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Abstract 
AI has generally interpreted the organized nature of 
everyday activity in terms of plan-following. Nobody 
could doubt that people often make and follow plans. 
But the complexity, uncertainty, and immediacy of 
the real world require a central role for moment-to- 
moment improvisation. But before and beneath any 
planning ahead, one continually decides what to do 
now. Investigation of the dynamics of everyday rou- 
tine activity reveals important regularities in the in- 
teraction of very simple machinery with its environ- 
ment. We have used our dynamic theories to design 
a program, called Pengi, that engages in complex, 
apparently planful activity without requiring explicit 
models of the world. 

I. Pengo 
Let us distinguish two different uses of the word 
“planning”.’ AI has traditionally interpreted the orga- 
nized nature of everyday activity in terms of capital-P 
Planning, according to which a smart Planning phase con- 
structs a Plan which is carried out in a mechanical fashion 
by a dumb Executive phase. People often engage in lower- 
case-p planning. Though a plan might in some sense be 
mental, better prototypes are provided by recipes, direc- 
tions, and instruction manuals. Use of plans regularly in- 
volves rearrangement, interpolation, disambiguation, and 
substitution. Before and beneath any activity of plan- 
following, life is a continual improvisation, a matter of de- 
ciding what to do now based on how the world is now. 
Our empirical and theoretical studies of activity have led 
us to question the supposition that action derives from the 
Execution of Plans and the corresponding framework of 
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problem solving and reasoning with representations. We 
observe that real situations are characteristically complex, 
uncertain, and immediate. We have shown in [Chapman, 
19851 that Planning is inherently combinatorially explo- 
sive, and so is unlikely to scale up to realistic situations 
which take thousands of propositions to represent. Most 
real situations cannot be completely represented; there 
isn’t time to collect all the necessary information. Real 
situations are rife with uncertainty; the actions of other 
agents and processes cannot be predicted. At best, this ex- 
ponentially increases the size of a Planner’s search space; 
often, it may lose the Planner completely. Life is fired at 
you point blank: when the rock you step on pivots un- 
expectedly, you have only milliseconds to react. Proving 
theorems is out of the question. 

Rather than relying on reasoning to intervene between 
perception and action, we believe activity mostly derives 
from very simple sorts of machinery interacting with the 
immediate situation. This machinery exploits regularities 
in its interaction with the world to engage in complex, ap- 
parently planful activity without requiring explicit models 
of the world. 

This paper reports on an implementation in progress 
of parts of our more general theory of activity [Agre, 1985a, 
Agre, 1985b, Agre, in preparation, Chapman and Agre, 
1987, Chapman, 19851. We are writing a program, Pengi, 
that plays a commercial arcade video game called Pengo. 
Pengo is played on a 2-d maze made of unit-sized ice blocks. 
The player navigates a penguin around in this field with 
a joystick. Bees chase the penguin and kill him if they 
get close enough. The penguin and bees can modify the 
maze by kicking ice blocks to make them slide. If a block 
slides into a bee or penguin, it dies. A snapshot of a Pengo 
game appears in Figure 1. In the lower left-hand corner, 
the penguin faces a bee across a block. Whoever kicks the 
block first will kill the other. 

Although Pengo is much simpler than the real world, 
it is nonetheless not amenable to current or projected Plan- 
ning techniques because it exhibits the three properties of 
complexity, uncertainty, and real-time involvement. With 
several hundred objects of various sorts on the screen, some 
moving, representing any situation would require well over 
a thousand propositions, too many for any current plan- 
ner. The behavior of the bees has a random component 
and so is not fully predictable. Real-time response is re- 
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Figure 1: A Pengo game in progress. 

quired to avoid being killed by bees. Still, Pengo is only 
a toy. There are no real vision or manipulation problems; 
it’s a simulation inside the computer. Nothing drastically 
novel ever happens. This makes it a tractable first domain 
for demonstrating our ideas. 

In a typical Pengo game, the penguin will run to es- 
cape bees, hunt down bees when it has the advantage, build 
traps and escape routes, maneuver bees into corners, and 
collect “magic blocks” (shown as concentric squares in Fig- 
ure 1) for completing the “magic square” structure that 
wins the game. Naturally we ascribe the player’s seeming 
purposefulness to its models of its environment, its rea- 
soning about the world, and its planful efforts to carry out 
its tasks. But as with Simon’s ant the complexity of the 
player’s activity may be the result of the interaction of sim- 
ple opportunistic strategies with a complex world. Instead 
of sticking to a rigid plan, Pengi lives in the present, con- 
tinually acting on its immediate circumstances. It happens 
upon each situation with only a set of goals and a stock 
of skills. It can take advantage of unexpected opportuni- 
ties and deal with unexpected contingencies, not because 
they’ve been written into a script, but because they are 
apparent in the situation. 

II. hteractive 
Routines are patterns of interaction between an agent and 
its world. A routine is not a plan or procedure; typically 
it is not represented by the agent. An agent can reliably 
enter into’a particular routine without representing it be- 
cause of regularities in the world. For example, imagine 
the penguin running from a bee. The penguin will run as 
far as it can, until it runs into a wall made of blocks. Then 
it will have to kick its way through the wall. Then it will 
run some more. Then it will hit another wall. This process 
could be described by a procedure with two nested loops: 

running until it hits something, kicking the obstacle, and 
repeating. 

But this same pattern of activity could equally well 
arise from a pair of rules: (Rl) when you are being chased, 
run away; (R2) if you run into a wall, kick through it. 
These rules don’t represent the iteration; the loop emerges 
as a result of the interaction of the rules with the situation. 
Causality flows into the system from the world, drives the 
rules which chose what to do, resulting in action which 
changes the world, and back again into the system, which 
responds to the changes. 

An agent executing a plan is inflexible: it has a series 
of actions to carry out, and it performs them one after 
another. But it sometimes happens that while a bee is 
pursuing the penguin, the bee is accidentally crushed by a 
block kicked by a different bee. A penguin controlled by 
an iterative procedure would then either continue running 
needlessly or have to notice that it had gone wrong and 
switch to executing a different procedure. An agent en- 
gaging in a routine is not driven by a preconceived notion 
of what will happen. When circumstances change, other 
responses become applicable; there’s no need for the agent 
even to register the unexpected event. (Rl) depends on 
being chased; if there is no bee chasing, it is no longer 
applicable, and other rules, relevant perhaps to collecting 
magic blocks, will apply instead. Thus, routines are op- 
portunistic, and therefore robust under uncertainty. Re- 
sponses can be individually very simple, requiring almost 
no computation; this allows real-time activity. 

Pengi’s activity is guided by relevant properties of the im- 
mediate situation we call indexical-junctional aspects, or 
“aspects” for short. Registering and acting on aspects is 
an alternative to representing and reasoning about com- 
plex domains, and avoids combinatorial explosions. 

A traditional problem solver for the Pengo domain 
would represent each situation with hundreds or thousands 
of such representations as (AT BLOCK-213 427 991), (IS- 
A BLOCK-213 BLOCK), and (NEXT-TO BLOCK-213 
BEE-23). These representations do not make reference to 
the penguin’s situation or goals. Instead of naming each 
individual with its own gensym, Pengi employs indexical- 
junctional entities, such as the following, which are useful 
to find at times when playing Pengo: 

CJ the-block-I’m-pushing 
o the-corridor-I’m-running-along 
8 the-bee-on-the-other-side-of-this-block-next-to-me 
a the-block-that-the-block-I-just-kicked-will-collide- 

with 
o the-bee-that-is-heading-along-the-wall-that-I’m-on- 

the-other-side-of 

As we will see later, the machinery itself does not 
directly manipulate names for these entities. They are 
only invoked in particular aspects. If an entity looks like a 
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hyphenated noun phrase, 
sentence. For example: 

an aspect looks like a hyphenated 

o the- 
block-I’m-going-to-kick-at-the-bee-is-behind-me (so I 
have to backtrack) 

e there-is-no-block-suited-for-kicking-at-the-bee (so just 
hang out until the situation improves) 

e I’ve-run-into-the-edge-of-the-screen (better turn and 
run along it) 

e the-bee-I-intend-to-clobber-is-closer-toectile- 
than-I-am (dangerous!) 

0 . . s -but-it’s-heading-away-from-it (which is OK) 
e I’m-adjacent-to-my-chosen-projectile (so kick it) 

These aspects depend on the Pengo player’s circum- 
stances; this is the indexicality of aspects. At any given 
time, Pengi can ignore most of the screen because effects 
propagate relatively slowly. It’s important to keep track 
of what’s happening around the penguin and sometimes in 
one or two other localized regions. When Pengi needs to 
know where something is, it doesn’t look in a database, it 
looks at the screen. This eliminates most of the overhead 
of reasoning and representation. (The next section will 
describe how Pengi can find an entity in, or register some 
aspect of, a situation.) 

Entities and aspects are relative to the player’s pur- 
poses; they are junctional. Each aspect is used for a spe- 
cific purpose: it’s important to register various aspects 
of the-bee-on-the-other-side-of-this-block-next-t~me, be- 
cause it is both vulnerable (if the penguin kicks the block) 
and dangerous (because it can kick the block at the pen- 
guin). Which aspects even make sense depends on the sort 
of activity Pengi is engaged in. For example, when run- 
ning away, it’s important to find the-bee-that-is-chasing- 
me and and the-obstacle-to-my-flight and the-edge-I’ll-run- 
into-if-I-keep-going-this-way; when pursuing, you should 
find the-bee-that-I’m-chasing and the-block-I-will-kick-at- 
the-bee and the-bee’s-escape-route. Aspects are not de- 
fined in terms of specific individuals such as BEE-69. The- 
bee-that-is-chasing-me at one minute may be the same bee 
or a different one from the-bee-that-is-chasing-me a minute 
later. Pengi cannot tell the difference, but it doesn’t mat- 
ter because the the same action is right in either case: run 
away or hit it with a block. Moreover, the same object 
might be two entities at different times, or even at the 
same time. Depending on whether you are attacking or 
running away, the same block might be a projectile to kick 
at the bee or an obstacle to your flight. 

Avoiding the representation of individuals bypasses 
the overhead of instantiation: binding constants to vari- 
ables. In all existing knowledge representation systems, 
from logic to frames, to decide to kick a block at a bee 
requires reasoning from some general statement that in 
every situation satisfying certain requirements there will 
be some bee (say SOME-BEE) and some block (SOME- 
BLOCK) that should be kicked at it. To make this state- 
ment concretely useful, you must instantiate it: consider 

various candidate bees and blocks and bind a representa- 
tion of one of these bees (perhaps BEE-29) to SOME-BEE 
and a representation of one of the blocks (BLOCK-237) 
to SOME-BLOCK. With n candidate bees and m blocks, 
this may involve n x m work. Clever indexing schemes and 
control heuristics can help, but the scheme for registering 
aspects we present in the next section will always be faster. 

Entities are not logical categories because they are 
indexical: their extension depends on the circumstances. 
In this way, indexical-functional entities are intermediate 
between logical individuals and categories. Aspects make 
many cases of generalization free. If the player discov- 
ers in a particular situation that the-bee-on-the-other-side- 
of-this-block-next-to-me-is-dangerous because it can easily 
kick the block into the penguin, this discovery will apply 
automatically to other specific bees later on that can be de- 
scribed as the-bee-on-the-other-side-of-this-block-next-to- 

le Machinery 

We believe that a simple architecture interacting with the 
world can participate in most forms of activity. This ar- 
chitecture is made up of a central system and peripheral 
systems. The central system is responsible, loosely, for 
cognition: registering and acting on relevant aspects of 
the situation. The peripheral systems are responsible for 
perception and for effector control. Because routines and 
aspects avoid representation and reasoning, the central sys- 
tem can be made from very simple machinery. 

We believe that combinational networks can form an 
adequate central system for most activity. The inputs to 
the combinational network come from perceptual systems; 
the outputs go to motor control systems. The network de- 
cides on actions that are appropriate given the situation it 
is presented with. Many nodes of the network register par- 
ticular aspects. As the world changes, the outputs of the 
perceptual system change; these changes are propagated 
through the network to result in different actions. Thus 
interaction can result without Pengi maintaining any state 
in the central system. 

V. Visual Routines 

Aspects, like routines, are not datastructures. They do not 
involve variables bound to symbols that represent objects. 
Aspects are registered by routines in which the network 
interacts with the perceptual systems and with the world. 
The actions in these routines get the world and the periph- 
eral systems into states in which the aspects will become 
manifest. 

Shimon Ullman [Ullman, 19831 has developed a theory 
of vision based on visual routines which are patterns of in- 
teraction between the central system and a visual routines 
processor (VRP). The VRP maintains several modified in- 
ternal copies of the two-D sketch produced by early vision. 
It can perform operations on these images such as coloring 
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Figure 2: Finding the-block-that-the-block-I-just-kicked- 
will-collide-with using ray tracing and dropping a marker. 
The two circle-crosses are distinct visual markers, the one 
on the left marking the-block-that-I-just-kicked and the 
one on the right marking 
the-block-that-the-block-I-just-kicked-will-collide-with. 

in regions, tracing curves, keeping track of locations using 
visual markers (pointers into the image), indexing interest- 
ing features, and detecting and tracking moving objects. 
The VRP is guided in what operations it applies to what 
images by outputs of the central network, and outputs of 
the VRP are inputs to the network. A visual routine, then, 
is a process whereby the VRP, guided by the network, finds 
entities and registers aspects of the situation, and finally 
injects them into the inputs of the network. 

The first phase of the network registers aspects us- 
ing boolean combinations of inputs from the VRP. Some 
visual routines are run constantly to keep certain vi- 
tal aspects up to date; it is always important to know 
if there is a bee-that-is-chasing-me. Other routines are 
entered into only in certain circumstances. For exam- 
ple, when you kick the-block-that-is-in-my-way-as-I’m- 
running-away-from-some-bee, it is useful to find the-block- 
that-the-block-I-just-kicked-will-collide-with. This can be 
done by directing the VRP to trace a ray forward from 
the kicked block over free space until it runs into some- 
thing solid, dropping a visual marker there, and checking 
that the thing under the marker is in fact a block. This is 
illustrated in Figure 2. 

As another example, if the penguin is lurking behind 
a continuous wall of blocks (a good strategy) and a bee 
appears in front of the wall heading toward it, the-block- 
to-kick-at-the-bee can be found by extending a ray along 
the path of the bee indefinitely, drawing a line along the 
wall, and dropping a marker at their intersection. This is 
shown in Figure 3. 

Figure 3: Finding the-block-to-kick-at-the-bee when lurk- 
ing behind a wall. 

I. ction rbitration 

Actions are suggested only on the basis of local plausibility. 
Two actions may conflict. For example, if a bee is closing 
in on the penguin, the penguin should run away. On the 
other hand, if there is a block close to the penguin and a 
bee is on the other side, the penguin should run over to 
the block and kick it at the bee. These two aspects may be 
present simultaneously, in which case both running away 
and kicking the block at the bee will be suggested. In such 
cases one of the conflicting actions must be selected. In 
some cases, one of the actions should always take prece- 
dence over the other. More commonly, which action to 
take will depend on other aspects of the situation. In this 
case, the deciding factor is whether the penguin or the bee 
is closer to the block between them: whichever gets to it 
first will get to kick it at the other. Therefore, if the pen- 
guin is further from the block it should run away, otherwise 
it should run toward the block. This is not always true, 
though: for example, if the penguin is trapped in a narrow 
passage, running is a bad strategy; the ice block cannot be 
evaded. In this case, it is better to run toward the block in 
the hope that the bee will be distracted (as often happens); 
a severe risk, but better than facing certain death. On the 
other hand, if the block is far enough away, there may be 
time to kick a hole in the side of the passage to escape into. 
We see here Zeoefs of arbitration: an action is suggested; 
it may be overruled; the overruling can be overruled, or a 
counter-proposal be put forth; and so forth. 

Action arbitration has many of the benefits of Plan- 
ning, but is much more efficient, because it does not require 
representation and search of future worlds. In particular, 
a designer who understands the game’s common patterns 
of interaction (its “dynamics”) can use action arbitration 
to produce action sequencing, nonlinear lookahead to re- 
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solve goal interactions, and hierarchical action selection. 
Unfortunately, space does not permit us to describe the 
boundaries of the large but restricted set of dynamics in 
which this sort of machinery can participate. We should 
comment, though, on Pengi’s central system’s lack of state. 
We do not believe that the human central system has no 
state. Our point is simply that state is less necessary and 
less important than is often assumed. 

efesences 

VII* status; ark 

Currently, Pengi has a network of several hundred gates 
and a VRP with about thirty operators. It plays Pengo 
badly, in near real time. It can maneuver behind blocks 
to use as projectiles and kick them at bees and can run 
from bees which are chasing it. We expect to expand the 
network sufficiently that the program will play a competent 
if not expert game. 

Pengi is an implementation of parts of a theory of 
cognitive architecture which will be described in greater 
detail in [Agre, in preparation]. In constructing the the- 
ory we learned from the cognitive-architectural theories 
of Batali, Drescher, Minsky, Rosenschein, and the SOAR 
group, among other sources. Rosenschein’s is the most 
similar project. His situated automata use compiled logic 
gates to drive a robot based on a theory of the robot’s 
interactions with its world. But these use the ontology of 
first-order logic, not that of aspects. The robot does not 
use visual routines and its networks contain latches. 

We chose Pengo as a domain because it is utterly un- 
like those AI has historically taken as typical. It is one 
in which events move so quickly that little or no plan- 
ning is possible, and yet in which human experts can do 
very well. Many everyday domains are like this: driving 
to work, talking to a friend, or dancing. Yet undeniably 
other situations do require planning. In [Agre, in prepara- 
tion] we will outline a theory of planning that builds on the 
theory of activity that Pengi partly implements. Planning, 
on this view, is the internalization of social communication 
about activity. 

We are wiring Pengi’s central system by hand. Evo- 
lution, similarly, wired the central system of insects. But 
humans and intelligent programs must be able to extend 
their own networks based on experience with new sorts 
of situations. This will be a focus of our next phase of 
research. 
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