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Abstract 
This paper describes a distributed, adaptive, first-order 
logic engine with exceptional performance characteris- 
tics. The system combines serial search reduction tech- 
niques such as bounded-overhead subgoal caching and 
intelligent backtracking with a novel parallelization 
strategy particularly well-suited to coarse-grained paral- 
lel execution on a network of workstations. We present 
empirical results that demonstrate our system’s perfor- 
mance using 100 workstations on over 1400 first-order 
logic problems drawn from the “Thousands of Prob- 
lems for Theorem Provers” collection. 

utroduction 
We have developed an distributed, adaptive, first-order logic 
engine as the core of a planning system intended to solve 
large logistics and transportation scheduling problems 
(Calistri-Yeh & Segre, 1993). This underlying inference 
engine, called DALI (Distributed, Adaptive, Logical 
Inference), is based on an extended version of the Warren 
Abstract Machine (WAM) architecture (AIt-Kaci, 1991) 
which also serves as the basis for many modem Prolog 
implementations. DALI takes a first-order specification of 
some application domain (the domain theory) and uses it to 
satisfy a series of queries via a model elimination inference 
procedure. Our approach is inspired by PTIP 
(Stickel, 1988), in that it is based on Prolog technology (i.e., 
the WAM) but circumvents the inherent limitations thereof 
to provide an inference procedure that is complete relative to 
first-order logic. Unlike PTTP, however, DALI employs a 
number of serial search reduction techniques such as 
bounded-overhead subgoal caching (Segre & 
Scharstein, 1993) and intelligent backtracking (Kumar & 
Lin, 1987) to improve search efficiency. DALI also exploits 
a novel parallelization scheme called nagging (Sturgill & 
Segre, 1994) that supports the effective use of a large 
number of loosely-coupled processing elements. 

The message of this paper is that efficient implementation 
technology, serial search reduction techniques, and parallel 

nagging can be successfully combined to produce a high- 
performance first-order logic engine. We support this claim 
with an extensive empirical performance evaluation. 

The basis of our implementation is the WAM. The WAM 
supports efficient serial execution of Prolog: the core idea is 
that detite clauses may be compiled into a series of 
primitive instructions which are then interpreted by the 
underlying abstract machine. The efficiency advantage of 
the WAM comes from making compile-time decisions (thus 
reducing the amount of computation that must be repeated 
at run time), using carefully engineered data structures that 
provide an efficient scheme for unwinding variable bindings 
and restoring the search state upon backtracking, and taking 
several additional efficiency shortcuts, which, while 
acceptable for Prolog, are inappropriate for theorem proving 
in general. 

In our implementation, the basic WAM architecture is 
extended in three ways. First, we provide completeness 
with respect to first-order logic. Next, we incorporate serial 
search reduction techniques to enhance performance. 
Finally, we employ a novel asynchronous parallelization 
scheme that effectively distributes the search across a 
network of loosely-coupled heterogeneous processing 
elements. 

er CompIeteness 
As described in (Stickel, 1988), Prolog - and the 
underlying WAM - can be used as the basis for an efficient 
first-order logic engine by circumventing the following 
intrinsic limitations: (i) Prolog uses unsound unification, i.e., 
it permits the construction of cyclic terms, (ii) Prolog’s 
unbounded depth-first search strategy is incomplete, and 
(iii) Prolog is restricted to definite clauses. PTTP 
demonstrates how these three limitations can be overcome 
without sacrificing the high inference rate common to many 
Prolog implementations. 
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Like Stickel, we repair Prolog’s unsound unification by 
performing the missing “occurs check.” We also borrow a 
compile-time technique from (Plaisted, 1988) to “flatten” 
unification and perform circularity checking only when 
needed. In our implementation, the circularity check is 
handled efficiently by a new WAM instruction. We restore 
search completeness by using a depth&st iterative 
deepening search strategy (Korf, 1985) in the place of depth- 

first search.’ Finally, the definite-clause restriction is lifted 
by adding the model elimination reduction operation to the 
familiar Prolog resolution step and by compiling in all 
contrapositive versions of each domain theory clause. As 
suggested in (Stickel, 1988), the use of the model 
elimination reduction operation enables the inclusion of 
cycle detection with little additional programming effort 
(cycle detection is a pruning technique that reduces 
redundant search). 

Serial Search Reduction 
OLU second set of modifications to the WAM support a 
number of adaptive inference techniques, or serial search 
reduction mechanisms. In (Segre & Scharstein, 1993) we 
introduce the notion of a bounded-overhead subgoal cache 
for definite-clause theorem provers. Bounded-overhead 
caches contain only a fixed number of entries; as new entries 
are made, old entries are discarded according to some 
preestablished cache management policy, e.g., least-recently 
used. Limiting the size of the cache helps to avoid 
thrashing, a typical consequence of unbounded-size caches 
operating within bounded physical memory. Cache entries 
consist of successfully-proven subgoals as well as subgoals 
which are known to be unprovable within a given resource 
limit; matching a cache entry reduces search by obviating 
the need to explore the same search space more than once. 
As a matter of policy, we do not allow cache hits to bind 
logical variables. In exchange for a reduction in the number 
of cache hits, this constraint avoids some situations where 
taking a cache hit may actually increase the search space. 
Cache entries are allowed to persist until the domain theory 
changes; thus, information acquired in the course of solving 
one query can help reduce search on subsequent queries. 

In a deEnite-clause theory, the satisfiability of a subgoal 
depends only on the form of the subgoal itself. However, 

’ Unlike FTl”P’s depth metric which is based on the number of nodes 
in the proof, our depth-first iterative deepening scheme measures depth as 
the height of the proof tree. Although each depth meam has its advan- 
tages and neither leads to uniformly superior performance, our choice is 
motivated by concerns for compatibility witi, both our intelligent back- 
tracking and caching schemes. 

when the model elimination reduction operation is used, a 
subgoal’s satisfiability may also depend on the ancestor 
goals from which it was derived. Accordingly, a subgoal 
may fail in one situation while an identical goal may 
succeed (via the reduction operation) elsewhere in the 
search. DALI extends the definite-clause caching scheme of 
(Segre & Scharstein, 1993) to accommodate the context 
sensitivity of cached successes. The DALI implementation 
presented here simply disables the caching of failures in 
theories not composed solely of definite clauses, although 
this is unnecessarily extreme. 

In addition to subgoal caching, we employ a form of 
intelligent backtracking similar to that of (Kumar & 
Lin, 1987). Normally, the WAM performs chronological 
backtracking, resuming search from the most recent OR 
choicepoint after a failure. Naturally, this new search path 
may also fail for the same underlying reason as the previous 
path. Intelligent backtracking attempts to identify the 
reasons for a failure and backtrack to the most recent 
choicepoint that is not doomed to repeat it. Our intelligent 
backtracking scheme requires minimal change to the WAM 
for the definite-clause case. Briefly, choicepoints along the 
current search path are marked at failure time depending on 
the variables they bind; unmarked choicepoints are skipped 
when backtracking. As with subgoal caching, the marking 
procedure must also take ancestor goals into account when 
deciding which choicepoints to mark. 

In (Sturgill & Segre, 1994) we introduce a parallel 
asynchronous search pruning strategy called nagging. 
Nagging employs two types of processes; a master process 
which attempts to satisfy the user’s query through a 
sequential search procedure and one or more nagging 
processes which perform speculative search in an effort to 
prune the master’s current search branch. When a nagging 
process becomes idle it requests a snapshot of its master’s 
state as characterized by the variable bindings and the stack 
of open goals. The nagging process then attempts to prove a 
permuted version of this goal stack under these variable 
bindings using the same resource limit in effect on the 
master process. If the nagging process fails to find a proof, 
it guarantees that the master process will be unable to satisfy 
all goals on its goal stack under current variable bindings. 
The master process is then forced to backtrack far enough to 
retract a goal or variable binding that was rejected by the 
nagger. If, however, the nagging process does tid a proof, 
then it has satisfied a permuted ordering of all the master’s 
open goals, thereby solving the original query. This solution 
is then reported. 
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Nagging has many desirable characteristics. In particular, 
it affords some opportunity to control the granularity of 
nagged subproblems and is also intrinsically fault tolerant. 
As a result, nagging is appropriate for loosely-coupled 
hardware. Additionally, nagging is not restricted to de&rite- 
clause theories and requires no extra-logical annotation of 
the theory to indicate opportunities for parallel execution. 
Finally, nagging may be cleanly combined with other 
parallelism schemes such as OR and AND parallelism. 
Readers interested in a more complete and general treatment 
of nagging are referred to (Sturgill & Segre, 1994). 

Evaluation 
We wish to show that (i) subgoal caching, intelligent 
backtracking, and nagging combine to produce superior 
performance, and (ii) our approach scales exceptionally well 
to a large numbers of processors. In order for our results to 
be meaningful, they should be obtained across a broad 
spectrum of problems from the theorem proving literature. 
To this end, we use a 1457-element subset of the 2295 
problems contained in the Thousands of Problems for 
Theorem Provers (TPTP) collection, release 1.0.0 (Suttner et 
al., 1993). The TPTP problems are expressed in first-order 
logic: 37% are definite-clause domain theories, 5% are 
propositional (half of these are detite-clause domain 
theories), and 79% require equality. The largest problem 
contains 6404 clauses, and the number of logic variables 
used ranges from 0 to 32000. For our test, we exclude 838 
problems either because they contained more than one 
designated query clause, or, in one instance, due to a minor 
flaw in the problem specification. 

Four different con@urations of the DALI system are 
applied to this test suite; three are serial conf@urations, 
while the fourth employs nagging. Each configuration 
operates on identical hardware and differs only in which 
serial search reduction techniques are applied and in 
whether or not additional nagging processors are used. We 
use a single, dedicated, Sun Spare 670MP “Cypress” 
system with 128MB of real memory as the main processor 
for each tested con@uration. Nagging processors, when 
used, are drawn from a pool of 110 additional Sun Spare 
machines, ranging from small Spare 1 machines with 12MB 
of memory to additional 128MB 670MP processors running 
SunOS (versions 4.1.1 through 4.1.3). These machines are 
physically scattered throughout two campus buildings and 
are distributed among three TCP/IP subnets interconnected 
by gateways. Note that none of the additional machines are 
intrinsically faster than the main processor; indeed, the 
majority have much slower CPUs and far less memory than 
does the main processor. Furthermore, unlike the main 
processor, the nagging processors represent a shared 

resource and are used to support some number of additional 
users throughout the experiment. 

Three serial configurations of DALI are tested. & is a 
simple serial system that is essentially equivalent to a 
WA&I-level reconstruction of PTIP module the previously 

cited difference in depth bound calcuIation.2 Xr adds 
intelligent backtracking, while & incorporates intelligent 
backtracking, cycle detection, and a lOO-element least- 
recently used subgoal cache. Each cotiguration performs 
unit-increment depth-first iterative deepening and is limited 
to exploring 1, 000, 000 nodes before abandoning the 
problem and marking it as unsolved; elapsed CPU time 
(sum of system time and user time) is recorded for each 
problem. Note that the size of the cache is quite arbitrarily 
selected; larger or smaller caches may well result in 
improved performance. In addition, a unit increment may 
well be a substantially suboptimal increment for iterative 
deepening. Depending on the domain, increasing the 
increment value or changing the cache size may have a 
significant effect on the system’s performance. The results 
reported in this paper are clearly dependent on the values of 
these parameters, but the conclusions we draw from these 
results are based only on comparisons between identically- 
configured systems. 

The fourth tested configuration, &, adds 99 nagging 
processors to the configuration of &. Nagging processors 
are identically configured with intelligent backtracking, 
cycle detection, and lOO-element least-recently used subgoal 
caches. For each problem, the currently “fastest” 99 
machines (as determined by elapsed time for solving a short 
benchmark problem set) in the processor pool are selected 
for use as nagging processors. These additional processors 
are organized hierarchically, with 9 processors nagging the 
main processor and 10 more processors nagging each of 
these in turn. Hierarchical nagging, or meta-nagging, 
reduces the load on the main processor by amortizing 
nagging overhead costs over many processors. Recursively 
nagged processors are more effective as naggers in their 
own right, since nagging these processors prunes their 
search and helps them to exhaust their own search spaces 
more quickly. The main processor is subject to the same 
1, 000, 000 node resource constraint as the serial 
cotigurations tested. 

& solves 384 problems within the allotted resource 
bound, or 26.35% of the 1457 problems attempted. &, 

’ As a rough measure of performance, this configuration running on 
the hardware just described performs at about 1OK LIPS on a benchmark 
definite-clause theory. 
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& CPU Time vs. Ze CPU Time 

Figure 1: Performance of Es (log elapsed CPU time to solution on main processor) vs. performance of C, (log elapsed CPU 
time to solution or failure). The “cross” datapoints correspond to the 384 problems solved by both systems, while the “dia- 
mond” datapoints correspond to the 130 problems solved only by &; x-coordinate values for the “diamond” datapoints repre- 
sent recorded time-to-failure for I&, an optimistic estimate of actual solution time. The two lines represent f(x) = x and 
f(x) = x/100. Since the granularity of our metering software is only 0.01 seconds, any problem taking less than 0.01 CPU sec- 
onds to solution is charged instead for 0.005 seconds. 

identical to &-, save for the use of intelligent backtracking 
and cycle detection, solves an additional 56 problems, or a 
total of 440 problems (30.19%). &, which adds a 
loo-element subgoal cache to the configuration of Cl, solves 
an additional 20 problems (76 more than &J, for a total of 
460 problems solved (3 1.57%). Finally, q, the 
lOO-processor version of &, solves a total of 5 14 problems 
(35.27%). Note that in every case adding a search reduction 

technique results in the solution of additional problems3 

The additional problems solved by each successively 
more sophisticated con&uration represent one important 
measure of improved performance. A second metric is the 
relative speed with which the different confQurations solve 
a given problem; we consider here one such comparison 
between the most sophisticated system tested, X3, and the 
least sophisticated system tested, &. Figure 1 plots the 

3 While Ze solves 56 problems not solved by I$, 2 problems solved 
by & were not solved by Es. While no individual technique is likely to 
cause an increase in the number of nodes explored, interactions between 
techniques may result in such an increase. For example, changes to search 
behavior due to nagging will affect the contents of the main processor’s 
cache; changes in cache contents will in turn affect the main processor’s 
search behavior with respect to an identical serial system. 

logarithm of the CPU time to solution for Lj against the 
logarithm of the CPU required to either solve or fail to solve 
the same problem for &. Each point in the plot corresponds 
to a problem solved by at least one of the systems; the 384 
“cross” datapoints correspond to problems solved by both 
systems, while the 130 “diamond” datapoints correspond to 
problems solved only by Z3. Datapoints falling below the 
line f(x) = x represent problems that are solved faster by 
q, while datapoints falling below the line f(x) = x/100 
represent problems that are solved more than 100 times 

faster with 100 processors4 

4 The fact that some problems demonstrate superlinear spcedup may 
seem somewhat alarming. Intuitively, using N identical processors should 
result in, at best, N times the performance. Here, the additional N - 1 pro- 
cessors are, on average, much slower than the main processor, aud one 
would therefore initially expect sublinear speedup. However, superlinear 
speedup cau result since the parallel system does not explore the space in 
the same order as the serial system. In particular, a nagging processor may 
explore a subgoal ordering that provides a solution with significantly less 
search than the original ordering, resulting in a net performance im- 
provement much larger than N. In addition, the parallel system has the 
added advantage of subgoal caching and intelligent backtracking which al- 
so make substantial performance contributions on some problems. 
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If we consider only those problems solved by both 
systems (the 384 “cross” datapoints in Figure 1) and if we 
informally define “easy” problems to be those problems 
requiring at most 1 second to solve with the serial system, 
then we see that the performance of & on such problems is 
often worse than that of the more naive serial system &; 
thus, many of these datapoints lie above the f(x) = x line. 
We attribute this poor performance to the initial costs of 
nagging (e.g., establishing communication and transmitting 
the domain theory to all processors). For “hard” problems, 
however, the initial overhead is easily outweighed by the 
performance advantage of nagging. Furthermore, the 
performance improvement on just a few “hard” problems 
dwarfs the loss in performance on all of the “easy” 
problems - an effect that is visually obscured by the 
logarithmic scale used for both axes of Figure 1. 

A more precise way of convincing ourselves that & is 
superior to & is to use a simple nonparametric test such as 
the one-tailed paired sign test (Arbuthnott, 1710), or the 
one-tailed Wilcoxon matched-pairs signed-ranks test 
(Wilcoxon, 1945) to test for statistically significant 
differences between the elapsed CPU times for problems 
solved by both systems. These tests are nonparametric 
analogues to the more commonly used Student t-test; 
nonparametric tests are more appropriate here since we do 
not know anything about the underlying distribution of the 
elapsed CPU times. 

The null hypothesis we are testing is that the recorded 
elapsed CPU times for & are at least as fast as the recorded 
elapsed CPU times for & on the 384 problems solved by 
both systems. The Wilcoxen test provides only marginal 
evidence for the conclusion that & is faster than & 
(N =384,p= .096). However, if we only consider the 
“harder” problems, then there is significant evidence to 
conclude that X3 is faster than ZQ (N = 70, p < 10”). 

Of course, both our informal visual analysis of Figure 1 
and the nonparametric analysis just given systematically 
understate the relative performance of I& by excluding the 
130 problems that were solved only by ZZ.3 (the “diamond” 
datapoints in Figure 1). Since these problems were not 
solved by &,, we take the time required for &J to reach the 
resource bound as the abscissa for the datapoint in Figure 1: 
this is an optimistic estimate of the real solution time, since 
we know & will require at least this much time to actually 
solve the problem. Graphically, the effect is to displace 
each “diamond” datapoint to the left of its true position by 
some unknown margin. Note that even though their x- 
coordinate value is understated, 117 (90%) of these 
datapoints still fall below the f(x) = x line, and a 12 
(roughly 10%) still demonstrate superlinear speedup. If we 
could use the actual & solution time as the abscissa for 

these 130 problems, the effect would be to shift each 
“diamond” datapoint to the right to its true position, greatly 
enhancing G’s apparent performance advantage over &. 

Is it possible to tease apart the performance contribution 
due to each individual technique? We can use the Wilcoxon 
test to compare each pair of successively more sophisticated 
system con@urations. We conclude that EC1 is significantly 
faster than & (N = 384, p < lOA), indicating that 
intelligent backtracking and cycle detection together are 
effective serial speedup techniques. In a similar fashion, & 
is in turn significantly faster than IZr (N = 440, p < lOA), 
indicating that subgoal caching is also an effective serial 
speedup technique when used with intelligent backtracking 
and cycle detection. In contrast, we find only marginal 
evidence that & is uniformly faster than & over the entire 
problem collection (N = 458, p = .072). However, as with 
the Zs vs. ZQ comparison, separating “harder” problems, 
where XJ significantly outperforms & (N = 108, p < 106), 
from “easier” problems, where the I;2 significantly 
outperforms IZj (N = 350, p c lOa) enables us to make 
statistically valid statements about the relative performance 
of & and Q. As before, all of these results - by ignoring 
problems left unsolved by one of the systems being 
compared - systematically understate the performance 
advantage of the more sophisticated system in the 
comparison. 

Unlike nagging, where problem size is a good predictor 
of performance improvement, it is much more difficult to 
characterize when caching, intelligent backtracking, or cycle 
detection are advantageous. Some problems are solved 
more quickly with these techniques, while others problems 
are not; knowing whether a problem is “hard” or “easy” a 
priori @es no information about whether or not caching, 
intelligent backtracking, or cycle detection will help, a 
conclusion that is supported by our statistical analysis. 

Conclusion 
We have briefly reviewed the design and implementation of 
the DALI system. The premise of this paper is that efhcient 
implementation technology, serial search reduction 
techniques, and nagging can be successfully combined to 
produce a tit-order logic engine that can effectively bring 
hundreds of workstations to bear on large problems. We 
have supported our claims empirically over a broad range of 
problems from the theorem proving literature. While the 
results presented here are quite good, we believe we can still 
do better. We are now in the process of adding an 
explanation-based learning component that compiles 
“chains of reasoning” used in successfully solved problems 
into new macro-operators (Segre & Elkan, 1994). We are 
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also exploring alternative cache-management policies, the 
use of dynamically-sized caches, and compile-time 
techniques for dete mining how caching can be used most 
effectively in a given domain. Similarly, we are studying 
compile-time techniques for selecting appropriate 
opportunities for nagging and we are also looking at how 
best to select a topology of recursive nagging processors. 
Finally, we are exploring additional sources of parallelism. 

These efforts contribute to a larger study of practical, 
effective, inference techniques. In the long term, we believe 
that our distributed, adaptive, approach to first-order logical 
inference - driven by a broad-spectrum philosophy that 
integrates multiple serial search reduction techniques as well 
as the use of multiple processing elements - is a promising 
one that is also ideally suited to large-scale applications of 
significant practical importance. 
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