
Honeywell Systems and Research Center
MN 65-2100

3660 Technology Drive
Minneapolis, MN 55416

boddyQsrc.honeywell.com

Abstract

In previous work, we have advocated explic-
itly scheduling computation time for planning
and problem solving (deliberetion) using a frame-
work called ezpectation-driven iterative refine-
ment. Within this framework, we have explored
the problem of allocating deliberation time when
the procedures used for deliberation implement
anytime algorithms: algorithms that return some
answer for any allocation of time. In our search
for useful techniques for constructing anytime al-
gorithms, we have discovered that dynemic pro-
gramming shows considerable promise for the con-
struction of anytime algorithms for a wide variety
of problems. In this paper, we show how dynamic
programming techniques can be used to construct
useful anytime procedures for two problems: mul-
tiplying sequences of matrices, and the Travelling
Salesman Problem.
Dynamic programming can be applied to a wide
variety of optimization and control problems,
many of them relevant to current AI research (e.g.,
scheduling, probabilistic reasoning, and control-
ling machinery). Being able to solve these kinds of
problems using anytime procedures increases the
range of problems to which expectation-driven it-
erative refinement can be applied.

Introduction
In [Dean and Boddy, 19881, we advocate the practice of
deliberation scheduling: the explicit allocation of com-
putational resources for planning and problem-solving,
based on expectations on future events and the effects
of that computation (deliberation). In the same paper,
we propose the use of anytime algorithms: algorithms
that return an answer for any allocation of computa
tion time. In subsequent work [Boddy and Dean, 1969,
Boddy, 19911, we have explored the use of a partic-
ular framework for deliberation scheduling using any-
time algorithms. In this framework, called ezpectation-
driven iterative refinement, deliberation time is allo-
cated using expectations on the effect on the system’s

738 SENSING AND REACTION

behavior of time allocated to any of several anytime
decision procedures. These expectations are cached in
the form of performance profiles: graphs showing how
some parameter of the answer returned is expected to
change as more time is allocated to a procedure.

One of the questions that we have been asked re-
peatedly since we started this line of research concerns
the use of anytime decision procedures: what evidence
is there that useful anytime algorithms can be found
for a sufficiently wide variety of computational tasks to
make this approach interesting? A preliminary search
of the computer science literature turned up a wide va-
riety of algorithms or classes of algorithms that could
be employed in anytime procedures. Among the kinds
of algorithms we found:

Numerical approximation - For example, Taylor se-
ries approximations (e.g., computing ‘K or e) and it-
erative finite-element methods.

Heuristic search - Algorithms for heuristic search, in
particular those employing variable lookahead and
fast evaluation functions, can be cast as anytime al-
gorithms [Pearl, 1985, Korf, 19901.

Probablistic algorithms - One family of probabilistic
algorithms that can easily be adapted for anytime
use are Monte Carlo algorithms [Harel, 19871.

Probabilistic inference - A wide variety of meth-
ods has been developed for approximate evaluation
of belief nets (i.e., providing bounds on the poste-
rior distribution, rather than the exact distribution).
Several of these methods are anytime algorithms in
the sense that the bounds get smaller for additional
iterations of the basic method, e.g., [Horvitz et al.,
1989, Henrion, 1988].

Discrete or symbolic processing - Symbolic process-
ing can be viewed as the manipulation of finite sets
(of bindings, constraints, entities, etc.) [Robert,
19861. Elements are successively added to or re-
moved from a set representing an approximate an-
swer so az to reduce the difference between that set
and a set representing the correct answer.

Recent work suggests that existing anytime decision

From: AAAI-91 Proceedings. Copyright ©1991, AAAI (www.aaai.org). All rights reserved.

procedures can be combined into procedures for solvin
more complex problems [Boddy, 19911.

In the process of looking for useful methods for con-
structing anytime algorithms, we have come to real-
ize that dynamic progremming [Bellman, 19571 might
be employed as an anytime technique. This is poten-
tially an important result: dynamic programming can
be applied to a wide variety of optimization and con-
trol problems, many of them relevant to current AI
research (e.g., scheduling, probabilistic reasoning, and
controlling machinery). Being able to solve these kinds
of problems using anytime procedures greatly increases
the range of problems to which expectation-driven it-
erative refinement can easily be applied.

In this paper, we explore the use of dynamic pro-
gramming algorithmz in anytime decision procedures.
In the next section we review dynamic programming.
In subsequent sections we discuss the kinds of problems
for which dynamic programming is best suited, with
an emphasis on problems relevant to current research
in AI, show how to construct anytime decision proce-
dures using dynamic programming, and present some
results regarding the behavior of the resulting proce-
dures. The final section summarizes the main points
of the paper and draws some conclusions.

Dynamic programming is a methodology for the solu-
tion of problems that can be modelled as a sequence
of decisions (alternatively, problems that can be bro-
ken into smaller problems whose results are then com-
bined). For example, consider the problem of multi-
plying the following sequence of matrices:

/ al,1 al,2 \ , \
Ml =

Ql a2,2 h,l br,s br,s h,r
as,1 a2,2

, M2=
ba,l ba,z ba,s ba,a

Q4,l al,2

MS =
C2,l c2,2 ca,s c2,4
Q,l C&2 CS,S C&4
C4,l c4,2 G4,2 C4,4

Matrix multiplication is associative, so we can multi-
ply Mr and Ma, then multiply the result by Ms. Or we
can multiply Ms and . The
multiplications requir h case
tiplying IwE by Ms requires 4 JC 2 or 4
tions. Multiplying the resulting 4 x 4
requires an additional 4 * 4 f 4 = 64 m
a total cost of 96. ultiplying MS and
in a total cost of (2 * 4 $4) + (4 rlr 2 * 4) = 64.

For longer sequences, the savings can be consider-
able. Using dynamic programming to solve this prob-
lem, we start by caching all the pairwise multiplication
costs, then proceed to cache the cheapest way to mul-
tiply any three adjacent matrices together, then any
four, and so on, each time using the results cached in

preceding steps. The cost of finding the optimal an-
swer in this way is O(n2) space and O(ns) time, where
n is the number of matrices in the sequence.

ore generally, dynamic programming is a method-
r solving sequential de&ion problem. Let
set of states, 2) the set of possible decisions,

a rewed function, and 4 : S x 23 + S
a function mapping from the current state and a deci-
sion to the next state. The reward resulting in a single
step from making decision d in state ei is R(si, d). The
next state is 4(si s 8). We call the sum of the rewards
from a sequence of decisions the veZzse of the sequence.
The maximum possible value for one step starting in
etate .si is

K(G) = y$p(w a)

The value resulting from d depends QB the decisions
made in all the following states. Choosing the decision
d that maximizes the value of the sequence of %I states
starting in si involves finding

K&i) = m=[R(si, d) + K-1(4(si, d))] dE’D

This can be solved, at least in principle. A very long
or infinite sequence of decisions can be handled using
dixounting, in which the reward resulting from being
in a given state is weighted inversely to how far in the
future the state is. The resulting optimization problem

where o < 1. calculate an approximate answer,
where the num of terms considered depends on ar
and the precision required.

Dynamic programming involves the computation of
a poZicy: a specification of what decision to make in
a given state so as to maximize the resulting value of
a sequence of decisions. FQ~ dynamic programming

be useful, a sequential decision problem must obey
llman’s principle of optimality:

An optimal policy has the property that whatever
the initial state and initial decision are, the re-
maining decisions must constitute an optimal pol-
icy with regard to the state resulting from the first
decision [Bellman, 19571.

For example, given a sequence of ten matrices to mul-
tiply together, the cost of multiplying the product of
the first five and the product of the second five together
does not depend on how those products were generated
(i.e., how we associated the matrices in each group).

The problem is more complex when the outcome of
a decision is uncertain. In this case, an optimal policy
maximizes the expected value of a sequence of decisions.
Let P’,j(d) be the probability of ending in state zj)
starting from JQ and making decision d. The recursive
definition of the optimization problem for this case is

v&?i) = lgpqsi, d) + fi,j(~)Ka-I(sj)l
sjES

BODDY 739

As long as the principle of optimality holds, standard
dynamic programming techniques can be applied to
solve stochastic prob1ems.l

amic sogramming
Dynamic programming can be applied to a wide range
of problems. Any problem that can be cast as a se-
quential decision problem and that obeys the principle
of optimality (or some extension thereof) is a candidate
for a dynamic programming solution. Classes of prob-
lems for which dynamic programming solutions can
frequently be found include scheduling and resource
problems (e.g., inventory control, sequencing and syn-
chronizing independent processes, network flow prob-
lems, airline scheduling, investment problems), control
problems (e.g., optimal control, stochastic processes),
and problems in game theory [Larson and Casti, 1978,
Bellman, 19571.

In addition, several extant approaches to plan-
ning and problem-solving in AI have a dynamic-
programming flavor to them. For example, the pro-
gressive construction of STRIPS triangle tables can
be viewed as the successive construction of a policy:
each entry caches an improved decision for a particu-
lar state [Fikes et ul., 19721. Drummond and Bresina’s
[Drummond and Bresina, 19901 anytime synthetic pro-
jection is related to triangle tables, and has an even
stronger dynamic programming flavor. In their work,
simple causal rules corresponding to system actions
and other events are manipulated to construct situated
control rules (SCRs) that can be used by an agent
interacting with the world. These SCRs are itera-
tively constructed as the result of additional search and
the prior construction of other SCRs. The cut-and-
commit strategy they employ to direct the search for
new SCRs is similar to problem decomposition tech-
niques for dynamic programming-though the princi-
ple of optimality does not appear to hold. A paradigm
for planning suggested by Stan Rosenschein [Rosen-
schein, 19891 called domuiw of competence involves a
technique, related to synthetic projection, in which the
system iteratively expands the set of states from which
it knows how to achieve a given goal state.

Anytime algorithms tend to be iterative algorithms.
Using dynamic programming, we achieve this iteration
through the successive caching of more and more com-
plete answers. Each subproblem solved can reduce the
space that must be searched to find an optimal an-
swer. If an anytime decision procedure using dynamic
programming is required to supply an answer before
it has completed, some inexpensive (and suboptimal)

‘Recent work extends the application of dynamic pro-
gramming to stochastic decision problems that do not sat-
isfy the principle of optima&y [Carraway et ol., 19891.

740 SENSING AND REACTION

Puxetp: BuiIddpAable(seq)

n := length(seq)
if n >= 3 then

for site =lton
for i = 1ton - size + 1 . := i + size - 1

iind-minrost((ai, . . . , aj))
end

Procedure: Findminxost(seq)
begin

k := length(seq)
if A = 1 then

return (0, 4)
else if k = 2 then

return (Nl *MI *A&, 4)
dSt9

(Cost, CrSSOC) := Lookup,dp,entry(seq)
ib cost >= 0 then

return (cost, assoc}
else

C&n := 00, amin := 4
for i =ltok -1

(c, a) := Find,minxost((sl, . . . , ai))+
Find,min,cost((s;+l,. . . , ah))

c:= c + (Nl4Lfid&)
if c < c,,,i,, then

cm;n := c
Qmin := ({i,a})

Make,dp-entry(seq, cmi,,, amin)
ret- (kin, amin)

end

Figure
tion

1: Dynamic programming for matrix associa-

method is employed to choose an answer from the re-
maining possibilities. Two reasonable alternatives are
to choose randomly (to make the remaining decisions
at random) or to use some form of greedy a1gorithm.l

In this section, we present the results of implement-
ing anytime decision procedures using dynamic pro-
gramming for two examples: the matrix-multiplication
problem described previously, and the TSP.

Matrix ultiplication Revisited

In the section on dynamic programming we showed
how, given a sequence of matrices to multiply, the num-
ber of scalar multiplications necessary depended on the
order in which the matrices were multiplied together.
We also sketched a dynamic-programming solution to
finding a minimum-cost way of combining a given se-
quence of matricies. The procedure Build-dp,table in

‘A greedy algorithm makes decisions so as to obtain the
best answer possible in one step. A greedy algorithm for the
Travelling Salesman Problem might successively add to a
partial tour, choosing at each step the location minimizing
the length of the resulting partial tour.

Procedure: Randomsearchtseq)
begin

k := length(seq)
if k = 1 then

m?mJrn (0, 4)
else if k = 2 then

return (NI * Ml * iI&, d)
else

(cost, assoc) := Lookupdpantry (seq)
if cost >= 0 then

return (cost, assoc)
else

k := length(seq) . := random(l, k - 1)
tc, a} := Randomsearch ((81, . . . , ui)) +

Randomsearch((si+l, . *. ,#I,))
c := c + (Nl rt Mi * Mb)
amin := {(i, a)}
return (C, Qmirr}

end

Figure 2: Random search for matrix association

Figure 1 implements that solution. The procedure
Find,minsost adds the table entries and returns two
values: the cost of the optimal way of associating the
(sub)sequence of matrices, and the optimal association
itself. The notation I’Vi (alt.) denotes the num-
ber of EOWS (columns) in the ith element of the se-
quence of matrices seq = (~1,. . . , sn). The function
Lookup,dp,entry looks in the table for the sequence it
is passed. If the sequence is found, the optimal cost
and association are returned. If the sequence is not
found, a cost of -1 is returned. The associations are re-
cursively constructed by keeping track of the value of i
(the point at which to divide the current subsequence)
resulting in the minimum cost for constructing and
combining subsequences. Build,dp,table iterates over
subsequences so that when the procedure is looking
for optimal associations for subsequences of length Ic,
the optimal associations for all subsequences of length
less than a have already been computed. This keeps
the recursion in Find,minxost to a maximum depth of
2, and ensures that only at the top level is any search
required-every subsequence of length greater than 3
is already in the table.

Each additional result cached (each call to
Make-dp,entry) provides more information regarding
an optimal solution. Intuitively, it seems reasonable
that more information should make it easier to gener-
ate a good solution by inexpensive means. This in-
tuition is borne out experimentally. We repeatedly
generated sequences of 10 matrices with dimensions
randomly chosen from the interval [l, 1001. For each
sequence, a dynamic programming solution was gen-
erated one step at a time, each step consisting of cal-
culating and storing the optimal way to multiply some
subsequence of sise AL After each step, the average cost

0.40

0.20

0.00 Associatians

Figure 3: Expected cost as a function of work done

of the solution that would be generated by a random
search procedure was calculated.

The search procedure is given in Figure 2. This
procedure works recursively by breaking the current
sequence into two pieces at a random point, finding
the cost of multiplying the resulting subsequences, and
adding the cost of combining their products. If a
cached answer is found for a particular subsequence
that answer is used, otherwise the procedure bottoms
out at pairwise multiplications. The cost of running
this procedure is O(n), where n is the number of ma-
trices.

Figure 3 is the result of 500 trials of the experi-
ment described above. The x axis is the number of
associations that have been considered. We use this
rather than the number of cached answers because the
work needed to compute the optimal association for a
subsequence depends on its length: a subsequence of
length 3 requires checking 2 alternatives, while finding
the optimal answer for the full sequence of length 10
requires checking 9 possible ways of combining subse-
quences. The y axis is the average number of scalar
multiplications required for an association chosen by
Randomsearch, given the answers cached so far. The
periodic plateaus are steps at which k changes. Appar-
ently, having the first cached answer for a subsequence
of sise k does not help as much as adding answers

-length subsequences. The big drop at
esult of going from randomly choosin

among nine possibilities, one of which is optimal, t
knowing the optimal answer.

An anytime procedure for doing matrix multipli-
cation using these procedures calls Build,dp,table. If
interrupted before completion, the procedure returns
the results of calling Randomsearch on the entire se-
quence. Ran search uses the information cached in
the calls to e,dp,entry. The longer Build,dp,table
runs, the more information is available, and the bet-
ter the expected cost of the answer will be. Calling

BODDY 741

Prrzir: TSPdp(iocs)

n := length(locs)
for size = 3ton-I

while ptlr := Get-nextpointset (size)
for pt in pts

Add-onuubtour (pt, pts)
Add-onesubtour (II, 10~s)

end

Procedure: Addsncsubtour(end,pts)
begin

I min := 00
for e in pts - (end}

8
1

:= G&elevantsubtour(e,pts - {end))
:= subtourJength(s) + dist(e, end)

if I < lmin then
1 min := 1
lmin := 8

makedpzntry(lmin, concat(subtourpts(smii,), (end)))
end

Figure 4: Dynamic programming for the TSP

Random-search after an answer is requested imposes
a delay on producing that answer equal to the cost
of running Randomsearch. In the worst case, when
Build,dp,table has not run at all, the cost is O(n).
If this delay is unacceptable, Random-search can be
run periodically through the O(n3) iterations neces-
sary to construct the complete dynamic programming
solution.

Travelling Salesman

An instance of the TSP specifies a set of locations and a
set of costs (distance, time, fuel, etc.) to move between
them. The problem is to minimise the cost incurred in
visiting every location exactly once, returning to the
location we start at. In the example discussed in this
section, the locations are points in a convex subset of
the real plane, and inter-location cost is simply the
distance between them. Even with these restrictions,
the problem is still NP-complete.

The procedure TSP,dp in Figure 4 constructs a
dynamic-programming solution for a TSP instance
by caching the optimal tour ordering for successively
larger subsets of the set of locations given in the prob-
lem instance. For each subset, the procedure caches
the optimal ordering for a tour starting at II, for any
endpoint within the subset not equal to II (except
for the final call to Add,onesubtour, which finds the
optimal ordering for the complete tour). Repeated
calls to the function Get-next-point-set result in enu-
merating all the subsets of a given sise of the set of
locations Iocs - 11. Add,one-subtour loops through
all the possible subtours (tours whose points are ex-
actly those in pts - {end)), and finds the minimum-
length ordering for the current tour. The procedure

Procedure: Greedy&our(locr)
begin

t := (Ii)
Pta := lots - 11
while ptr

8 := Findappropsubtour (t)

if B therr
return concat(t, subtour+(

@lse . gmin := arg tij dist(lj, last(t))
t := concat(t, (lj))

Pts I= pt$ - lj

return t

end

Figure 5: Greedy construction of a tour

Get-relevant,subtour(end,pts) finds the cached optimal
subtour for the set of locations pts, starting at 11 and
ending at end. This can be made a constant-time op
eration, as can the procedure Get-next-point-set.

To implement an anytime procedure, we also need
the procedure Greedy-Tour in Figure 5. At each step,
Greedy-Tour chooses the location closest to the end-
point of the tour it has constructed so far. If at any
point it can find a subtour in the table that has the
same endpoint and includes all the tour points it has
not yet used, the procedure uses that subtour to com-
plete the tour ordering. Finding a cached subtour (the
procedure Find-approp-subtour) can be done in con-
stant time. The time cost of running Greedy-tour is
O(n2), where ra is the number of points in the tour.

The anytime procedure runs TSP,dp until it is in-
terrupted, then runs Greedy-tour. The longer TSP,dp
has run, the more likely Greedy-tour is to find a useful
subtour. Just as in the anytime procedure for matrix
multiplication, this procedure runs the relatively inex-
pensive (0(n2) vs. 2n) suboptimal procedure once it
has been interrupted. As before, the delay could be re-
moved, at the cost of running the greedy procedure pe-
riodically during the construction of the optimal tour.

We performed a series of 50 experiments. In each
one, a random set of 11 points was generated. We
then ran TSP4p on the set of points, keeping track of
the cost of the tour generated using Greedy-tour after
each iteration. Figure 6 graphs the average cost of the
solution found by Greedy-tour over the total number
of iterations performed in the loop in Add,one-subtour.
It is clear from the graph that the average cost of the
solution drops in a reasonably well-behaved way with
increasing iterations of TSP-dp. It is worth noting that
the expected cost of the tour obtained using the greedy
algorithm alone is only about 12% worse than the op
timal tour.

In this paper, we have shown how dynamic program-
ming techniques can be used to construct useful any-

742 SENSING AND REACTION

IIld

Figure 6: Expected savings over answers cached

time procedures for two problems: multiplying se-
quences of matrices, and the Travelling Salesman Prob-
lem. In each case, the procedure iteratively constructs
a dynamic programming solution. If the procedure is
interrupted, it uses an inexpensive alternate procedure
to construct a solution, making
tion it has constructed so far.

use of the partial solu-

Finding a good alternate procedure is important.
Using a procedure that does not make effective use
of th< partial dynamic programming solution results
in poor anytime performance: the expected value of
the answers returned tends to be very low until the
dynamic programming solution is completed or nearly
completed. For example, our first attempt at writ-
ing Greedy-tour searched forward from the end of the
longest optimal tour found so far, rather than back
from the end until a cached tour is encountered. De-
spite the fact that this seems intuitively to be a better
use of the cached answers, the resulting anytime pro-
cedure performed abysmally.

There is another sense in which dynamic program-
ming can be viewed as an iterative technique that we
have not discussed in this paper. Policy iteration in-
volves the successive approximation of an optimal pol-
icy. This requires that we repeatedly calculate (an ap
proximation to) an entire policy, and is thus unlikely
to provide a useful basis for anytime algorithms. Barto
and Sutton [Barto et al., 19891 discuss the use of pol-
icy iteration in the incremental construction of a policy
for controlling a dynamical system
becomes available over time.

aa more information

Dynamic programming can be applied to a wide va-
riety of problems. We have shown that this includes a
range of problems of interest in AI, including schedul-
ing, resource, and control problems. The work pre-
sented in this paper suggests how to go about gen-
erating anytime procedures for solving some of these m _
problems.

cknowledgements
Jack Breese first pointed out to me the importance of
dynamic programming and the principle of optimality

in the analysis of sequential decision problems. Tom
Dean made the connection between the construction
of SC% in [Drummond and Bresina, 19901 and dy-
namic programming. Bob Schrag and two anonymous
reviewers provided useful comments.

eferences
Andrew G. Barto, B.S. Sutton, and C.J.C.B Watkins.
Learning and sequential decision
cal Beport 89-95, University of
Amherst Department of Compute
Science, 1989.
BE. Bellman. Dynamic Progrunaming. Princeton
University Press, Princeton, NJ, 195’7.

oddy and Thomas Dean. Solving time-
dependent planning problems. In IJCAIdg, 1989.
Mark Boddy. Solving time-dependent problems: A
decision-theoretic approach to planning in dynamic
environments. Technical Report CS-9 l-06, Brown
University Department of Computer Science, 1991.
IX.. L. Carraway, T. L. Morin, and I-I. Moskowitz.
Generalized dynamic programming for stochastic
combinatorial optimization. Operations Research,
37(5):819-829, 1989.
Thomas Dean and Mark Boddy. An analysis of time-
dependent planning. In Proceedings AAAI-88, pages
49-54. AAAI, 1988.
Mark Drummond and John Bresina. Anytime syn-
thetic projection: Maximizing the probability of goal
satisfaction. In Proceedings of the Eighth National
Conference on Artificial Intelligence, pages 138-144,
1990.
Richard Fikes, Peter E. Hart, and Nils J. Nilsson.
Learning and executing generalized robot plans. AT-

elligence, 3:251-288, 1972.
rel. A LCORITHMICS: The Spirit of Com-

Addison- Wesley, 1987.
rion. Propagating uncertainty by logic sam-
bayes) networks. In Broceedinga of the Second

Workshop on Uncertainty in Artificial Intelligence,
1986.

J. Suermondt, and 6. F. Cooper.
Flexible inference for deci-

sions under scarce resources. In BToceedings of $he
Pifih Workshop on Uncertainty in Artificial Intelli-

Richard Morf. al-time heuristic search. Artificial

Robert E. Larson and John L. Casti. Principles of
Dynamic Progmmming, Part I. Marcel1 Dekker, Inc.,
New York, New York, 1978.
Judea Pearl. Heuristics. Addison-Wesley, 1985.
F. obert. Discrete Iterations: A tPic stuay.
Springer-Verlag, 1986.
Stan Rosenschein. Peraonal communication. 1989.

BODDY 743

