
Depth-First vs

Nageshwara Rae Vempaty Vipin Kumar* ichard IL orft
Dept. of Computer Sciences, Computer Science Dept., Dept. of Computer Science,

Univ. of Central Florida, Univ. of Minnesota, Univ. of California,
Orlando, FL - 32792. Minneapolis, MN - 55455. Los Angeles, CA - 90024

Abstract
We present a comparison of three well known heuristic

_ search algorithms: best-first search (BFS) , iterative-
deepening (ID), and depth-first branch-and-bound
(DFBB). We develop a model to analyze the time and
space complexity of these three algorithms in terms
of the heuristic branching factor and solution density.
Our analysis identifies the types of problems on which
each of the search algorithms performs better than
the other two. These analytical results are validated
through experiments on different problems. We also
present a new algorithm, DFS*, which is a hybrid of
iterative deepening and depth-first branch-and-bound,
and show that it outperforms the other three algo-
rithms on some problems.

Introduction
Heuristic search algorithms are used to solve a
wide variety of combinatorial optimization problems.
Three important algorithms are: (i) best-first search
(BFS); () t t ii i era ive-deepening (ID)[Korf, 19851; and
(iii) depth-first b ranch-and-bound (DFBB)[Lawler and
Woods, 1966; Kumar, 19871. The problem is to find a
path of least cost from an initial node to a goal node,
in an implicitly specified state-space tree, for which a
consistent admissible cost function is available.

Best-first search (BFS) is a generic algorithm that
expands nodes in non-decreasing order of cost. Dif-
ferent cost functions f(n) give rise to different vari-
ants. For example, if f(n) = depth(n), then best-first
search becomes breadth-first search. If f(n) = g(n),
where g(n) is the cost of the path from the root
to node n, then best-first search becomes Dijkstra’s
single-source shortest-path algorithm[Dijkstra, 19591.
If f(n) = g(n) + h(n), where h(n) is the heuristic es-

*This research was supported by Army Research Office
grant # 28408-MA-SD1 to the University of Minnesota and
by the Army High Performance Computing Research Cen-
ter at the University of Minnesota.

+This research was supported by an NSF Presidential
Young Investigator Award, and a grant from Rockwell
International.

timate of the cost of the path from node n to a goal,
then best-first search becomes A*[Hart et al., 19681.

Given a consistent, non-overestimating cost func-
tion, best-first search expands the minimum number
of nodes necessary to find an optimal solution, up to
tie-breaking among nodes whose cost equals the goal
cost [Dechter and Pearl, 19851. The storage require-
ment of BFS, however, is linear in the number of nodes
expanded. As a result, even for moderately difficult
instances of many problems, BFS runs out of memory
very quickly . For example, for the 15-puzzle problem,
A* runs out of memory within a few minutes of run
time on a SUN 3/50 workstation with 4 Megabytes of
memory.

Iterative deepening (ID)[Korf, 19851 was designed to
remedy this problem. It is based on depth-first search,
which only maintains the current path from the root
to the current node, and hence uses space that is only
linear in the search depth. ID performs a series of
depth-first searches, in which a branch is pruned when
the cost of a node on that path exceeds a cost thresh-
old for that iteration. The cost threshold for the first
iteration is the cost of the root node, and the threshold
for each succeeding iteration is the minimum cost value
that exceeded the threshold on the previous iteration.
The algorithm terminates when a goal is found whose
cost does not exceed the current threshold. Since the
cost bound used in each iteration is a lower bound
on actual cost, the first solution chosen for expan-
sion is optimal. Special cases of iterative deepening
include depth-first iterative-deepening (DFID), where
f(n) = h-+n), and iterative-deepening-A* (IDA*),
where f(n) = g(n) + h(n).

Clearly, ID expands more nodes than BFS, since all
the nodes expanded in one iteration are also expanded
in all following iterations. Define the heuristic branch-
ing factor (b) of a problem to be the ratio of the number
of nodes of a given cost to the number of nodes with the
next smaller cost. For example, if cost is simply depth,
then the heuristic branching factor is the well-known
brute-force branching factor. If the heuristic branching
factor is greater than one, meaning that the tree grows
exponentially with cost, then IDA* generates asymp-

434 SEARCH

From: AAAI-91 Proceedings. Copyright ©1991, AAAI (www.aaai.org). All rights reserved.

totically the same number of nodes as A*[Korf, 19851.
The problem occurs when b is less than one or very

close to one. In the former case, where the size of the
problem space does not grow exponentially with cost,
ID generates asymptotically more nodes than BFS.
In fact, in the worst case, where every node has a
unique cost value, ID generates O(M2) nodes where
M is the number of nodes generated by BFS[Patrick
et al., 19911. If b is greater than but close to one, while
asymptotically optimal, ID will be very inefficient in
practice, compared to BFS. This occurs in problems
such as the Traveling Salesperson Problem (TSP) and
VLSI floorplan optimization. For example, on a small
instance of the TSP which could be solved by A* in a
few minutes, IDA* ran for several days without find-
ing a solution. Ideally, we would like an algorithm with
both low space and time requirements.

Depth-first branch-and-bound (DFBB)[Lawler and
Woods, 19661 is a potential candidate. DFBB starts
with an upper bound on the cost of an optimal solu-
tion, and then searches the entire space in a depth-
first fashion. Whenever a new solution is found whose
cost is lower than the best one found so far, the up-
per bound is revised to the cost of this new solution.
Whenever a partial solution is encountered whose cost
equals or exceeds the current bound, it is eliminated.
Note that DFBB and ID are complementary to each
other, in that DFBB starts with an upper bound, and
ID starts with an lower bound. Both can expand more
nodes than BFS. ID performs repeated expansion of
nodes, while DFBB expands each node exactly once,
but expands nodes costlier than the optimal solution
cost. Since the node selection strategy in both DFBB
and ID is depth-first, both have low memory require-
ments and a much faster node expansion rate compared
with A*.

There are two main reasons why the time needed
by BFS to expand a node is much larger than that of
depth-first search algorithms such as ID and DFBB.
First, each time a node is expanded by BFS, a priority
queue has to be accessed to remove the node and to
insert its descendants, multiplying the node expansion
time by a logarithmic factor. Second, in the depth-first
algorithms, successor nodes can often be constructed
by making simple changes in the current parent node,
and the parent can be reconstructed by simply undoing
those changes while backtracking. This optimization is
not directly implementable in BFS. For example, in the
N x N sliding tile puzzles, such as the Fifteen Puzzle,
the time taken to expand a node for ID and DFBB is
O(1) while it is O(N2) for BFS, just to make a copy
of the state.

Given these three algorithms, we address two ques-
tions in this paper: 1) What are the characteristics
of problems for which one of the algorithms is better
than the others?, and 2) Are there additional algo-
rithms that are memory efficient and may be better
for some classes of problems?

We show that for problems with high solution den-
sities, DFBB asymptotically expands the same num-
ber of nodes as BFS, and outperforms ID. For prob-
lems with low solution densities, ID beats DFBB. Fi-
nally, when both the solution density and the heuristic
branching factor are low, both DFBB and ID perform
poorly. For this type of problem, we propose a hy-
brid of the two algorithms, DFS*, and demonstrate its
effectiveness on a natural problem.

We experimentally verified our analysis on three dif-
ferent problems: the Fifteen Puzzle, Traveling Sales-
person Problem (TSP) and solving mazes. We im-
plemented IDA *, DFBB and A* algorithms to solve
each of these problems. Our experimental investiga-
tion showed that the Fifteen Puzzle has a low solution
density, but a high heuristic branching factor. Con-
versely, TSP has high solution density and low heuris-
tic branching factor. Comparison of run times of the
algorithms shows that ID is superior on the Fifteen
Puzzle, and DFBB is superior on TSP. BFS is poor on
both problems because of high memory requirements.
The maze problem has both low heuristic branching
factor and low solution density. Hence, this problem
is unfavorable to both ID and DFBB algorithms, and
the hybrid algorithm, DFS*, outperforms them on this
problem. Thus our experimental results support the
theoretical analysis.

Analysis of Search Algorithms
Assumptions and Definitions
We restrict our analysis to state-space trees. For each
node n, f(n) denotes a lower bound on the cost of
solutions that include node n. The cost function f
is monotonic, in the sense that f(n) 5 f(m) if m is
a successor of n. Let N be the number of different
values taken by f over all the nodes of the tree. Let E
denote the set of nodes whose cost is the ith-smallest
of the f-values. Thus V(, VI, . . . VN- 1 is a sequence
of sets of nodes in increasing order of cost. Clearly,
the children of a node in Vi can only occur in those
Vj for which j 2 i. Vi contains the start node. We
assume that the sequence of sizes]K] of the node sets
is a geometric progression with ratio b, the heuristic
branching factor[Korf, 19881. If we assume that Vo is
a singleton set, then IVil = bi. We assume that b > 1.l

Let vd be the set of nodes that contains the opti-
mal solution(s). Hence, there are no solutions in V;l for
i < d. Furthermore, we assume that each element of
vd is a solution with probability pc, and in successive
vd+i’s, the probability of a node being a solution is
pi. Thus the sequence of pi’s is a measure of the den-
sity of solutions in successive search frontiers. We as-
sume that the solutions follow a Bernoulli distribution
among the elements of each Vi for i > d. Therefore,
the average number of nodes expanded in vd+i before

‘If b < 1, then ID would perform quite poorly, and one
would choose between DFBB and A*.

VEMPATY, KUMAR, & KORF 435

a solution is found from this set is &. Since each Vd+a
has at least one solution, pi > &. For simplicity of
presentation, we make the assumption that all the al-
gorithms expand all the nodes in vd, in order to find the
optimal solution. Similar results can also be obtained
under either of the following alternate assumptions: (i)
all algorithms expand exactly one node in vd (i.e., the
first node searched in vd is a solution); (ii) the average
number of nodes expanded by all algorithms in vd is
1

PO’

Analysis of Best-First Search
Best-first search expands all the nodes in 5 for i < d.
Let M denote the number of nodes expanded by BFS.
We have

i=d

M=ClKl
i=o
i=d = c b”
a’=0

M=
bd+l - 1

b - 1 for b> 1

The above formula denotes the ‘mandatory nodes’
in our search tree. These are the nodes that have to
be expanded by any algorithm
solution.

that finds an optimal

Analysis of Iterative Deepening
Iterative deepening reexpands nodes in prior iterations
during later iterations, but does not expand any nodes
costlier than the optimal solution. Let DI denote the
average number of nodes expanded by ID. The algo-
rithm starts with an initial bound equal to the cost of
the root.

i=d i=i

The inner sum adds the nodes expanded in a given
iteration, while the outer sum adds up the different
iterations.

i=O j=O

i=d bi+l _ 1
DI=):-

i=O b-1
since b > 1

b bd+l-1 d =-
b-l b-l --b--l

DI+M (2) -

A similar result was proved in [Korf, 1985; Stickel
and Tyson, 19851. It is clear from this equation that
when b > 1, ID expands asymptotically the same num-
ber of nodes as BFS, and that when b is close to one,
ID expands many more nodes than BFS.

Analysis of Depth-First
Branch-and-Bound
Depth-first branch and bound starts with an upper
bound on the cost of the optimal solution, and de-
creases it whenever a better solution is found. Eventu-
ally, the bound equals the cost of the optimal solution
and then only mandatory nodes are expanded. While
DFBB may expand nodes costlier than the optimal so-
lution, it never expands a node more than once. Let
DB denote the number of nodes expanded by DFBB.
These nodes fall into two disjoint categories - (i) those
which are costlier than the optimal solution(s) and
hence lie in vl: for i > d and (ii) those which are not
costlier than the optimal solution(s) and lie in Vj for
j 5 d. The average number of nodes in the second
category is M. The initial bound with which DFBB
starts is quite important. It is generated by using a
fast approximation algorithm. In problems like floor
plan optimization and planar TSP, the initial bound is
often within twice the cost of the optimal solution. We
assume that the initial bound gives the cost of nodes at
level kd + 1, where d is the level containing the optimal
solution(s). (Note that L need not be an integer, and is
a measure of accuracy of the approximation algorithm
used.) Hence nodes in the first category belong to I$
for d < j < kd. Each of these Vj’s contain bj nodes,
out of which approximately bj pj-d are solutions. Let
Bi denote the average number of nodes expanded by
DFBB from vd+S for 0 5 i < kd. We have Bo = I&l,
and

for 1 5 i 5 kd, Bi = min(bBi-1, -%
Pi

This says that either & nodes are expanded from
Vd+a before a solution is found at this level, or a solu-
tion is found earlier at level vd+i-r itself. In either
case, no more nodes are expanded from level vd+i.
Hence,

Using this, we can derive the following -

i=kd

DB<M+)Bi
i=l

Clearly, the behavior of DFBB depends on the se-
quence of pi’s* It is always the case that M < DB.
Let p denote the harmonic mean of the seiuence
Ply P2 . . . Pkd. Thus the sum cfz:” & is equal to y.”

2Harmonic mean p = *. For p to be well de-
i=l

fined, we need to have 0 < pi 5 1:;.

436 SEARCH

We are interested in sequences for which DB is close
to M. From equation 3, it is clear that a sufficient con-
dition for DB 6. 21M is $$ 5 p. The harmonic mean,
p, is a measure of the overall density of solutions and
strongly influences the running time of DFBB.

An interesting sequence of h’s is the case for which
the number of solutions increase exponentially in suc-
cessive levels, as do nodes. Consider the case where Vd
has s(= bdpo) solutions, and in every successive level,
the number of solutions increase by a factor of s. This
is the case for which pi = MIN(lg, 1.0). For s > 1,
the reader can verify that

For this type of problem, we have

DB=M+
bd+l(l - (P)““))

s(s - b) (4

From 4, we can see that DB is close to M when
s > 2b. In this case DB is not very sensitive to k: or
d. When s decreases from 2b to b, DB gradually in-
creases and also becomes more sensitive to kd. For
s 5 b, DB is much larger than M unless kd is very
small. Thus DFBB performs well when the number of
solutions grows more than twice as fast as the number
of nodes. It performs poorly when the number of so-
lutions at successive cost levels grows slower than the
number of nodes.

Comparison of the Algorithms
The space complexity of BFS is O(M), while for the
depth-first strategies it is O(d). Using equations 1, 2,
3 and 4, we can analyze the relative time complexities
of each of the algorithms.

As pointed out earlier, node expansion time in the
depth-first search algorithms, ID and DFBB, is usually
much smaller than that for best-first search. Let r
be the ratio of the node expansion time for best-first
search compared to depth-first search. Typical values
of r in our experiments range from 1 to 10. For any
particular value of r, we can find combinations of b and
p for which one of the algorithms dominates the other
two, in terms of time.

1. DFBB ws BFS. DFBB runs faster than BFS when
DB 5 rM. For small values of r (such as 2), this
will be true when the number of solutions grows at
least twice as fast as the number of nodes. BFS
runs faster than DFBB when the number of solutions
grows slower than the number of nodes. Note that
BFS is impractical when M exceeds the available
memory.

2. BFS vs ID. ID runs faster than BFS when DI 5
rM. This will be true roughly when & 5 T. Oth-
erwise BFS will run faster than ID. Again BFS may
still be impractical to use due to memory limits.

3. ID vs DFBB. ID runs faster than DFBB, when
b > 2 and s < b. DFBB runs faster than ID when
b < 2 and s > 2b. When b < 2 and s < b, both algo-
rithms will perform poorly, For other cases, there is
a transition between the two algorithms.
To summarize the results of the above analysis -

e DFBB is preferable when the increase in solution
density is larger than the heuristic branching factor.

o ID is preferable when the heuristic branching factor
is high and density of solutions is low.

t) BFS is useful only when both density of solutions
and heuristic branching factor are very very low.

Experimental Results.
We chose three problems to experimentally validate
our results - the Fifteen Puzzle, Traveling Salesperson
Problem (TSP) , and maze search. They have different
heuristic branching factors and solution densities.

The Fifteen Puzzle is a classical search example. It
consists of a 4 x 4 square with 15 numbered square tiles
and a blank position. The legal operators are to slide
any tile horizontally or vertically adjacent to the blank
position into the blank position. The task is to map
an arbitrary initial configuration into a particular goal
configuration, using a minimum number of moves. A
common heuristic function for this problem is called
Manhattan Distance: it is computed by determining
the number of grid units each tile is away from its
goal position, and summing these values over all tiles.
IDA*, using the Manhattan Distance heuristic, is capa-
ble of finding optimal solutions to randomly generated
Fifteen Puzzle problem instances within practical re-
source limits[Korf, 19851. A* is completely impractical
due to the memory required, up to six billion nodes in
some cases. In addition, IDA* runs faster than A*, due
to reduced overhead per node generation, even though
it generates more nodes.

We compared IDA* and DFBB, on the ten easiest
problems from [Korf, 19851, based on nodes generated
by IDA*. For the initial bound in DFBB, we used twice
the Manhattan Distance of the initial state. Table 1
shows that DFBB generates many times more nodes
than IDA*. Their running times per node generation
are roughly equal. The average heuristic branching
factor of the Fifteen Puzzle is about 6, which is rel-
atively high. The solution density is quite low, and
actually decreases slightly as we go deeper into the
search space. This explains why IDA* performs very
well, while DFBB and A* perform poorly.

The Traveling Saleperson Problem (TSP) is to find
a shortest tour among a set of cities, ending where it
started. Each city needs to be visited exactly once in
the tour. We compared all three algorithms on the eu-
clidean TSP. Between 10 and 15 cities were randomly
located within a square, 215 units on a side, since
our random number generator produced 16 bit ran-
dom numbers. A partial contiguous tour was extended

VEMPATY, KUMAR, & KORF 437

by adding cities to its end city, ordered by the near-
est neighbor heuristic. The minimum spanning tree
of the remaining cities, plus the two end cities of the
current partial tour, was used as the heuristic evalua-
tion function. Each data point in table 2 is an average
over 100 randomly generated problem instances. The
first column gives the number of cities. The second
column gives the cost of an optimal tour and third
column gives the number of mandatory nodes, or the
number of nodes generated by A*. The fourth and
fifth columns give the number of nodes generated by
DFBB and IDA*, respectively. No data is given for
IDA* for 13 through 15 cities, since it took too long
to generate. Finally, the last column gives the ratio of
the number of nodes generated by IDA* to the number
of nodes generated by DFBB. The data demonstrates
that DFBB is quite effective on this problem, generat-
ing only 10 to 20% more nodes than necessary. This is
due to the high solution density, since at a depth equal
to the number of cities, every node is a solution. The
data also shows that IDA* performs very poorly on
this problem, generating hundreds of times more nodes
than DFBB. This is due to the low heuristic branch-
ing factor, since there are relatively few ties among
nodes with the same cost value. Similar results were
observed for the Floorplan Optimization Problem, us-
ing the best known heuristic functions in [Wimer et ad.,
19881.

A new search algorithm : DFS*
Our discussion so far suggests that DFBB and ID are
complementary to each other. ID starts with a lower
bound on cost, and increases it until it is equal to the
optimalcost. DFBB starts with a upper bound on cost,
and decreases it until it is equal to the optimal cost.
Since ID conservatively increases bounds, it does not
expand any nodes costlier than the optimal solution,
but it may repeat work if the heuristic branching factor
is low. DFBB does not repeat work, but expands nodes
costlier than the optimal solution. Such wasteful node
expansion is high when the initial bound it starts with
is much higher than the final cost, and if the solution
density is low.

This suggests a hybrid algorithm, which we call
DFS* to suggest a depth-first algorithm that is admis-
sible. DFS* initially behaves like iterative deepening,
but increases the cost bounds more liberally than nec-
essary, to minimize repeated node expansions [Korf,
19881. When a solution is found that is not known
to be optimal, DFS* then switches over to the DFBB
algorithm. The DFBB phase starts with the cost of
this solution as its initial bound and continues search-
ing, reducing the upper bound as better solutions are
found. Also, if the cost bound selected in any iteration
of the ID phase is greater than an alternate upper-
bound, which may be available by other means, then
DFS* switches over to the DFBB algorithm. A very
similar algorithm, called MIDA*, was independently

discovered by Benjamin Wah[Wah, 19911.
DFS* is a depth-first search strategy and it finds

optimal solutions given non-overestimating heuristics.
DFS* may be useful on certain problems where both
DFBB and ID perform poorly. For example when both
the heuristic branching factor and solution density are
low (b < 2 and s < 2b), DFS* can perform well pro-
vided reasonable increments in bounds can be found.

Define B as the ratio between the number of nodes
first generated by successive iterations of ID. If we set
successive thresholds to the minimum costs that ex-
ceeded the previous iteration, then B = b, the heuris-
tic branching factor. By manipulating the threshold
increments in DFS*, we can change the value of B.
Too low a value of B results in too much repeated
work in early iterations. Too high a value of B results
in too much extra work in the final iteration generat-
ing nodes with higher costs than the optimal solution
cost. What value of B produces optimal performance,
relative to BFS, in the worst case?

Let d be the first cost level that contains an optimal
solution. In the worst case for DFS*, BFS will not
expand any nodes at level d, but all nodes at level d - 1.
The number of such nodes is approximately Bd/(B -
1) Similarly, in the worst case, DFS* will expand all
nodes at level d. Thus DFS* expands approximately
Bd * (B2/(B - 1)2). The ratio of the nodes expanded
by DFS* to the nodes expanded by BFS is B2/(B - 1).
Taking the derivative of this function with respect to
B gives us B(B - 2)/(B - 1)2. Setting this derivative
equal to zero and solving for B gives us B=2. In other
words, to optimize the ratio of the nodes generated by
DFS* to BFS in the worst case, we’d like B to be 2.
If we substitute B = 2 back into B2/(B - l), we get
a ratio of 4. In other words, if B = 2, then in the
worst case, the ratio of DFS* to BFS will be only 4.
This analysis was motivated by the formulation of the
problem presented in [Wah, 19911.

To achieve this value of B, the approximate incre-
ment in cost can be estimated by sampling the distri-
bution of nodes across a cost range during an iteration,
as follows. We divide the total cost range between 0
and maxcost into several parts, and associate a counter
with each range. Each counter keeps track of the num-
ber of nodes generated in the corresponding cost range.
Any time a node is generated and its cost computed,
the appropriate counter is incremented. This data can
be used to find a cost increment as close as possible to
the desired increase in the number of nodes expanded.

A much simpler, though less effective heuristic,
would be to increment successive thresholds to the
maximum value that exceeded the previous threshold.
This guarantees a value of B that is at least as large
as the brute-force branching factor.

To evaluate DFS* empirically, we considered the
problem of finding the shortest path between two
points in a maze. This problem models the task of
navigation in the presence of obstacles. We imple-

438 SEARCH

mented IDA*, DFBB, A* and DFS*, and tested them
on 120 x 90 mazes, all of which were drawn randomly by
the Xwindows demo package Xmaze. Figure shows an
example of a maze. The manhat tan dist ante heuris-
tic was used to guide the search. For this problem
the heuristic branching factor is typically low, as is
the solution density. The starting nodes were close
to centers of the mazes, and a series of experiments
were performed, each with the goal node being farther
away from the start node. When the goal node is not
too far away, the boundary walls are not encountered
often during the search, minimizing boundary effects.
Table 3, summarizes the number of nodes expanded
by each algorithm, averaged over 1000 randomly gen-
erated problem instances. In these experiments, the
cost bound for DFS* was doubled after each iteration.
DFS* outperformed the other depth-first algorithms,
as predicted by our analysis, and performed close to
A* on these mazes. The space requirements of A* are
very high; it requires 1 MByte of memory for handling
a 200 x 200 maze.

Conclusions
We analyzed and compared three important heuristic
search algorithms, DFBB, ID and BFS, and identi-
fied their domain of effectiveness in terms of heuris-
tic branching factor and solution density. DFBB is the
best when solution density is high. ID is the best when
heuristic branching factor is high. Since both of them
use a depth-first search strategy, they overcome the
memory limitations of BFS and hence can solve larger
problems. We also identified a natural relation between
them and presented a new hybrid depth-first search
algorithm DFS *, that is suitable when both heuristic
branching factor and solution density are low. We ex-
perimentally demonstrated these results on three nat-
ural problems.

References
Dechter, R. and Pearl, J. 1985. Generalized best-first
search strategies and the optimality of a*. Journal
of the Association for Computing Machinery Vol. 32,
No. 3:505-536.
Dijkstra, E. W. 1959. A note on two problems in
connexion with graphs. Numerische Mathematik Vol.
1:269-271.
Hart, R.E.; Nilsson, N.J.; and Raphael, B. 1968. A
formal basis for the heuristic determination of mini-
mumcost paths. IEEE Transactions on Systems Sci-
ence and Cybernetics Vol. 4, No. 2:100-107.
Korf, Richard E. 1985. Depth-first iterative-
deepening: An optimal admissible tree search. Ar-
tificial Intelligence 27:97-109.
Korf, Richard 1988. Optimal path finding algorithms.
In Kanal, Laveen and Kumar, Vipin, editors 1988,
Search in Artificial Intelligence. Springer-Verlag, New
York.

Kumar, Vipin 1987. Branch-and-bound search. In
Shapiro, Stuart C., editor 1987, Encyclopaedia of Ar-
tificial Intelligence: Vol2. John Wiley and Sons, Inc.,
New York. 1000-1004.
Lawler, E. L. and Woods, D. 1966. Branch-and-bound
methods: A survey. Operations Research 14.
Patrick, B.G.; Almulla, M.; and Newborn, M.M.
1991. An upper bound on the complexity of iterative-
deepening-a*. Annals of Mathematics and Artificial
Intelligence To Appear.
Stickel, M.E. and Tyson, W.M. 1985. An analysis of
consecutively bounded depth-first search with appli-
cations in automated deduction. In IJCAI. 1073-
1075.
Wah, Benjamin W. 1991. Mida*: An ida* search
with dynamic control. Technical report, Coordinated
Science Laboratory, University of Illinois, Urbana, Ill.
Wimer, S.; Koren, I.; and Cederbaum, I. 1988. Opti-
mal aspect rations of building blocks in vlsi. In 25th
ACM/IEEE Design Automation Conference. 66-72.

Figure 1: Example of a maze. S is the starting point.
G is the goal. The path . . . is the shortest solution.

VEMPATY, KUMAR, & KORF 439

II Prob No I Sol. Cost h* I ID Nodes I DJ’BB Nodes 1 fLatlo U&‘JM/W II
” I I I Y 79 I 42 I 540860 ’ 52 rt

12 45 546344 16

Table 1: Experimental results on 15-puzzle.

Number of Optimal Sol. A* Nodes
cities cost exwanded

DFBB Nodes ID nodes ID/DFBB
expanded expanded ratio Y

-
n I 10 I 93421 1 1408 1 1552 1 325575 I 210 I- I.
”

11 97493 2843 3126 1952350 625
12 100511 5007 5576 5084812 912
13 103834 6806 8163 NA -
14 107524 16849 19133 NA -
15 111084 45211 49833 NA -

Table 2: Experimental results on the Traveling Sales-
person Problem. Each row shows the average value
over 100 runs. The entries indicated NA mean that
the experiment was abandoned because it takes too
long.

n Sol. Cost I DFBB Nodes I ID Nodes I DFS* Nodes 1 A* nodes [Sol. Cost DFBB Nodes ID Nodes DFS* Nodes A* nodes

,
Range expanded

L
expanded

L
I expanded expanded

5 - 15 4535 23 I 29 1 -15 f
15 -50 4571
50 - 100 4992
100 - 200 4817 8972 I 624 1 314
200 - 500 5413

Table 3: Experimental results for finding optimal
routes in mazes. The data for each cost range was
obtained by averaging over 1000 randomly generated
mazes.

440 SEARCH

