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Abstract 
We present a comparison of three well known heuristic 

_ search algorithms: best-first search (BFS) , iterative- 
deepening (ID), and depth-first branch-and-bound 
(DFBB). We develop a model to analyze the time and 
space complexity of these three algorithms in terms 
of the heuristic branching factor and solution density. 
Our analysis identifies the types of problems on which 
each of the search algorithms performs better than 
the other two. These analytical results are validated 
through experiments on different problems. We also 
present a new algorithm, DFS*, which is a hybrid of 
iterative deepening and depth-first branch-and-bound, 
and show that it outperforms the other three algo- 
rithms on some problems. 

Introduction 
Heuristic search algorithms are used to solve a 
wide variety of combinatorial optimization problems. 
Three important algorithms are: (i) best-first search 
(BFS); ( ) t t ii i era ive-deepening (ID)[Korf, 19851; and 
(iii) depth-first b ranch-and-bound (DFBB)[Lawler and 
Woods, 1966; Kumar, 19871. The problem is to find a 
path of least cost from an initial node to a goal node, 
in an implicitly specified state-space tree, for which a 
consistent admissible cost function is available. 

Best-first search (BFS) is a generic algorithm that 
expands nodes in non-decreasing order of cost. Dif- 
ferent cost functions f(n) give rise to different vari- 
ants. For example, if f(n) = depth(n), then best-first 
search becomes breadth-first search. If f(n) = g(n), 
where g(n) is the cost of the path from the root 
to node n, then best-first search becomes Dijkstra’s 
single-source shortest-path algorithm[Dijkstra, 19591. 
If f(n) = g(n) + h(n), where h(n) is the heuristic es- 
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timate of the cost of the path from node n to a goal, 
then best-first search becomes A*[Hart et al., 19681. 

Given a consistent, non-overestimating cost func- 
tion, best-first search expands the minimum number 
of nodes necessary to find an optimal solution, up to 
tie-breaking among nodes whose cost equals the goal 
cost [Dechter and Pearl, 19851. The storage require- 
ment of BFS, however, is linear in the number of nodes 
expanded. As a result, even for moderately difficult 
instances of many problems, BFS runs out of memory 
very quickly . For example, for the 15-puzzle problem, 
A* runs out of memory within a few minutes of run 
time on a SUN 3/50 workstation with 4 Megabytes of 
memory. 

Iterative deepening (ID)[Korf, 19851 was designed to 
remedy this problem. It is based on depth-first search, 
which only maintains the current path from the root 
to the current node, and hence uses space that is only 
linear in the search depth. ID performs a series of 
depth-first searches, in which a branch is pruned when 
the cost of a node on that path exceeds a cost thresh- 
old for that iteration. The cost threshold for the first 
iteration is the cost of the root node, and the threshold 
for each succeeding iteration is the minimum cost value 
that exceeded the threshold on the previous iteration. 
The algorithm terminates when a goal is found whose 
cost does not exceed the current threshold. Since the 
cost bound used in each iteration is a lower bound 
on actual cost, the first solution chosen for expan- 
sion is optimal. Special cases of iterative deepening 
include depth-first iterative-deepening (DFID), where 
f(n) = h-+n), and iterative-deepening-A* (IDA*), 
where f(n) = g(n) + h(n). 

Clearly, ID expands more nodes than BFS, since all 
the nodes expanded in one iteration are also expanded 
in all following iterations. Define the heuristic branch- 
ing factor (b) of a problem to be the ratio of the number 
of nodes of a given cost to the number of nodes with the 
next smaller cost. For example, if cost is simply depth, 
then the heuristic branching factor is the well-known 
brute-force branching factor. If the heuristic branching 
factor is greater than one, meaning that the tree grows 
exponentially with cost, then IDA* generates asymp- 
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totically the same number of nodes as A*[Korf, 19851. 
The problem occurs when b is less than one or very 

close to one. In the former case, where the size of the 
problem space does not grow exponentially with cost, 
ID generates asymptotically more nodes than BFS. 
In fact, in the worst case, where every node has a 
unique cost value, ID generates O(M2) nodes where 
M is the number of nodes generated by BFS[Patrick 
et al., 19911. If b is greater than but close to one, while 
asymptotically optimal, ID will be very inefficient in 
practice, compared to BFS. This occurs in problems 
such as the Traveling Salesperson Problem (TSP) and 
VLSI floorplan optimization. For example, on a small 
instance of the TSP which could be solved by A* in a 
few minutes, IDA* ran for several days without find- 
ing a solution. Ideally, we would like an algorithm with 
both low space and time requirements. 

Depth-first branch-and-bound (DFBB)[Lawler and 
Woods, 19661 is a potential candidate. DFBB starts 
with an upper bound on the cost of an optimal solu- 
tion, and then searches the entire space in a depth- 
first fashion. Whenever a new solution is found whose 
cost is lower than the best one found so far, the up- 
per bound is revised to the cost of this new solution. 
Whenever a partial solution is encountered whose cost 
equals or exceeds the current bound, it is eliminated. 
Note that DFBB and ID are complementary to each 
other, in that DFBB starts with an upper bound, and 
ID starts with an lower bound. Both can expand more 
nodes than BFS. ID performs repeated expansion of 
nodes, while DFBB expands each node exactly once, 
but expands nodes costlier than the optimal solution 
cost. Since the node selection strategy in both DFBB 
and ID is depth-first, both have low memory require- 
ments and a much faster node expansion rate compared 
with A*. 

There are two main reasons why the time needed 
by BFS to expand a node is much larger than that of 
depth-first search algorithms such as ID and DFBB. 
First, each time a node is expanded by BFS, a priority 
queue has to be accessed to remove the node and to 
insert its descendants, multiplying the node expansion 
time by a logarithmic factor. Second, in the depth-first 
algorithms, successor nodes can often be constructed 
by making simple changes in the current parent node, 
and the parent can be reconstructed by simply undoing 
those changes while backtracking. This optimization is 
not directly implementable in BFS. For example, in the 
N x N sliding tile puzzles, such as the Fifteen Puzzle, 
the time taken to expand a node for ID and DFBB is 
O(1) while it is O(N2) for BFS, just to make a copy 
of the state. 

Given these three algorithms, we address two ques- 
tions in this paper: 1) What are the characteristics 
of problems for which one of the algorithms is better 
than the others?, and 2) Are there additional algo- 
rithms that are memory efficient and may be better 
for some classes of problems? 

We show that for problems with high solution den- 
sities, DFBB asymptotically expands the same num- 
ber of nodes as BFS, and outperforms ID. For prob- 
lems with low solution densities, ID beats DFBB. Fi- 
nally, when both the solution density and the heuristic 
branching factor are low, both DFBB and ID perform 
poorly. For this type of problem, we propose a hy- 
brid of the two algorithms, DFS*, and demonstrate its 
effectiveness on a natural problem. 

We experimentally verified our analysis on three dif- 
ferent problems: the Fifteen Puzzle, Traveling Sales- 
person Problem (TSP) and solving mazes. We im- 
plemented IDA *, DFBB and A* algorithms to solve 
each of these problems. Our experimental investiga- 
tion showed that the Fifteen Puzzle has a low solution 
density, but a high heuristic branching factor. Con- 
versely, TSP has high solution density and low heuris- 
tic branching factor. Comparison of run times of the 
algorithms shows that ID is superior on the Fifteen 
Puzzle, and DFBB is superior on TSP. BFS is poor on 
both problems because of high memory requirements. 
The maze problem has both low heuristic branching 
factor and low solution density. Hence, this problem 
is unfavorable to both ID and DFBB algorithms, and 
the hybrid algorithm, DFS*, outperforms them on this 
problem. Thus our experimental results support the 
theoretical analysis. 

Analysis of Search Algorithms 
Assumptions and Definitions 
We restrict our analysis to state-space trees. For each 
node n, f(n) denotes a lower bound on the cost of 
solutions that include node n. The cost function f 
is monotonic, in the sense that f(n) 5 f(m) if m is 
a successor of n. Let N be the number of different 
values taken by f over all the nodes of the tree. Let E 
denote the set of nodes whose cost is the ith-smallest 
of the f-values. Thus V(, VI, . . . VN- 1 is a sequence 
of sets of nodes in increasing order of cost. Clearly, 
the children of a node in Vi can only occur in those 
Vj for which j 2 i. Vi contains the start node. We 
assume that the sequence of sizes ]K] of the node sets 
is a geometric progression with ratio b, the heuristic 
branching factor[Korf, 19881. If we assume that Vo is 
a singleton set, then IVil = bi. We assume that b > 1.l 

Let vd be the set of nodes that contains the opti- 
mal solution(s). Hence, there are no solutions in V;l for 
i < d. Furthermore, we assume that each element of 
vd is a solution with probability pc, and in successive 
vd+i’s, the probability of a node being a solution is 
pi. Thus the sequence of pi’s is a measure of the den- 
sity of solutions in successive search frontiers. We as- 
sume that the solutions follow a Bernoulli distribution 
among the elements of each Vi for i > d. Therefore, 
the average number of nodes expanded in vd+i before 

‘If b < 1, then ID would perform quite poorly, and one 
would choose between DFBB and A*. 
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a solution is found from this set is &. Since each Vd+a 
has at least one solution, pi > &. For simplicity of 
presentation, we make the assumption that all the al- 
gorithms expand all the nodes in vd, in order to find the 
optimal solution. Similar results can also be obtained 
under either of the following alternate assumptions: (i) 
all algorithms expand exactly one node in vd (i.e., the 
first node searched in vd is a solution); (ii) the average 
number of nodes expanded by all algorithms in vd is 
1 

PO’ 

Analysis of Best-First Search 
Best-first search expands all the nodes in 5 for i < d. 
Let M denote the number of nodes expanded by BFS. 
We have 

i=d 

M=ClKl 
i=o 
i=d = c b” 
a’=0 

M= 
bd+l - 1 

b - 1 for b> 1 

The above formula denotes the ‘mandatory nodes’ 
in our search tree. These are the nodes that have to 
be expanded by any algorithm 
solution. 

that finds an optimal 

Analysis of Iterative Deepening 
Iterative deepening reexpands nodes in prior iterations 
during later iterations, but does not expand any nodes 
costlier than the optimal solution. Let DI denote the 
average number of nodes expanded by ID. The algo- 
rithm starts with an initial bound equal to the cost of 
the root. 

i=d i=i 

The inner sum adds the nodes expanded in a given 
iteration, while the outer sum adds up the different 
iterations. 

i=O j=O 

i=d bi+l _ 1 
DI=):- 

i=O b-1 
since b > 1 

b bd+l-1 d =- 
b-l b-l --b--l 

DI+M (2) - 

A similar result was proved in [Korf, 1985; Stickel 
and Tyson, 19851. It is clear from this equation that 
when b > 1, ID expands asymptotically the same num- 
ber of nodes as BFS, and that when b is close to one, 
ID expands many more nodes than BFS. 

Analysis of Depth-First 
Branch-and-Bound 
Depth-first branch and bound starts with an upper 
bound on the cost of the optimal solution, and de- 
creases it whenever a better solution is found. Eventu- 
ally, the bound equals the cost of the optimal solution 
and then only mandatory nodes are expanded. While 
DFBB may expand nodes costlier than the optimal so- 
lution, it never expands a node more than once. Let 
DB denote the number of nodes expanded by DFBB. 
These nodes fall into two disjoint categories - (i) those 
which are costlier than the optimal solution(s) and 
hence lie in vl: for i > d and (ii) those which are not 
costlier than the optimal solution(s) and lie in Vj for 
j 5 d. The average number of nodes in the second 
category is M. The initial bound with which DFBB 
starts is quite important. It is generated by using a 
fast approximation algorithm. In problems like floor 
plan optimization and planar TSP, the initial bound is 
often within twice the cost of the optimal solution. We 
assume that the initial bound gives the cost of nodes at 
level kd + 1, where d is the level containing the optimal 
solution(s). (Note that L need not be an integer, and is 
a measure of accuracy of the approximation algorithm 
used.) Hence nodes in the first category belong to I$ 
for d < j < kd. Each of these Vj’s contain bj nodes, 
out of which approximately bj pj-d are solutions. Let 
Bi denote the average number of nodes expanded by 
DFBB from vd+S for 0 5 i < kd. We have Bo = I&l, 
and 

for 1 5 i 5 kd, Bi = min(bBi-1, -% 
Pi 

This says that either & nodes are expanded from 
Vd+a before a solution is found at this level, or a solu- 
tion is found earlier at level vd+i-r itself. In either 
case, no more nodes are expanded from level vd+i. 
Hence, 

Using this, we can derive the following - 

i=kd 

DB<M+)Bi 
i=l 

Clearly, the behavior of DFBB depends on the se- 
quence of pi’s* It is always the case that M < DB. 
Let p denote the harmonic mean of the seiuence 
Ply P2 . . . Pkd. Thus the sum cfz:” & is equal to y.” 

2Harmonic mean p = *. For p to be well de- 
i=l 

fined, we need to have 0 < pi 5 1:;. 
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We are interested in sequences for which DB is close 
to M. From equation 3, it is clear that a sufficient con- 
dition for DB 6. 21M is $$ 5 p. The harmonic mean, 
p, is a measure of the overall density of solutions and 
strongly influences the running time of DFBB. 

An interesting sequence of h’s is the case for which 
the number of solutions increase exponentially in suc- 
cessive levels, as do nodes. Consider the case where Vd 
has s(= bdpo) solutions, and in every successive level, 
the number of solutions increase by a factor of s. This 
is the case for which pi = MIN(lg, 1.0). For s > 1, 
the reader can verify that 

For this type of problem, we have 

DB=M+ 
bd+l(l - (P)““)) 

s(s - b) (4 

From 4, we can see that DB is close to M when 
s > 2b. In this case DB is not very sensitive to k: or 
d. When s decreases from 2b to b, DB gradually in- 
creases and also becomes more sensitive to kd. For 
s 5 b, DB is much larger than M unless kd is very 
small. Thus DFBB performs well when the number of 
solutions grows more than twice as fast as the number 
of nodes. It performs poorly when the number of so- 
lutions at successive cost levels grows slower than the 
number of nodes. 

Comparison of the Algorithms 
The space complexity of BFS is O(M), while for the 
depth-first strategies it is O(d). Using equations 1, 2, 
3 and 4, we can analyze the relative time complexities 
of each of the algorithms. 

As pointed out earlier, node expansion time in the 
depth-first search algorithms, ID and DFBB, is usually 
much smaller than that for best-first search. Let r 
be the ratio of the node expansion time for best-first 
search compared to depth-first search. Typical values 
of r in our experiments range from 1 to 10. For any 
particular value of r, we can find combinations of b and 
p for which one of the algorithms dominates the other 
two, in terms of time. 

1. DFBB ws BFS. DFBB runs faster than BFS when 
DB 5 rM. For small values of r (such as 2), this 
will be true when the number of solutions grows at 
least twice as fast as the number of nodes. BFS 
runs faster than DFBB when the number of solutions 
grows slower than the number of nodes. Note that 
BFS is impractical when M exceeds the available 
memory. 

2. BFS vs ID. ID runs faster than BFS when DI 5 
rM. This will be true roughly when & 5 T. Oth- 
erwise BFS will run faster than ID. Again BFS may 
still be impractical to use due to memory limits. 

3. ID vs DFBB. ID runs faster than DFBB, when 
b > 2 and s < b. DFBB runs faster than ID when 
b < 2 and s > 2b. When b < 2 and s < b, both algo- 
rithms will perform poorly, For other cases, there is 
a transition between the two algorithms. 
To summarize the results of the above analysis - 

e DFBB is preferable when the increase in solution 
density is larger than the heuristic branching factor. 

o ID is preferable when the heuristic branching factor 
is high and density of solutions is low. 

t) BFS is useful only when both density of solutions 
and heuristic branching factor are very very low. 

Experimental Results. 
We chose three problems to experimentally validate 
our results - the Fifteen Puzzle, Traveling Salesperson 
Problem (TSP) , and maze search. They have different 
heuristic branching factors and solution densities. 

The Fifteen Puzzle is a classical search example. It 
consists of a 4 x 4 square with 15 numbered square tiles 
and a blank position. The legal operators are to slide 
any tile horizontally or vertically adjacent to the blank 
position into the blank position. The task is to map 
an arbitrary initial configuration into a particular goal 
configuration, using a minimum number of moves. A 
common heuristic function for this problem is called 
Manhattan Distance: it is computed by determining 
the number of grid units each tile is away from its 
goal position, and summing these values over all tiles. 
IDA*, using the Manhattan Distance heuristic, is capa- 
ble of finding optimal solutions to randomly generated 
Fifteen Puzzle problem instances within practical re- 
source limits[Korf, 19851. A* is completely impractical 
due to the memory required, up to six billion nodes in 
some cases. In addition, IDA* runs faster than A*, due 
to reduced overhead per node generation, even though 
it generates more nodes. 

We compared IDA* and DFBB, on the ten easiest 
problems from [Korf, 19851, based on nodes generated 
by IDA*. For the initial bound in DFBB, we used twice 
the Manhattan Distance of the initial state. Table 1 
shows that DFBB generates many times more nodes 
than IDA*. Their running times per node generation 
are roughly equal. The average heuristic branching 
factor of the Fifteen Puzzle is about 6, which is rel- 
atively high. The solution density is quite low, and 
actually decreases slightly as we go deeper into the 
search space. This explains why IDA* performs very 
well, while DFBB and A* perform poorly. 

The Traveling Saleperson Problem (TSP) is to find 
a shortest tour among a set of cities, ending where it 
started. Each city needs to be visited exactly once in 
the tour. We compared all three algorithms on the eu- 
clidean TSP. Between 10 and 15 cities were randomly 
located within a square, 215 units on a side, since 
our random number generator produced 16 bit ran- 
dom numbers. A partial contiguous tour was extended 
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by adding cities to its end city, ordered by the near- 
est neighbor heuristic. The minimum spanning tree 
of the remaining cities, plus the two end cities of the 
current partial tour, was used as the heuristic evalua- 
tion function. Each data point in table 2 is an average 
over 100 randomly generated problem instances. The 
first column gives the number of cities. The second 
column gives the cost of an optimal tour and third 
column gives the number of mandatory nodes, or the 
number of nodes generated by A*. The fourth and 
fifth columns give the number of nodes generated by 
DFBB and IDA*, respectively. No data is given for 
IDA* for 13 through 15 cities, since it took too long 
to generate. Finally, the last column gives the ratio of 
the number of nodes generated by IDA* to the number 
of nodes generated by DFBB. The data demonstrates 
that DFBB is quite effective on this problem, generat- 
ing only 10 to 20% more nodes than necessary. This is 
due to the high solution density, since at a depth equal 
to the number of cities, every node is a solution. The 
data also shows that IDA* performs very poorly on 
this problem, generating hundreds of times more nodes 
than DFBB. This is due to the low heuristic branch- 
ing factor, since there are relatively few ties among 
nodes with the same cost value. Similar results were 
observed for the Floorplan Optimization Problem, us- 
ing the best known heuristic functions in [Wimer et ad., 
19881. 

A new search algorithm : DFS* 
Our discussion so far suggests that DFBB and ID are 
complementary to each other. ID starts with a lower 
bound on cost, and increases it until it is equal to the 
optimalcost. DFBB starts with a upper bound on cost, 
and decreases it until it is equal to the optimal cost. 
Since ID conservatively increases bounds, it does not 
expand any nodes costlier than the optimal solution, 
but it may repeat work if the heuristic branching factor 
is low. DFBB does not repeat work, but expands nodes 
costlier than the optimal solution. Such wasteful node 
expansion is high when the initial bound it starts with 
is much higher than the final cost, and if the solution 
density is low. 

This suggests a hybrid algorithm, which we call 
DFS* to suggest a depth-first algorithm that is admis- 
sible. DFS* initially behaves like iterative deepening, 
but increases the cost bounds more liberally than nec- 
essary, to minimize repeated node expansions [Korf, 
19881. When a solution is found that is not known 
to be optimal, DFS* then switches over to the DFBB 
algorithm. The DFBB phase starts with the cost of 
this solution as its initial bound and continues search- 
ing, reducing the upper bound as better solutions are 
found. Also, if the cost bound selected in any iteration 
of the ID phase is greater than an alternate upper- 
bound, which may be available by other means, then 
DFS* switches over to the DFBB algorithm. A very 
similar algorithm, called MIDA*, was independently 

discovered by Benjamin Wah[Wah, 19911. 
DFS* is a depth-first search strategy and it finds 

optimal solutions given non-overestimating heuristics. 
DFS* may be useful on certain problems where both 
DFBB and ID perform poorly. For example when both 
the heuristic branching factor and solution density are 
low (b < 2 and s < 2b), DFS* can perform well pro- 
vided reasonable increments in bounds can be found. 

Define B as the ratio between the number of nodes 
first generated by successive iterations of ID. If we set 
successive thresholds to the minimum costs that ex- 
ceeded the previous iteration, then B = b, the heuris- 
tic branching factor. By manipulating the threshold 
increments in DFS*, we can change the value of B. 
Too low a value of B results in too much repeated 
work in early iterations. Too high a value of B results 
in too much extra work in the final iteration generat- 
ing nodes with higher costs than the optimal solution 
cost. What value of B produces optimal performance, 
relative to BFS, in the worst case? 

Let d be the first cost level that contains an optimal 
solution. In the worst case for DFS*, BFS will not 
expand any nodes at level d, but all nodes at level d - 1. 
The number of such nodes is approximately Bd/(B - 
1) Similarly, in the worst case, DFS* will expand all 
nodes at level d. Thus DFS* expands approximately 
Bd * (B2/(B - 1)2). The ratio of the nodes expanded 
by DFS* to the nodes expanded by BFS is B2/(B - 1). 
Taking the derivative of this function with respect to 
B gives us B(B - 2)/(B - 1)2. Setting this derivative 
equal to zero and solving for B gives us B=2. In other 
words, to optimize the ratio of the nodes generated by 
DFS* to BFS in the worst case, we’d like B to be 2. 
If we substitute B = 2 back into B2/(B - l), we get 
a ratio of 4. In other words, if B = 2, then in the 
worst case, the ratio of DFS* to BFS will be only 4. 
This analysis was motivated by the formulation of the 
problem presented in [Wah, 19911. 

To achieve this value of B, the approximate incre- 
ment in cost can be estimated by sampling the distri- 
bution of nodes across a cost range during an iteration, 
as follows. We divide the total cost range between 0 
and maxcost into several parts, and associate a counter 
with each range. Each counter keeps track of the num- 
ber of nodes generated in the corresponding cost range. 
Any time a node is generated and its cost computed, 
the appropriate counter is incremented. This data can 
be used to find a cost increment as close as possible to 
the desired increase in the number of nodes expanded. 

A much simpler, though less effective heuristic, 
would be to increment successive thresholds to the 
maximum value that exceeded the previous threshold. 
This guarantees a value of B that is at least as large 
as the brute-force branching factor. 

To evaluate DFS* empirically, we considered the 
problem of finding the shortest path between two 
points in a maze. This problem models the task of 
navigation in the presence of obstacles. We imple- 
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mented IDA*, DFBB, A* and DFS*, and tested them 
on 120 x 90 mazes, all of which were drawn randomly by 
the Xwindows demo package Xmaze. Figure shows an 
example of a maze. The manhat tan dist ante heuris- 
tic was used to guide the search. For this problem 
the heuristic branching factor is typically low, as is 
the solution density. The starting nodes were close 
to centers of the mazes, and a series of experiments 
were performed, each with the goal node being farther 
away from the start node. When the goal node is not 
too far away, the boundary walls are not encountered 
often during the search, minimizing boundary effects. 
Table 3, summarizes the number of nodes expanded 
by each algorithm, averaged over 1000 randomly gen- 
erated problem instances. In these experiments, the 
cost bound for DFS* was doubled after each iteration. 
DFS* outperformed the other depth-first algorithms, 
as predicted by our analysis, and performed close to 
A* on these mazes. The space requirements of A* are 
very high; it requires 1 MByte of memory for handling 
a 200 x 200 maze. 

Conclusions 
We analyzed and compared three important heuristic 
search algorithms, DFBB, ID and BFS, and identi- 
fied their domain of effectiveness in terms of heuris- 
tic branching factor and solution density. DFBB is the 
best when solution density is high. ID is the best when 
heuristic branching factor is high. Since both of them 
use a depth-first search strategy, they overcome the 
memory limitations of BFS and hence can solve larger 
problems. We also identified a natural relation between 
them and presented a new hybrid depth-first search 
algorithm DFS *, that is suitable when both heuristic 
branching factor and solution density are low. We ex- 
perimentally demonstrated these results on three nat- 
ural problems. 
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Figure 1: Example of a maze. S is the starting point. 
G is the goal. The path . . . is the shortest solution. 
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II Prob No I Sol. Cost h* I ID Nodes I DJ’BB Nodes 1 fLatlo U&‘JM/W II 
” I I I Y 79 I 42 I 540860 ’ 52 rt 

12 45 546344 16 

Table 1: Experimental results on 15-puzzle. 

Number of Optimal Sol. A* Nodes 
cities cost exwanded 

DFBB Nodes ID nodes ID/DFBB 
expanded expanded ratio Y 

- 
n I 10 I 93421 1 1408 1 1552 1 325575 I 210 I- I. 
” 

11 97493 2843 3126 1952350 625 
12 100511 5007 5576 5084812 912 
13 103834 6806 8163 NA - 
14 107524 16849 19133 NA - 
15 111084 45211 49833 NA - 

Table 2: Experimental results on the Traveling Sales- 
person Problem. Each row shows the average value 
over 100 runs. The entries indicated NA mean that 
the experiment was abandoned because it takes too 
long. 

n Sol. Cost I DFBB Nodes I ID Nodes I DFS* Nodes 1 A* nodes [ Sol. Cost DFBB Nodes ID Nodes DFS* Nodes A* nodes 

, 
Range expanded 

L 
expanded 

L 
I expanded expanded 

5 - 15 4535 23 I 29 1 -15 f 
15 -50 4571 
50 - 100 4992 
100 - 200 4817 8972 I 624 1 314 
200 - 500 5413 

Table 3: Experimental results for finding optimal 
routes in mazes. The data for each cost range was 
obtained by averaging over 1000 randomly generated 
mazes. 
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