x+2y=8 

Now sub(a,b) applies so the rule for mult(a,2) 
can be learned. Mult(a,2) is given a score of 2 
(one more than the score of the rule enabled). 
After perturbation PET forms the rule: 

{term(a,3*x),term(b,6*X)r 
term(b,pos(N)%)) => mult(a,2) 

At this point PET realizes that it has 
over-generalized since the rule is non-predictive 
(the 2 on the RHS does not occur on the LHS). PET 
augments the instance description and forms the 
candidate rule: 

(term(a,3*x),term(b,6*x),term(b,pos(N)%), 
productof(2,3,6)} => mult(a,2) 

After additional examples, PET forms the 
correct rule: 

2 -- (term(a,pos(K)*x),term(b,pos(L)*x) I 
termbpos 04 9) r 
productof(pos(N) ,pos(K) ,pos(L) 1 

=> mult(a,pos(N)) 

which supplants 
rulebase. 

the more specific rule in the 

8.4. Example 4-Learning "Cross Multiply" 
The teacher presents the training instance: 

Since 
awly 

a: 2xt6y=8 
b: 3x+4y=7 

no rule is enabled, 
mult(a,3) yields: 

the teacher advice to 

a: 6x+18y=24 
b: 3x+ 4y=7 

195 



Since mult(b,2) is enabled, mult(a,3) can be 
learned. After perturbation, PET acguires the 
rule: 

(term(a,2*x),term(b,3*x),term(b,pos(N)~)] 
=> mult(a,3) 

This rule is given a score of 3 since it enables a 
rule with score 2. The rule will be generalized 
(with subsequent training instances) to: 

3 -- {term(egn(I),nonzero(N)*var(X)), 
term(egn(J),nonzero(M)*var(X)), 
term(eqn(J),nonzero(L)*var(Y))] 
=> mult(egn(I),nonzero(M)) 

9. Limitations and Extensions 
As with most learning programs we require that 

the concept to be learned be representable in our 
generalization language. In addition PET has to 
be supplied with some coarse notion of when an 
operator has been effective in simplifying the 
current state. Furthermore we assume 
teacher gives only appropriate advice 
no "noise." 

Extensions that we are considering 

- Learning from negative instances 
as positive ones. 

that the 
and there is 

are: 

as well 

- Improving the use of augmentation by 
introducing structured concepts. These 
would permit climbing tree 
generalizations for this second-order 
knowledge. Another improvement would be 
allowing multiple concepts to be pulled 
into a rule from the augmentation search 
space. This requires a requisite change 
in the test for predictiveness. 

- Applying the theory to learning 
operators in other domains. Integration 
problems have been attempted [8]. We 
would like to try our approach in the 
calculus problem domain. 

10. Conclusions 
A system, PET, has been described which learns 

sequences of rules, or episodes, for problem 
solving. The learning is incremental and 
thorough. The system learns when and why 
operators are applied. Although PET starts with 
an extremely general and coarse notion of why an 
operator should be applied it's representation 
beccmes increasingly fine and complete as it forms 
rules from examples. PET detects when rules are 
non-predictive and augments the generalization 
language with higher level concepts. Due to the 
power of perturbation, our system can learn 
episodes with minimal teacher interaction. The 
episodes are segmented into discrete, re-usable 
segments, each accomplishing a recognizable 
simplification of the problem state. The approach 
is shown effective in the dcnnain of solving 
simultaneous linear equations. We suspect the 
technique will also work for solving problems in 
symbolic integration and differential equations 

REFERENCES 
1. Carbonell, J.G. Learning by Analogy: 
Formulating and Generalizing Plans from Past 
Experience. In Michalski,R.S., Carbonell,J.G., 
Mitchell,T.M., Ed., Machine m, Tiogo 
Publishing, 1983. 
2. Fikes, R.E. and Nilsson, N.J. STRIPS: A new 
approach to the application of theorem proving to 
problem solving. AL 2 (1971), 189-208. 
3. Kibler, D.F, and Morris, P.H. Dont be Stupid. 
IJCAI (1981), 345-347. 
4. Kibler, D.F. and Porter, B.W. Episodic 
Learning. 
1983. 

194, University of California, Irvine, 

5. Kibler, D.F. and Porter, B.W. Perturbation: A 
Means for Guiding Generalization. m (1983). 
6. Michalski, R.S., Dietterich, T.G. Learning 
and Generalization of Characteristic Descriptions: 
Evaluation Criteria and Comparative Review of 
Selected Methods. mfi (1979), 223-231. 

Michalski,R.S., Carbonell,J.G., Mitchel1,T.M. kchine . ng Tiogo Publishing, 1983. 
8. Mitchell, T.M ., Utgoff, P.E., Nudel, B, and 
Banerji, R. Learning Problem-Solving Heuristics 
Through Practice. um 1 (1981), 127-134. 
9. Mitchell, T.M., Utgoff, P.E., Nudel, B, and 
Banerji, R. Learning by Experimentation: Acquiring 
and Refining ProblePn- Solving Heuistics. In 
Michalski,R.S., Carbonell,J.G., Mitchell,T.M., 
Ed., Machine karninq, Tiogo Publishing, 1983. 
10. Neves, D.M. A computer program that learns 
algebraic procedures by examining examples and 
working problems in a textbook. CSCSI u (1978), 
191-195. 
11. Vere, S.A. Induction of concepts in the 
predicate calculus. IJCAI 4 (1975), 281-287. 
12. Vere, S.A. Induction of Relational 
Productions in the Presence of Background 
Information. IJCAT 5 (1977), 349-355. 
13. Winston, P.H. Learning structural 
description from examples. In Winston, P.H., Ed., 
a Psvcholouy of Comouter Vision, McGraw-Hill, 
1975. 

196 


