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Abstract 

In previous work, we have advocated explic- 
itly scheduling computation time for planning 
and problem solving (deliberetion) using a frame- 
work called ezpectation-driven iterative refine- 
ment. Within this framework, we have explored 
the problem of allocating deliberation time when 
the procedures used for deliberation implement 
anytime algorithms: algorithms that return some 
answer for any allocation of time. In our search 
for useful techniques for constructing anytime al- 
gorithms, we have discovered that dynemic pro- 
gramming shows considerable promise for the con- 
struction of anytime algorithms for a wide variety 
of problems. In this paper, we show how dynamic 
programming techniques can be used to construct 
useful anytime procedures for two problems: mul- 
tiplying sequences of matrices, and the Travelling 
Salesman Problem. 
Dynamic programming can be applied to a wide 
variety of optimization and control problems, 
many of them relevant to current AI research (e.g., 
scheduling, probabilistic reasoning, and control- 
ling machinery). Being able to solve these kinds of 
problems using anytime procedures increases the 
range of problems to which expectation-driven it- 
erative refinement can be applied. 

Introduction 
In [Dean and Boddy, 19881, we advocate the practice of 
deliberation scheduling: the explicit allocation of com- 
putational resources for planning and problem-solving, 
based on expectations on future events and the effects 
of that computation (deliberation). In the same paper, 
we propose the use of anytime algorithms: algorithms 
that return an answer for any allocation of computa 
tion time. In subsequent work [Boddy and Dean, 1969, 
Boddy, 19911, we have explored the use of a partic- 
ular framework for deliberation scheduling using any- 
time algorithms. In this framework, called ezpectation- 
driven iterative refinement, deliberation time is allo- 
cated using expectations on the effect on the system’s 
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behavior of time allocated to any of several anytime 
decision procedures. These expectations are cached in 
the form of performance profiles: graphs showing how 
some parameter of the answer returned is expected to 
change as more time is allocated to a procedure. 

One of the questions that we have been asked re- 
peatedly since we started this line of research concerns 
the use of anytime decision procedures: what evidence 
is there that useful anytime algorithms can be found 
for a sufficiently wide variety of computational tasks to 
make this approach interesting? A preliminary search 
of the computer science literature turned up a wide va- 
riety of algorithms or classes of algorithms that could 
be employed in anytime procedures. Among the kinds 
of algorithms we found: 

Numerical approximation - For example, Taylor se- 
ries approximations (e.g., computing ‘K or e) and it- 
erative finite-element methods. 

Heuristic search - Algorithms for heuristic search, in 
particular those employing variable lookahead and 
fast evaluation functions, can be cast as anytime al- 
gorithms [Pearl, 1985, Korf, 19901. 

Probablistic algorithms - One family of probabilistic 
algorithms that can easily be adapted for anytime 
use are Monte Carlo algorithms [Harel, 19871. 

Probabilistic inference - A wide variety of meth- 
ods has been developed for approximate evaluation 
of belief nets (i.e., providing bounds on the poste- 
rior distribution, rather than the exact distribution). 
Several of these methods are anytime algorithms in 
the sense that the bounds get smaller for additional 
iterations of the basic method, e.g., [Horvitz et al., 
1989, Henrion, 1988]. 

Discrete or symbolic processing - Symbolic process- 
ing can be viewed as the manipulation of finite sets 
(of bindings, constraints, entities, etc.) [Robert, 
19861. Elements are successively added to or re- 
moved from a set representing an approximate an- 
swer so az to reduce the difference between that set 
and a set representing the correct answer. 

Recent work suggests that existing anytime decision 
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procedures can be combined into procedures for solvin 
more complex problems [Boddy, 19911. 

In the process of looking for useful methods for con- 
structing anytime algorithms, we have come to real- 
ize that dynamic progremming [Bellman, 19571 might 
be employed as an anytime technique. This is poten- 
tially an important result: dynamic programming can 
be applied to a wide variety of optimization and con- 
trol problems, many of them relevant to current AI 
research (e.g., scheduling, probabilistic reasoning, and 
controlling machinery). Being able to solve these kinds 
of problems using anytime procedures greatly increases 
the range of problems to which expectation-driven it- 
erative refinement can easily be applied. 

In this paper, we explore the use of dynamic pro- 
gramming algorithmz in anytime decision procedures. 
In the next section we review dynamic programming. 
In subsequent sections we discuss the kinds of problems 
for which dynamic programming is best suited, with 
an emphasis on problems relevant to current research 
in AI, show how to construct anytime decision proce- 
dures using dynamic programming, and present some 
results regarding the behavior of the resulting proce- 
dures. The final section summarizes the main points 
of the paper and draws some conclusions. 

Dynamic programming is a methodology for the solu- 
tion of problems that can be modelled as a sequence 
of decisions (alternatively, problems that can be bro- 
ken into smaller problems whose results are then com- 
bined). For example, consider the problem of multi- 
plying the following sequence of matrices: 

/ al,1 al,2 \ , \ 
Ml = 

Ql a2,2 h,l br,s br,s h,r 
as,1 a2,2 

, M2= 
ba,l ba,z ba,s ba,a 

Q4,l al,2 

MS = 
C2,l c2,2 ca,s c2,4 
Q,l C&2 CS,S C&4 
C4,l c4,2 G4,2 C4,4 

Matrix multiplication is associative, so we can multi- 
ply Mr and Ma, then multiply the result by Ms. Or we 
can multiply Ms and . The 
multiplications requir h case 
tiplying IwE by Ms requires 4 JC 2 or 4 
tions. Multiplying the resulting 4 x 4 
requires an additional 4 * 4 f 4 = 64 m 
a total cost of 96. ultiplying MS and 
in a total cost of (2 * 4 $4) + (4 rlr 2 * 4) = 64. 

For longer sequences, the savings can be consider- 
able. Using dynamic programming to solve this prob- 
lem, we start by caching all the pairwise multiplication 
costs, then proceed to cache the cheapest way to mul- 
tiply any three adjacent matrices together, then any 
four, and so on, each time using the results cached in 

preceding steps. The cost of finding the optimal an- 
swer in this way is O(n2) space and O(ns) time, where 
n is the number of matrices in the sequence. 

ore generally, dynamic programming is a method- 
r solving sequential de&ion problem. Let 
set of states, 2) the set of possible decisions, 

a rewed function, and 4 : S x 23 + S 
a function mapping from the current state and a deci- 
sion to the next state. The reward resulting in a single 
step from making decision d in state ei is R(si, d). The 
next state is 4(si s 8). We call the sum of the rewards 
from a sequence of decisions the veZzse of the sequence. 
The maximum possible value for one step starting in 
etate .si is 

K(G) = y$p(w a) 

The value resulting from d depends QB the decisions 
made in all the following states. Choosing the decision 
d that maximizes the value of the sequence of %I states 
starting in si involves finding 

K&i) = m=[R(si, d) + K-1(4(si, d))] dE’D 

This can be solved, at least in principle. A very long 
or infinite sequence of decisions can be handled using 
dixounting, in which the reward resulting from being 
in a given state is weighted inversely to how far in the 
future the state is. The resulting optimization problem 

where o < 1. calculate an approximate answer, 
where the num of terms considered depends on ar 
and the precision required. 

Dynamic programming involves the computation of 
a poZicy: a specification of what decision to make in 
a given state so as to maximize the resulting value of 
a sequence of decisions. FQ~ dynamic programming 

be useful, a sequential decision problem must obey 
llman’s principle of optimality: 

An optimal policy has the property that whatever 
the initial state and initial decision are, the re- 
maining decisions must constitute an optimal pol- 
icy with regard to the state resulting from the first 
decision [Bellman, 19571. 

For example, given a sequence of ten matrices to mul- 
tiply together, the cost of multiplying the product of 
the first five and the product of the second five together 
does not depend on how those products were generated 
(i.e., how we associated the matrices in each group). 

The problem is more complex when the outcome of 
a decision is uncertain. In this case, an optimal policy 
maximizes the expected value of a sequence of decisions. 
Let P’,j(d) be the probability of ending in state zj) 
starting from JQ and making decision d. The recursive 
definition of the optimization problem for this case is 

v&?i) = lgpqsi, d) + fi,j(~)Ka-I(sj)l 
sjES 
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As long as the principle of optimality holds, standard 
dynamic programming techniques can be applied to 
solve stochastic prob1ems.l 

amic sogramming 
Dynamic programming can be applied to a wide range 
of problems. Any problem that can be cast as a se- 
quential decision problem and that obeys the principle 
of optimality (or some extension thereof) is a candidate 
for a dynamic programming solution. Classes of prob- 
lems for which dynamic programming solutions can 
frequently be found include scheduling and resource 
problems (e.g., inventory control, sequencing and syn- 
chronizing independent processes, network flow prob- 
lems, airline scheduling, investment problems), control 
problems (e.g., optimal control, stochastic processes), 
and problems in game theory [Larson and Casti, 1978, 
Bellman, 19571. 

In addition, several extant approaches to plan- 
ning and problem-solving in AI have a dynamic- 
programming flavor to them. For example, the pro- 
gressive construction of STRIPS triangle tables can 
be viewed as the successive construction of a policy: 
each entry caches an improved decision for a particu- 
lar state [Fikes et ul., 19721. Drummond and Bresina’s 
[Drummond and Bresina, 19901 anytime synthetic pro- 
jection is related to triangle tables, and has an even 
stronger dynamic programming flavor. In their work, 
simple causal rules corresponding to system actions 
and other events are manipulated to construct situated 
control rules (SCRs) that can be used by an agent 
interacting with the world. These SCRs are itera- 
tively constructed as the result of additional search and 
the prior construction of other SCRs. The cut-and- 
commit strategy they employ to direct the search for 
new SCRs is similar to problem decomposition tech- 
niques for dynamic programming-though the princi- 
ple of optimality does not appear to hold. A paradigm 
for planning suggested by Stan Rosenschein [Rosen- 
schein, 19891 called domuiw of competence involves a 
technique, related to synthetic projection, in which the 
system iteratively expands the set of states from which 
it knows how to achieve a given goal state. 

Anytime algorithms tend to be iterative algorithms. 
Using dynamic programming, we achieve this iteration 
through the successive caching of more and more com- 
plete answers. Each subproblem solved can reduce the 
space that must be searched to find an optimal an- 
swer. If an anytime decision procedure using dynamic 
programming is required to supply an answer before 
it has completed, some inexpensive (and suboptimal) 

‘Recent work extends the application of dynamic pro- 
gramming to stochastic decision problems that do not sat- 
isfy the principle of optima&y [Carraway et ol., 19891. 
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Puxetp: BuiIddpAable(seq) 

n := length(seq) 
if n >= 3 then 

for site =lton 
for i = 1ton - size + 1 . := i + size - 1 

iind-minrost( (ai, . . . , aj)) 
end 

Procedure: Findminxost(seq) 
begin 

k := length(seq) 
if A = 1 then 

return (0, 4) 
else if k = 2 then 

return (Nl *MI *A&, 4) 
dSt9 

(Cost, CrSSOC) := Lookup,dp,entry(seq) 
ib cost >= 0 then 

return (cost, assoc} 
else 

C&n := 00, amin := 4 
for i =ltok -1 

(c, a) := Find,minxost((sl, . . . , ai))+ 
Find,min,cost((s;+l,. . . , ah)) 

c:= c + (Nl4Lfid&) 
if c < c,,,i,, then 

cm;n := c 
Qmin := ({i,a}) 

Make,dp-entry(seq, cmi,,, amin) 
ret- (kin, amin) 

end 

Figure 
tion 

1: Dynamic programming for matrix associa- 

method is employed to choose an answer from the re- 
maining possibilities. Two reasonable alternatives are 
to choose randomly (to make the remaining decisions 
at random) or to use some form of greedy a1gorithm.l 

In this section, we present the results of implement- 
ing anytime decision procedures using dynamic pro- 
gramming for two examples: the matrix-multiplication 
problem described previously, and the TSP. 

Matrix ultiplication Revisited 

In the section on dynamic programming we showed 
how, given a sequence of matrices to multiply, the num- 
ber of scalar multiplications necessary depended on the 
order in which the matrices were multiplied together. 
We also sketched a dynamic-programming solution to 
finding a minimum-cost way of combining a given se- 
quence of matricies. The procedure Build-dp,table in 

‘A greedy algorithm makes decisions so as to obtain the 
best answer possible in one step. A greedy algorithm for the 
Travelling Salesman Problem might successively add to a 
partial tour, choosing at each step the location minimizing 
the length of the resulting partial tour. 



Procedure: Randomsearchtseq) 
begin 

k := length(seq) 
if k = 1 then 

m?mJrn (0, 4) 
else if k = 2 then 

return (NI * Ml * iI&, d) 
else 

(cost, assoc) := Lookupdpantry (seq) 
if cost >= 0 then 

return (cost, assoc) 
else 

k := length(seq) . := random(l, k - 1) 
tc, a} := Randomsearch ((81, . . . , ui)) + 

Randomsearch((si+l, . *. ,#I,)) 
c := c + (Nl rt Mi * Mb) 
amin := {(i, a)} 
return (C, Qmirr} 

end 

Figure 2: Random search for matrix association 

Figure 1 implements that solution. The procedure 
Find,minsost adds the table entries and returns two 
values: the cost of the optimal way of associating the 
(sub)sequence of matrices, and the optimal association 
itself. The notation I’Vi (alt. ) denotes the num- 
ber of EOWS (columns) in the ith element of the se- 
quence of matrices seq = (~1,. . . , sn). The function 
Lookup,dp,entry looks in the table for the sequence it 
is passed. If the sequence is found, the optimal cost 
and association are returned. If the sequence is not 
found, a cost of -1 is returned. The associations are re- 
cursively constructed by keeping track of the value of i 
(the point at which to divide the current subsequence) 
resulting in the minimum cost for constructing and 
combining subsequences. Build,dp,table iterates over 
subsequences so that when the procedure is looking 
for optimal associations for subsequences of length Ic, 
the optimal associations for all subsequences of length 
less than a have already been computed. This keeps 
the recursion in Find,minxost to a maximum depth of 
2, and ensures that only at the top level is any search 
required-every subsequence of length greater than 3 
is already in the table. 

Each additional result cached (each call to 
Make-dp,entry) provides more information regarding 
an optimal solution. Intuitively, it seems reasonable 
that more information should make it easier to gener- 
ate a good solution by inexpensive means. This in- 
tuition is borne out experimentally. We repeatedly 
generated sequences of 10 matrices with dimensions 
randomly chosen from the interval [l, 1001. For each 
sequence, a dynamic programming solution was gen- 
erated one step at a time, each step consisting of cal- 
culating and storing the optimal way to multiply some 
subsequence of sise AL After each step, the average cost 

0.40 

0.20 

0.00 Associatians 

Figure 3: Expected cost as a function of work done 

of the solution that would be generated by a random 
search procedure was calculated. 

The search procedure is given in Figure 2. This 
procedure works recursively by breaking the current 
sequence into two pieces at a random point, finding 
the cost of multiplying the resulting subsequences, and 
adding the cost of combining their products. If a 
cached answer is found for a particular subsequence 
that answer is used, otherwise the procedure bottoms 
out at pairwise multiplications. The cost of running 
this procedure is O(n), where n is the number of ma- 
trices. 

Figure 3 is the result of 500 trials of the experi- 
ment described above. The x axis is the number of 
associations that have been considered. We use this 
rather than the number of cached answers because the 
work needed to compute the optimal association for a 
subsequence depends on its length: a subsequence of 
length 3 requires checking 2 alternatives, while finding 
the optimal answer for the full sequence of length 10 
requires checking 9 possible ways of combining subse- 
quences. The y axis is the average number of scalar 
multiplications required for an association chosen by 
Randomsearch, given the answers cached so far. The 
periodic plateaus are steps at which k changes. Appar- 
ently, having the first cached answer for a subsequence 
of sise k does not help as much as adding answers 

-length subsequences. The big drop at 
esult of going from randomly choosin 

among nine possibilities, one of which is optimal, t 
knowing the optimal answer. 

An anytime procedure for doing matrix multipli- 
cation using these procedures calls Build,dp,table. If 
interrupted before completion, the procedure returns 
the results of calling Randomsearch on the entire se- 
quence. Ran search uses the information cached in 
the calls to e,dp,entry. The longer Build,dp,table 
runs, the more information is available, and the bet- 
ter the expected cost of the answer will be. Calling 
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Prrzir: TSPdp(iocs) 

n := length(locs) 
for size = 3ton-I 

while ptlr := Get-nextpointset (size) 
for pt in pts 

Add-onuubtour (pt, pts) 
Add-onesubtour (II, 10~s) 

end 

Procedure: Addsncsubtour(end,pts) 
begin 

I min := 00 
for e in pts - (end} 

8 
1 

:= G&elevantsubtour(e,pts - {end)) 
:= subtourJength(s) + dist(e, end) 

if I < lmin then 
1 min := 1 
lmin := 8 

makedpzntry(lmin, concat(subtourpts(smii,), (end))) 
end 

Figure 4: Dynamic programming for the TSP 

Random-search after an answer is requested imposes 
a delay on producing that answer equal to the cost 
of running Randomsearch. In the worst case, when 
Build,dp,table has not run at all, the cost is O(n). 
If this delay is unacceptable, Random-search can be 
run periodically through the O(n3) iterations neces- 
sary to construct the complete dynamic programming 
solution. 

Travelling Salesman 

An instance of the TSP specifies a set of locations and a 
set of costs (distance, time, fuel, etc.) to move between 
them. The problem is to minimise the cost incurred in 
visiting every location exactly once, returning to the 
location we start at. In the example discussed in this 
section, the locations are points in a convex subset of 
the real plane, and inter-location cost is simply the 
distance between them. Even with these restrictions, 
the problem is still NP-complete. 

The procedure TSP,dp in Figure 4 constructs a 
dynamic-programming solution for a TSP instance 
by caching the optimal tour ordering for successively 
larger subsets of the set of locations given in the prob- 
lem instance. For each subset, the procedure caches 
the optimal ordering for a tour starting at II, for any 
endpoint within the subset not equal to II (except 
for the final call to Add,onesubtour, which finds the 
optimal ordering for the complete tour). Repeated 
calls to the function Get-next-point-set result in enu- 
merating all the subsets of a given sise of the set of 
locations Iocs - 11. Add,one-subtour loops through 
all the possible subtours (tours whose points are ex- 
actly those in pts - {end)), and finds the minimum- 
length ordering for the current tour. The procedure 

Procedure: Greedy&our(locr) 
begin 

t := (Ii) 
Pta := lots - 11 
while ptr 

8 := Findappropsubtour (t) 

if B therr 
return concat(t, subtour+( 

@lse . gmin := arg tij dist(lj, last(t)) 
t := concat(t, (lj)) 

Pts I= pt$ - lj 

return t 

end 

Figure 5: Greedy construction of a tour 

Get-relevant,subtour(end,pts) finds the cached optimal 
subtour for the set of locations pts, starting at 11 and 
ending at end. This can be made a constant-time op 
eration, as can the procedure Get-next-point-set. 

To implement an anytime procedure, we also need 
the procedure Greedy-Tour in Figure 5. At each step, 
Greedy-Tour chooses the location closest to the end- 
point of the tour it has constructed so far. If at any 
point it can find a subtour in the table that has the 
same endpoint and includes all the tour points it has 
not yet used, the procedure uses that subtour to com- 
plete the tour ordering. Finding a cached subtour (the 
procedure Find-approp-subtour) can be done in con- 
stant time. The time cost of running Greedy-tour is 
O(n2), where ra is the number of points in the tour. 

The anytime procedure runs TSP,dp until it is in- 
terrupted, then runs Greedy-tour. The longer TSP,dp 
has run, the more likely Greedy-tour is to find a useful 
subtour. Just as in the anytime procedure for matrix 
multiplication, this procedure runs the relatively inex- 
pensive (0( n2) vs. 2n) suboptimal procedure once it 
has been interrupted. As before, the delay could be re- 
moved, at the cost of running the greedy procedure pe- 
riodically during the construction of the optimal tour. 

We performed a series of 50 experiments. In each 
one, a random set of 11 points was generated. We 
then ran TSP4p on the set of points, keeping track of 
the cost of the tour generated using Greedy-tour after 
each iteration. Figure 6 graphs the average cost of the 
solution found by Greedy-tour over the total number 
of iterations performed in the loop in Add,one-subtour. 
It is clear from the graph that the average cost of the 
solution drops in a reasonably well-behaved way with 
increasing iterations of TSP-dp. It is worth noting that 
the expected cost of the tour obtained using the greedy 
algorithm alone is only about 12% worse than the op 
timal tour. 

In this paper, we have shown how dynamic program- 
ming techniques can be used to construct useful any- 
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Figure 6: Expected savings over answers cached 

time procedures for two problems: multiplying se- 
quences of matrices, and the Travelling Salesman Prob- 
lem. In each case, the procedure iteratively constructs 
a dynamic programming solution. If the procedure is 
interrupted, it uses an inexpensive alternate procedure 
to construct a solution, making 
tion it has constructed so far. 

use of the partial solu- 

Finding a good alternate procedure is important. 
Using a procedure that does not make effective use 
of th< partial dynamic programming solution results 
in poor anytime performance: the expected value of 
the answers returned tends to be very low until the 
dynamic programming solution is completed or nearly 
completed. For example, our first attempt at writ- 
ing Greedy-tour searched forward from the end of the 
longest optimal tour found so far, rather than back 
from the end until a cached tour is encountered. De- 
spite the fact that this seems intuitively to be a better 
use of the cached answers, the resulting anytime pro- 
cedure performed abysmally. 

There is another sense in which dynamic program- 
ming can be viewed as an iterative technique that we 
have not discussed in this paper. Policy iteration in- 
volves the successive approximation of an optimal pol- 
icy. This requires that we repeatedly calculate (an ap 
proximation to) an entire policy, and is thus unlikely 
to provide a useful basis for anytime algorithms. Barto 
and Sutton [Barto et al., 19891 discuss the use of pol- 
icy iteration in the incremental construction of a policy 
for controlling a dynamical system 
becomes available over time. 

aa more information 

Dynamic programming can be applied to a wide va- 
riety of problems. We have shown that this includes a 
range of problems of interest in AI, including schedul- 
ing, resource, and control problems. The work pre- 
sented in this paper suggests how to go about gen- 
erating anytime procedures for solving some of these m _ 
problems. 
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