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Abstract 
The O[M] formalism for representing orders of magnitude and 

approximate relations is described, based on seven primitive 
relations among quantities. Along with 21 compound relations, 
they permit expression and solution of engineering problems 
without explicit disjunction or’negation. In the semantics of the 
relations, strict interpretation allows exact inferences, while 
heuristic interpretation allows inferences more aggressive and 
human-like but not necessarily error-free. Inference strategies 
within O[M] are based on propagation of order of magnitude 
relations through properties of the relations, solved or unsolved 
algebraic constraints, and rules. Assumption-based truth- 
maintenance is used, and the physical dimensions of quantities 
efficiently constrain the inferences. Statement of goals allows more 
effective employment of the constraints and focuses the system’s 
opportunistic forward reasoning. Examples on the analysis of 
biochemical pathways are presented. 

a. introduction 6. It uses knowledge only in the form of rules, and equations 

Numerous efforts have been made to apply Qualitative 
Reasoning to Physical Systems [Bobrow 841. Major difficulties 
encountered in the reasoning effort, particularly in engineering 
applications, stem from the ambiguity inherent [de Kleer and Brown 
841 in the qualitative values (-, 0, +) normally used. The 
incorporation of inequality relations through the quantity-space 
notion [Forbus 841 only partially resolves the ambiguities. 

involving addition and multiplication. 

In engineering, apart from signs of quantities there is more 
partial knowledge available on rough relative magnitudes of 
quantities. It is thus desirable to examine ways of introducing more 
quantitativeness in qualitative reasoning, and employ this type of 
partial knowledge. 

The problem of applying qualitative reasoning in engineering, we 
address here with the O[M] formalism for reasoning about orders of 
magnitudes and approximations. We believe that O[M] lacks the 
basic faults of FOG described above. We will first describe Order- 
of-Magnitude relations and their semantics. After we mentibn the 
additional concepts of assignments, constraints, and rules, we will 
discuss how inferences in O[M] are guided and maintained. We 
will close with examples and a discussion of the O[M]‘s potential. 

2.O[M] Formalism 

A quantitative approach for digital circuit diagnosis [Davis 
841 uses hierarchic representation of time with several time 
granularities. The longest delay until quiescence at the finer level 
determines how many fine-grain units correspond to one coarse- 
grain unit, while events whose duration is shorter than the current 
granularity level are not represented. A similar concept in 
qualitative reasoning is mythica/ time [de Kleer 84a], a finer time 
granularity that can distinguish cause and effect among 
simultaneous events. Underlying time granularities and mythical 
time, is the notion of different orders of magnitude in time scales. It 
was recently pointed out that explicit Order-of-Magnitude 
reasoning, not just with time scales but with all variables, is the key 
to successful qualitative reasoning in engineering [Raiman 861, and 
the FOG formal system was introduced with three basic relations: 
e A Ne B: A is negligible in relation to B. 

A variable in O[M] refers to a specific physical quantity, with 
known physical dimensions but unknown numerical value. 
Knowledge about the sign (-, 0, +) of the variable is kept as 
assertions, termed sign specs, stored within the variable. A 
landmark is similar to a variable, but it has known sign and value. 

Variables and landmarks are collectively called quantities. Two 
quantities are compatible if they have the same physical 
dimensions. Within each quantity, there are links, each 
representing a compatible pair of quantities that can be interrelated. 
A link contains all the Order-of-Magnitude relations asserted 
between the two quantities, and information on where such 
relations can be obtained from and where they can be used (e.g. 
relevant constraints and rules, as we will describe later). 

2.1. Primitive and Compound Relations 
0 A Vo B: A is close to B (and has the same sign as B). Order-of-Magnitude relations relate the non-negative magnitudes 

s A Co B: A has the same sign and Order-of-Magnitude as B. of quantities, regardless of their sign. Thus, there is no interference 

The system has 30 rules of reasoning with its basic relations, between signs and magnitudes, and reasoning with signs can be 

classical qualitative values, addition, and multiplication. Although carried out with the normal qualitative reasoning principles. We 

FOG is a good initial approach, it fails in several points particularly 
important in engineering applications: 
1. It does not provide concrete semantics. If one does not 

intuitively understand what “A Co B” means, there is no further 
explanation available. 

2. Its set of rules appears arbitrary, and it is not clear how it can 
be extended, e.g. to exponentials or integrals. 

3. It does not allow incorporation of partial quantitative 
information, often available in engineering applications. For 
example, if FOG is told that “A Vo 0.1” and “B Vo 1000” it is 
unable to infer the obvious “A Ne B”. 

4. It lumps signs and magnitudes in single relations. The relation 
“A Co B” carries unnecessary sign connotations: Since the 
signs are kept track of separately anyway, why should this 
relation carry sign information? The engineer’s intuitive Order- 
of-Magnitude notion does not carry such sign connotations. 

5. It requires negation and disjunction to fulfill its reasoning even 
for very simple problems. 
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introduce seven primitive irreducible binary relations among 
quantities, shown in Table 1. 

we impose the restrictions eFI/e, and e,=l/e,. To sanction the 
intuition that for A>B>O 

We accept as a compound relation any implicit disjunction of two 
or more successive primitive relations. It should be emphasized 
that this restricted disjunction refers mainly to the semantics of the 
relations, and no syntactic disjunction is allowed. There are in total 
21 compound relations. The notation for a compound relation 
produced from the primitives rn through r,,, is r,..r,+, The 
compound relation standing for “A less than B” would be thus 
represented as “A CC..-< B”. 

A-B<<B = As-B 

we further impose e,-l=e, 
(3) 

Under this strict semantics, the above constraints leave only one 
degree of freedom for the interpretation of our relations, as 
depicted in Fig. 2. We let the “accuracy” parameter e unspecified 
because it depends on the application domain. In the preliminary 
design of chemical processes for example, the designer tends to 
think of e between 0.05 and 0.20. On the other hand a physicist 
would only consider a parameter ecO.01. For many domains, this 
interval semantics (with some particular value for e) reflects the 
way human experts carry out their approximations and Order-of- 
Magnitude reasoning. 

Table 1: Primitive relations of the OIM] formalism 

0 [M] -RELATION VERBAL EXPLANATION 

rl: A << B 
r*: A -< B 
r3: A -< B 
rq: A--B 
r5: A >- B 
r6: A >- B 
r,: A >> B 

A is much smaller than B 
A is moderately smaller than B 
A is slightly smaller than B 
A is exactly equal to B 
A is slightly larger than B 
A is moderately larger than B 
A is much larger than B 

The 7 primitive relations and the 21 compound relations give a 
set R with a total of 28 legitimate relations r,, . . . . rss. This relation 
set allows full expressiveness without disjunction or negation. The 
inverse of every legitimate relation is also a legitimate relation. The 
negation of a legitimate relation is a legitimate relation if and only if 
that relation includes either of << or >>. 

All of the 28 relations are physically meaningful and each can be 
given a short and intuitively appealing verbal description. They are 
powerful enough to express quantity-space partial ordering, all of 
FOG’s relations, and other relations that engineers use in Order-of- 
Magnitude arguments. Negations of such commonsense relations 
are usually (but not always) expressible. For example the relation 
“less than or approximately equal to”, frequently used in 
engineering, is expressed as CC..>-, and its negation as >-..a>. 
The relation = “roughly equal to” is expressed as -e..>-, but its 
negation cannot be expressed. Table 2 shows the correspondence 
of OIM] relations to commonsense and FOG relations. 

2.2. Strict Interpretation Semantics 
A relation A rn B is equivalent to (A/B) rn 1 and signifies an 

interval for the (A/B) ratio, as shown in Fig. 1. 
To sanction the symmetry of the relations 

A>-B = B-CA (1) 
A>>B E B<<A (2) 

e e 
1 2 1 

Table 2: O[M]-representation of relations from other systems 

CLASSICAL COMMONSENSE RELATIONS 0 WI 

less than (<I <<. .-< 
less than or equal to (5) << . .= 
greater than (>) >- . .>> 
greater than or equal to (2) ==. .>> 
equal to (=) z 
approximately equal to (k) -4. .>- 
less than or approximately equal to 6) <<. .>- 
greater than or approximately equal to (3) -<..>> 
much less than << 
much greater than >> 

FOG RELATIONS 0 WI 

Negligible in relation to (Ne) << 
Very close to (Vo) -<. .>- 
Comparable to (Co) -<. .>- 

With this clear semantics there is no need for prespecified rules 
since they can be derived from the intervals, which moreover allow 
incorporation of quantitative information. We named this 
interpretation strict because its solid intervals support only accurate 
correct inferences. For any primitive or compound relation the 
corresponding interval is continuous. The intervals produced from 
inferences are also continuous and the consequent relations can 
be expressed without disjunctions. 

2.3. Heuristic Interpretation Semantics 
The strict interpretation is accurate, but too strict compared to 

human reasoning. For example, from the relations A B-B and B >- 
C the strict interpretation can only conclude A >-..>- C while human 

e e 
3 4 

I I---- I- I 
A/B << 1 A/B -< 1 A/B-<1 I A/B>-1 A/B >- 1 A/B >> 1 

A/B==1 

Figure 1: Strict interpretation of the relation A r,, B 
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commonsense would aggressively conclude A P C. Clearly the 
latter result is heuristic. It is not guaranteed correct, but it is correct 
often enough for an engineer to be happy with. Any mechanism 
that can accommodate this resutt will have to accept the risk of 
wrong conclusions as the price for more aggressive inferences. 
Note that FOG sanctions even the more aggressive inference 

(ACoB and BNeC) + ANeC (4) 
a subcase of which in our notation would be 

(A>-B and B<cC) + AecC (5) 
We feel this inference is too aggressive and error-prone, so we 
choose not to sanction it. 

The heuristic interpretation we adopt replaces the boundary 
points of the intervals with regions (Fig. 3). We then construct two 
sets of primitive intervals: A set of non-exhaustive intervals and a 
set of overlapping ones, shown in Fig. 4. The following heuristic 
inference convention is adopted: For every inference step, assume 
the antecedent relations to denote non-exhaustive intervals, but 
allow the consequent relations to denote ovetiapping intervals. 
Thus, when the consequents are used as antecedents at a later 
step their intervals are “shrunk” and therein lies the power and the 
risk. Note that for compound relations this mechanism refers only 
to the end points of the compound intervals (i.e. the compound 
intervals do not have “holes”). 

The good properties that were mentioned for the strict 
interpretation are preserved by this transformation, with the 
exception of lost guaranteed accuracy of the inferences. The 
heuristic inference procedure resembles closely human reasoning. 
In the previous example it would infer 

AS-B and BYC + A>-C (6) 
Once an inference is made, people use the consequent without 
reconsidering its uncertainty and would infer further 

AS-C and CS-D + A>-D. (7) 
Hence the “shrinking” of the expanded intervals when a consequent 
is used further. 

To choose the new interval boundaries, we sanction the 
symmetry of the relations, as before, and the following inferences: 

A>-B + A-BccB (8) 
A>-B and BYC + A>-C (9) 
A>-B and A>>C + B>>C. (10) 

The interval boundary regions in the final form are shown in Fig. 5. 
The exact choice of e depends on the domain of application. A 

very large number of inferences are valid regardless of the value of 
8. Apart from inferences based on addition and subtraction, this 
group also includes inferences with other functions: 

x C< 1 + exp(x) >w 1+x (11) 
x ec 1 4 sin(x) >w x. (12) 

2.4. Assignments, Constraints, and Rules 
Assignments are “solved” algebraic relations that allow some 

quantities to produce relations among other quantities. The left 
hand side of an assignment can be either a ratio (link) of two 
quantities, or just a single variable. 

The right hand side of an assignment, called expression, cannot 
be any arbitrary algebraic expression. It can involve only links, 
landmarks and numerical constants. The system attempts to 
automatically convert algebraic expressions to the acceptable form. 
The success of the automatic parsing depends on the form of the 
algebraic expression. 

Constraints are “unsolved” algebraic relations among quantities. 
As with assignments, there are requirements on the form of the 
expressions, and the system attempts automatic conversion. 

The first way to use constraints, is to simply “test” them, and 
accept or reject assumptions based on the outcome. The second 
is to form a set assignments by solving the constraint in all obvious 
ways. By “obvious” solutions we mean simply getting hold of one 
occurrence of a variable in the expression and solving with respect 
to that, regardless of its other occurrences. The O[M] system can 
apply automatically both approaches. 

Knowledge of highly empirical nature often cannot be expressed 
in algebraic form. O[M] can accept knowledge in the form of simple 
if-then rules without free variables. 

3. Control of Reasoning 
We will briefly describe here how the system maintains 

consistency and how lt expands and prunes the inference tree. 
The basic strategy of O[M] is depth-first data-driven reasoning. 
Any new fact is first checked for redundancy, created and used 
immediately, regardless of whether the use of its “parent” has been 
completed. It invokes all possible scenarios for further reasoning: 
1. From the conjunction of relations new relations are inferred 

and redundant ones are retracted. From the symmetry and 
transitivity of relations new relations are inferred. 

2. For relations between a variable and a landmark, numeric 
transitivity is applied. The idea is that if we find another 
variable related to another landmark compatible to the original 
one we can infer a relation between the two variables. 

3. When a relation can serve as the antecedent of rules, the 
rules are invoked. 

4. When a relation (actually its link) participates in the expression 
of assignments or constraints, these are invoked. Applying an 
assignment can yield knowledge about the magnitude as well 
as the sign of a variable. 
In the domain of chemical engineering (our primary interest) 

there are many different kinds of variables present: temperatures, 
pressures, volumes, flowrates, masses, concentrations, etc. The 
requirement that only compatible quantities can be linked reduces 

I -I I-I- I I ---J-I I-1 

<< 

<< 

-< ma< = >- >- >> 

Figure 3: “Fuzzy” interval boundaries for the heuristic interpretation 
-4 >- >> 

-< >- 

I---I 
I II I 
I 
_I-=-__ 

I I 1-1 
- - 

<< -< -< >- >- >> 

Figure 4: Overlapping intervals (top), and non-exhaustive intervals (bottom) for the heuristic interpr ‘etation 
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the search space in all inference scenarios. 

3.1= Truth-Maintenance and Resolution of Contradictions 
Assertions can be stated as assumptions rather than known 

facts. They can also be stated as dependent on assuming of other 
assertions. For each inference step then we form the assumption 
set under which the conclusion is valid and allow several relations 
between two quantities to coexist. 

Assumption-based Truth-Maintenance is carried out using de 
Kleer’s ATMS approach [de Kleer 84b], which avoids some serious 
problems of other truth-maintenance systems that use 
dependency-directed backtracking. In ATMS there is no 
backtracking involved, and important assumption sets can be 
parsed after the main problem-solving effort. 

The resolution of contradictions requires more care in O[M] 
because with the heuristic interpretation, neighboring relations that 
apparently conflict may actually be both valid heuristically (since 
neighboring heuristic intervals are overlapping). We will delineate 
here the alternative ways of handling apparent contradictions. 

The first way is to forbid any special treatment of neighboring 
conflicting relations. This would cause all kinds of assumption sets 
and eventually the whole problem (i.e. the empty assumption set) 
would be marked inconsistent, without being truly so. 

The second way is to simply allow neighboring relations to 
coexist, and mark them in a special way as non-conflicting. Since 
they will both propagate, this aggressive strategy amounts to 
implicitly asserting that indeed the overlapping part of the two 
neighboring intervals represents the “true” relation. 

The third and most conservative way is to disclaim both relations 
(and mark them to avoid recurrence of the problem) and replace 
them by the compound relation representing their disjunction. If the 
initial relations are compound one need only consider the two 
primitive components (one from each initial relation) that are 
neighboring and take their disjunction. 

We can try to take advantage of these pseudo-contradictions in 
the special case where one of the quantities involved is a variable 
and the other a landmark. After we apply the third strategy outlined 
above, we can assume that the true relation was indeed in the 
overlapping part of the intervals, select or create another 
compatible landmark, and relate it to the variable by a tighter 
relation. 

3.2. Goal Direction 
The search mode for O[M] is opportunistic forward chaining, but 

there are two ways to induce search for a particular relation. By 
stating that the goal is to relate two particular quantities, the user 
can induce additional ways to use constraints and assignments. 

e -2 1 
--- e (l+e) --- 1 
l+e l+e 

Whenever one of the two goal quantities occur, the system uses 
the other one as well (for example, it divides both sides of the 
constraint by that variable). 

Alternatively, the user may state that alternative relations 
between two quantities should be examined. Then, the system can 
create seven assumptions, one for each of the seven primitive 
relations and check them for consistency with available knowledge. 

The implementation of the OIM] system was done in Symbolics 
Common LISP, on Symbolics 3650 computers, running the Genera 
7.0 environment. The Flavors Object-Oriented Programming 
system was heavily employed. All entities (quantities, relations, 
constraints, etc.) are implemented as objects. 

Each of the simple problems on which O[fvl] was tested (such as 
reasoning about a single equipment piece or a three-reaction 
segment in a biochemical pathway) was handled in at most a few 
seconds. We have not yet tested the system on complex 
problems. Having many assumptions slows the system down, 
because expensive set-operations are required by ATWIS. This 
problem can be remedied by using ordered data structures for 
assumption sets [de Kleer 84b]. 

5. Reasoning about 
The expressive power of O[M] is illustrated by the following 

relations involving sizes of molecules of biochemical interest. 
e Enzymes have much larger Molecular Weight than small 

molecules: M, >> Ms. 
0 In turn, H+ has much smaller Molecular Weight than any other 

compound of biochemical interest: M,, << Ms. 
a The molecular radius of an enzyme is only moderately larger 

than that of a small molecule (other than H+): rE B- rs. 
0 For the molecular radius of H+: rH+ << rE and rH+ -C rs. 

A higher concept in the analysis of biochemical pathways is that 
of the rate-limiting step of biochemical pathways, the “bottleneck’” 
that limits the overall observable rate of the pathway. 

For a ltnear pathway P=(r,,r2, . . . . r,}, where rt is the irh 
bioreaction of the pathway, K, is the equilibrium constant of rt, Q, is 
the mass action ratio of rt, a consistent observable rate-limiting step 
HL=rL is a member of P such that the following relations are 
consistent with all knowledge available on P: 

Via [l ,L-11: K, v Q,, 

Vi E [L+l , n]: K, >N..B Q,, and 

K, >> QL. 

As a specific application, we will examine three consecutive 
reactions from the pathway of Glycolysis, to test the hypothesis that 

2 1 l+e 
l+e (l+e) - --- 

e e 

<< 

I -1 -- I I I I -1-I L-1 
--- B-m B-w m-M 

-< -< zzz >- >- 

Figure 5: Final intervals for the heuristic interpretation 

>> 
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the first step is rate-limiting. We abbreviate Fructose Diphosphate 
as FDP, Dihydroxyacetone Phosphate as DHAP, Glyceraldehyde 
Phosphate as GAP, reduced and oxidized Nicotinamide Cofactors 
as NADH and NAD, Inorganic Phosphate as PI, Hydrogen Cations 
as H, and Diphosphoglycerate as DPG. The steps of interest are: 

1. FDP + GAP + DHAP 
2. DHAP + GAP 
3.GAP+NAD+PI + DPG+NADH+H 
The knowledge we have here is: 

0 Algebraic definition of the mass action ratios, [e.g. for the first 
reaction: Gl = (GAP DHAP) / FDP] and the catabolic 
reduction charge [ CRC = NADH / (NADH + NAD) 1. 

e Constant values for H, PI, CRC,and equilibrium constants 
(KEl, KE2, KE3). 

0 All concentrations are of the order of 100 PM. 
0 For the reactions to proceed in the specified direction, the 

mass-action ratios must be larger than the equilibrium 
constant [ e.g. G3 >-..>a KE3]. 

0 The goal to pursue relations among GAP, DPG, and landmark 
concentrations. 

0 The hypothesis that the first step is rate-limiting: Gl 2s KEl. 
In this example, OIM] would use the knowledge we provided to 

conclude that the hypothesis, that the first step is rate-limiting, is 
inconsistent. O[M] first narrows the range of GAP, using the first 
two reactions. The assumption yields that GAP -< 1OOuM. 
Propagating this through the last reaction step OIM] obtains DPG 
CC lOOpM, which conflicts with the given relation DPG -<..a- 100 

PM. 

6. Discussion 
In the real world, there are always many positive and negative 

effects on any aggregate result. An intelligent approach in dealing 
with them, must concentrate on deciding which of the effects are 
important and which not. Only then should it attempt to determine 
the sign of the overall result. The O[M] formalism is aimed exactly 
at sorting out dominant effects. 

Even in quantitative reasoning people use Order-of-Magnitude 
arguments to reduce algebraic complexity. This ls often done 
systematically: As terms are dropped from equations, a term of the 
form O(x) does the bookkeeping, denoting that the largest dropped 
term is “of order x”. Numerical constants are not introduced in the 
O(x) term. This type of reasoning resembles the OIM] formalism 
with the understanding that we keep track of orders O(e) and we 
additionally distinguish between O(e) and 0(-e), but terms of order 
O(e*) or higher are neglected. 

The risks of the aggressive heuristic interpretation were pointed 
out earlier. Indeed the worst-case behavior of the strategy is 
miserable, but for real-world cases it performs much better. There 

is an additional safeguard in normal use of the strategy: We are 
normally interested in the relations -<, >-, <<, and >> which are 
separated by the “buffer” regions -C and >-. It takes extremely bad 
cases for the error to propagate through the whole buffer region 
and convert e.g. a >- to a r>. 

We believe the OIM] formalism bridges the gap between 
traditional qualitative reasoning (with signs) and full quantitative 
reasoning (with numbers), as it can use mixed (quantitative and 
qualitative) knowledge. It will be suitable in many domains where 
extensive knowledge is naturally expressible in Order-of-Magnitude 
relations, especially since it is capable of handling numerical and 
algebraic knowledge as well. 
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