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Abstract 

Evaluation of counterfactual queries (e.g., “If A were 
true, would C have been true?“) is important to fault 
diagnosis, planning, and determination of liability. We 
present a formalism that uses probabilistic causal net- 
works to evaluate one’s belief that the counterfactual 
consequent, C, would have been true if the antecedent, 
A, were true. The antecedent of the query is inter- 
preted as an external action that forces the propo- 
sition A to be true, which is consistent with Lewis’ 
Miraculous Analysis. This formalism offers a concrete 
embodiment of the “closest world” approach which (I) 
properly reflects common understanding of causal in- 
fluences, (2) deals with the uncertainties inherent in 
the world, and (3) is amenable to machine represen- 
tation. 

Introduction 
A counterfactual sentence has the form 

If A were true, then C would have been true 
where A, the counterfactual antecedent, specifies an 
event that is contrary to one’s real-world observations, 
and C, the counterfactual consequent, specifies a result 
that is expected to hold in the alternative world where 
the antecedent is true. A typical instance is “If Oswald 
were not to have shot Kennedy, then Kennedy would 
still be alive” which presumes the factual knowledge of 
Oswald’s shooting Kennedy, contrary to the antecedent 
of the sentence. 

The majority of the philosophers who have examined 
the semantics of counterfactual sentences (Goodman 
1983; Harper, Stalnaker, & Pearce 1981; Nute 1980; 
Meyer & van der Hoek 1993) have resorted to some 
form of logic based on worlds that are “closest” to the 
real world yet consistent with the counterfactual’s an- 
tecedent. Ginsberg (Ginsberg 1986), following a simi- 
lar strategy, suggested that the logic of counterfactuals 
could be applied to problems in planning and diag- 
nosis in Artificial Intelligence. The few other papers 
in AI that have focussed on counterfactual sentences 
(e.g., (Jackson 1989; Pereira, Aparicio, & Alferes 1991; 
Boutilier 1992) have mostly adhered to logics based on 
the “closest world” approach. 

In the real world, we seldom have adequate informa- 
tion for verifying the truth of an indicative sentence, 
much less the truth of a counterfactual sentence. Ex- 
cept for the small set of relationships between vari- 
ables which can be modeled by physical laws, most 
of the relationships in one’s knowledge base are non- 
deterministic. Therefore, it is more practical to ask 
not for the truth or falsity of a counterfactual, but for 
one’s degree of belief in the counterfactual consequent 
given the antecedent. To account for such uncertain- 
ties, (Lewis 1976) has generalized the notion of “closest 
world” using the device of “imaging” ; namely, the clos- 
est worlds are assigned probability scores, and these 
scores are combined to compute the probability of the 
consequent. 

The drawback of the “closest world” approach is that 
it leaves the precise specification of the closeness mea- 
sure almost unconstrained. More specifically, it does 
not tell us how to encode distances in a way that would 
(1) conform to our perception of causal influences and 
(2) lend itself to economical machine representation. 
This paper can be viewed as a concrete explication of 
the closest world approach, one that satisfies the two 
requirements above. 

The target of our investigation are counterfactual 
queries of the form: 

If A were true, then what is the probability that 
C would have been true, given that we know B? 

The proposition B stands for the actual observations 
made in the real world (e.g., that Oswald did shoot 
Kennedy and that Kennedy is dead) which we make 
explicit to facilitate the analysis. 

Counterfactuals are intertwined with notions of 
causality: We do not typically express counterfactual 
sentences without assuming a causal relationship be- 
tween the counterfactual antecedent and the counter- 
factual consequent. For example, we can safely state 
“If the sprinkler were on, the grass would be wet”, 
but the contrapositive form of the same sentence in 
counterfactual form, “If the grass were dry, then the 
sprinkler would not be on”, strikes us as strange, be- 
cause we do not think the state of the grass has causal 
influence on the state of the sprinkler. Likewise, we 

230 Causal Reasoning 

From: AAAI-94 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved. 



do not state “All blocks on this table are green, hence, 
had this white block been on the table, it would have 
been green”. In fact, we could say that people’s use 
of counterfactual statements is aimed precisely at con- 
veying generic causal information, uncontaminated by 
specific, transitory observations, about the real world. 
Observed facts often do reflect strange combinations 
of rare eventualities (e.g., all blocks being green) that 
have nothing to do with general traits of influence and 
behavior. The counterfactual sentence, however, em- 
phasizes the law-like, necessary component of the re- 
lation considered. It is for this reason, we speculate, 
that we find such frequent use of counterfactuals in 
ordinary discourse. 

The importance of equipping machines with the ca- 
pability to answer counterfactual queries lies precisely 
in this causal reading. By making a counterfactual 
query, the user intends to extract the generic, necessary 
connection between the antecedent and consequent, re- 
gardless of the contingent factual information available 
at that moment. 

Because of the tight connection between counterfac- 
tuals and causal influences, any algorithm for comput- 
ing counterfactual queries must rely heavily on causal 
knowledge of the domain. This leads naturally to the 
use of probabilistic causal networks, since these net- 
works combine causal and probabilistic knowledge and 
permit reasoning from causes to effects as well as, con- 
versely, from effects to causes. 

To emphasize the causal character of counterfactu- 
als, we will adopt the interpretation in (Pearl 1993a), 
according to which a counterfactual sentence “If it were 
A, then B would have been” states that B would pre- 
vail if A were forced to be true by some unspecified 
action that is exogenous to the other relationships con- 
sidered in the analysis. This action-based interpreta- 
tion does not permit inferences from the counterfactual 
antecedent towards events that lie in its past. For ex- 
ample, the action-based interpretation would ratify the 
counterfactual 

If Kennedy were alive today, then 
would have been in a better shape 

the country 

but not the counterfactual 
If Kennedy were alive today, then Oswald would 
have been alive as well. 

The former is admitted because the causal influence of 
Kennedy on the country is presumed to remain valid 
even if Kennedy became alive by an act of God. The 
second sentence is disallowed because Kennedy being 
alive is not perceived as having causal influence on Os- 
wald being alive. The information intended in the sec- 
ond sentence is better expressed in an indicative mood: 

If Kennedy was alive today then he could not have 
been killed in Dallas, hence, Jack Ruby would 
not have had a reason to kill Oswald and Oswald 
would have been alive today. 

Our interpretation of counterfactual antecedents, 
which is similar to Lewis’ (Lewis 1979) Miraculous 
Analysis, contrasts with interpretations that require 
that the counterfactual antecedent be consistent with 
the world in which the analysis occurs. The set of 
closest worlds delineated by the action-based interpre- 
tation contains all those which coincide with the fac- 
tual world except on possible consequences of the ac- 
tion taken. The probabilities assigned to these worlds 
will be determined by the relative likelihood of those 
consequences as encoded by the causal network. 

We will show that causal theories specified in func- 
tional form (as in (Pearl & Verma 1991; Druzdzel & 
Simon 1993; Poole 1993)) are sufficient for evaluating 
counterfactual queries, whereas the causal information 
embedded in Bayesian networks is not sufficient for 
the task. Every Bayes network can be represented by 
several functional specifications, each yielding differ- 
ent evaluations of a counterfactual. The problem is 
that, deciding what factual information deserves undo- 
ing (by the antecedent of the query) requires a model 
of temporal persistence, and, as noted in (Pearl 1993c), 
such a model is not part of static Bayesian networks. 
Functional specification, however, implicitly contains 
the temporal persistence information needed. 

The next section introduces some useful notation for 
concisely expressing counterfactual sentences/queries. 
We then present an example demonstrating the plausi- 
bility of the external action interpretation adopted in 
this paper. We then demonstrate that Bayesian net- 
works are insufficient for uniquely evaluating counter- 
factual queries whereas the functional model is suffi- 
cient. A counterfactual query algorithm is then pre- 
sented, followed by a re-examination of the earlier ex- 
ample with a quantitative analysis using this algo- 
rithm. The final section contains concluding remarks. 

Notation 
Let the set of variables describing the world be desig- 
nated by X = {Xi, X2,. . . , Xn}. As part of the com- 
plete specification of a counterfactual query, there are 
real-world observations that make up the background 
context. These observed values will be represented in 
the standard form 21, x2, . . . , xn. In addition, we must 
represent the value of the variables in the counterfac- 
tual world. To distinguish between xi and the value 
of Xi in the counterfactual world, we will denote the 
latter with an asterisk; thus, the value of Xi in the 
counterfactual world will be represented by $. We will 
also need a notation to distinguish between events that 
might be true in the counterfactual world and those 
referenced explicitly in the counterfactual antecedent. 
The latter are interpreted as being forced to the coun- 
terfactual value by an external action, which will be 
denoted by a hat (e.g., 2). 

Thus, a typical counterfactual query will have the 
form “What is P(c* Iti*, a, b)?” to be read as “Given 
that we have observed A = a and B = b in the real 
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A Ann at party 

Bob at party B I/): C Carl at party 

S Scuffle 

Figure 1: Causal structure reflecting the influence that 
Ann’s attendance has on Bob and Carl’s attendance, 
and the influence that Bob and Carl’s attendance has 
on their scuffling. 

world, if A were &*, then what is the probability that 
C would have been c*?” 

Party example 
To illustrate the external-force interpretations of coun- 
terfactuals, consider the following interpersonal behav- 
iors of Ann, Bob, and Carl: 
o Ann sometimes goes to parties. 
o Bob likes Ann very much but is not into the party 

scene. Hence, save for rare circumstances, Bob is at 
the party if and only if Ann is there. 

o Carl tries to avoid contact with Ann since they broke 
up last month, but he really likes parties. Thus, save 
for rare occasions, Carl is at the party if and only if 
Ann is not at the party. 

o Bob and Carl truly hate each other and almost al- 
ways scuffle when they meet. 
This situation may be represented by the diamond 

structure in Figure 1. The four variables A, B, C, and 
S have the following domains: 

aE iy 
{ 

G Ann is not at the party. 
E Ann is at the party. > 

{ 
bo 

bE bl 
s Bob is not at the party. 
E Bob is at the party. > 

CE zy 
{ 

E Carl is not at the party. 
E Carl is at the party. 1 

SE 1; 
{ 

z No scuffle between Bob and Carl. 
E Scuffle between Bob and Carl. > 

Now consider the following discussion between two 
friends (Laura and Scott) who did not go to the party 
but were called by Bob from his home (b = bo): 

Laura: Ann must not be at the party, or Bob 
would be there instead of at home. 

Scott: That must mean that Carl is at the 
party! 

Laura: 

Scott: 

If Bob were at the party, then Bob and 
Carl would surely scuffle. 

No. If Bob was there, then Carl would 
not be there, .because Ann would have 
been at the party. 

Laura: 

Scott: 

True. But if Bob were at the party even 
though Ann was not, then Bob and Carl 
would be scuffling. 

I agree. It’s good that Ann would not 
have been there to see it. 

In the fourth sentence, Scott tries to explain away 
Laura’s conclusion by claiming that Bob’s presence 
would be evidence that Ann was at the party which 
would imply that Carl was not at the party. Scott, 
though, analyzes Laura’s counterfactual statement as 
an indicative sentence by imagining that she had ob- 
served Bob’s presence at the party; this allows her 
to use the observation for abductive reasoning. But 
Laura’s subjunctive (counterfactual) statement should 
be interpreted as leaving everything in the past as it 
was (including conclusions obtained from abductive 
reasoning from real observations) while forcing vari- 
ables to their counterfactual values. This is the gist of 
her last statement. 

This example demonstrates the plausibility of inter- 
preting the counterfactual statement in terms of an 
external force causing Bob to be at the party, regard- 
less of all other prior circumstances. The only variables 
that we would expect to be impacted by the counter- 
factual assumption would be the descendants of the 
counterfactual variable; in other words, the counter- 
factual value of Bob’s attendance does not change the 
belief in Ann’s attendance from the belief prompted by 
the real-world observation. 

Probabilistic vs. functional specification 
In this section we will demonstrate that functionally 
modeled causal theories (Pearl & Verma 1991) are nec- 
essary for uniquely evaluating count&factual queries, 
while the conditional probabilities used in the standard 
specification of Bayesian networks are insufficient for 

i obtaining unique solutions. 
Reconsider the party example limited to the two 

variables A and B, representing Ann and Bob’s at- 
tendance, respectively. Assume that previous behavior 
shows P(biJai) = 0.9 and P(bolao) = 0.9. We observe 
that Bob and Ann are absent from the party and we 
wonder whether Bob would be there if Ann were there 
P(bT ItiT, ao, bo). The answer depends on the mecha- 
nism that accounts for the 10% exception in Bob’s 
behavior. If the reason Bob occasionally misses par- 
ties (when Ann goes) is that he is unable to attend ( 
e.g., being sick or having to finish a paper for AAAI), 
then the answer to our query would be 90%. How- 
ever, if the only reason for Bob’s occasional absence 
(when Ann goes) is that he becomes angry with Ann 
(in which case he does exactly the opposite of what she 
does), then the answer to our query is lOO%, because 
Ann and Bob’s current absence from the party proves 
that Bob is not angry. Thus, we see that the informa- 
tion contained in the conditional probabilities on the 
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observed variables is insufficient for answering coun- 
terfactual queries uniquely; some information about 
the mechanisms responsible for these probabilities is 
needed as well. 

The functional specification, which provides this in- 
formation, models the influence of A on B by a deter- 
ministic function 

where eb stands for all unknown factors that may in- 
fluence B and the prior probability distribution P(cb) 
quantifies the likelihood of such factors. For example, 
whether Bob has been grounded by his parents and 
whether Bob is angry at Ann could make up two pos- 
sible components of eb. Given a Specific value for Eb, 
B becomes a deterministic function of A; hence, each 
value in eb’s domain specifies a response function that 
maps each value of A to some value in B’s domain. In 
general, the domain for eb could contain many compo- 
nents, but it can always be replaced by an equivalent 
variable that is minimal, by partitioning the domain 
into equivalence regions, each corresponding to a sin- 
gle response function (Pearl 199313). Formally, these 
equivalence classes can be characterized as a function 
rb : dom(rb) + N, as follows: 

0 if Fb(aO, Eb) = 0 & Fb(ai, Eb) = 0 

rb(cb) = 
1 if Fb(ae, eb) = 0 & Fb(ar, Eb) = I 
2 if Fb(ac, Eb) = 1 & Fb(al,eb) = 0 
3 if Fb(aO, Eb) = I & Fb(ai, Eb) = I 

Obviously, rb can be regarded as a random variable 
that takes on as many values as there are functions 
between A and B. We will refer to this domain- 
minimal variable as a response-function variable. rb 
is closely related to the potential response variables in 
Rubin’s model of counterfactuals (Rubin 1974), which 
was introduced to facilitate causal inference in statis- 
tical analysis (Balke & Pearl 1993). 

For this example, the response-function variable for 
B has a four-valued domain rb E (0, 1,2,3} with the 
following functional specification: 

b = fb(% rb) = hb,&) (1) 

where 

hb,O(a) = b0 (2) 

hb,l(a) = 
bo if a = a0 
bl ifa=ar 

hb,2(a) = 
bl ifa=ac 
bo if a = al 

hb,3(a) = h (5) 

specify the mappings of the individual response func- 
tions. The prior probability on these response func- 
tions P(rb) in conjunction with fb(a, rb) fully parame- 
terizes the model. 

In practice, specifying a functional model is not as 
daunting as one might think from the example above. 
In fact, it could be argued that the subjective judg- 
ments needed for specifying Bayesian networks (i.e., 
judgments about conditional probabilities) are gen- 
erated mentally on the basis of a stored model of 
functional relationships. For example, in the noisy- 
OR mechanism, which is often used to model causal 
interactions, the conditional probabilities are deriva- 
tives of a functional model involving AND/OR gates, 
corrupted by independent binary disturbances. This 
model is used, in fact, to simplify the specification of 
conditional probabilities in Bayesian networks (Pearl 
1988). 

Given P(rb), we can uniquely evaluate the counter- ‘An observation by D. Heckerman 
factual query “What is P(bi Iii:, ao, bo)?” (i.e., “Given 

(personal 
communication) 

A = a0 and B = bo, if A were al, then what is the 
probability that B would have been bl?“). The action- 
based interpretation of counterfactual antecedents im- 
plies that the disturbance cb, and hence the response- 
function rb, is unaffected by the actions that force the 
counterfactual values’; therefore, what we learn about 
the response-function from the observed evidence is ap- 
plicable to the evaluation of belief in the counterfac- 
tual consequent. If we observe (ao, bo), then we are 
certain that rb E (0, l}, an event having prior prob- 
ability P( rb = 0) + P(rb = 1). Hence, this evidence 
leads to an updated posterior probability for rb (let 
$(rb) = (P(rb=o), P(rb=l), P(r&), P(r&))) 

p(rb) = ?(rblaO,bO) = 

P( rb=o) P( rb=l) 
P(rb=o) -k P(rb=l) ’ P(rb=o) + P(rb=l) 

According to Eqs. 1-5, if A were forced to al, then 
B would have been bl if and only if rb E { 1,3}, which 
has probability P’(rb=I) -I- P’(rb=3) = P’(rb=I). This 
is exactly the solution to the counterfactual query, 

P(bTIiiT, ao, bo) = P’(rb=l) = 
P( rb=l) 

P(rb=o) + P(rb=l) * 
This analysis is consistent with the prior propensity 
account of (Skyrms 1980). 

What if we are provided only with the conditional 
probability (P(bla)) instead of a functional model 
(fb(% rb) and p(rb))? Th ese two specifications are re- 
lated by: 

P(hlao) = P(r&) + P(r&) 
P(hlal) = P(rb=l) + P(r&). 

which show that P(rb) is not, in general, uniquely de- 
termined by the conditional distribution P(bla). 

Hence, given a counterfactual query, a functional 
model always leads to a unique solution, while a 
Bayesian network seldom leads to a unique solution, 
depending on whether the conditional distributions of 
the Bayesian network sufficiently constrain the prior 
distributions of the response-function variables in the 
corresponding functional model. 
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Evaluating counterfactual queries 
From the last section, we see that the algorithm for 
evaluating counterfactual queries should consist of: (1) 
compute the posterior probabilities for the disturbance 
variables, given the observed evidence; (2) remove the 
observed evidence and enforce the value for the coun- 
terfactual antecedent; finally, (3) evaluate the proba- 
bility of the counterfactual consequent, given the’ con- 
ditions set in the first two steps. 

An important point to remember is that it is not 
enough to compute the posterior distribution of each 
disturbance variable (e) separately and treat those 
variables as independent quantities. Although the dis- 
turbance variables are initially independent, the evi- 
dence observed tends to create dependencies among the 
parents of the observed variables, and these dependen- 
cies need to be represented in the posterior distribu- 
tion. An efficient way to maintain these dependencies 
is through the structure of the causal network itself. 

Thus, we will represent the variables in the counter- 
factual world as distinct from the corresponding vari- 
ables in the real world, by using a separate network 
for each world. Evidence can then be instantiated on 
the real-world network, and the solution to the coun- 
terfactual query can be determined as the probability 
of the counterfactual consequent, as computed in the 
counterfactual network where the counterfactual an- 
tecedent is enforced. But, the reader may ask, and 
this is key, how are the networks for the real and coun- 
terfactual worlds linked? Because any exogenous vari- 
able, Ed, is not influenced by forcing the value of any 
endogenous variables in the model, the value of that 
disturbance will be identical in both the real and coun- 
terfactual worlds; therefore, a single variable can rep- 
resent the disturbance in both worlds. ca thus becomes 
a common causal influence of the variables represent- 
ing A in the real and counterfactual networks, respec- 
tively, which allows evidence in the real-world network 
to propagate to the counterfactual network. 

Assume that we are given a causal theory T = 
(O,O~) as defined in (Pearl & Verma 1991). D 
is a directed acyclic graph (DAG) that specifies the 
structure of causal influences over a set of variables 
x = {X1,X2,... , Xra}. 00 specifies a functional map- 
ping xi = fi(pa(xi), ei) (pa(xi) represents the value of 
Xi’s parents) and a prior probability distribution P(Q) 
for each disturbance ~a’ (we assume that Q’S domain is 
discrete; if not, we can always transform it to a dis- 
crete domain such as a response-function variable). A 
counterfactual query “What is P(c*Iti*, obs)?” is then 
posed, where c* specifies counterfactual values for a set 
of variables C c X, 6* specifies forced values for the 
set of variables in the counterfactual antecedent, and 
obs specifies observed evidence. The solution can be 
evaluated by the following algorithm: 

t 1. From the known causal theory T create a Bayesian 
network < G, P > that explicitly models the distur- 
bances as variables and distinguishes the real world 
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2. 

3. 

4. 

variables from their counterparts in the counterfac- 
tual world. G is a DAG defined over the set of vari- 
ables V = XUX*Uc,whereX=(Xr,X2 ,..., Xn} 
is the original set of variables modeled by T, X* = 
{x~,x;,...,x;~ is their counterfactual world rep- 
resentation, and E = (~1, ~2, . . . , en) represents the 
set of disturbance variables that summarize the com- 
mon external causal influences acting on the mem- 
bers of X and X*. P is the set of conditional proba- 
bility distributions P( K Ipa( E)) that parameterizes 
the causal structure G. 
If Xj E pa(&) in D, then Xj E pa(Xi) and 
X! E pa(Xr) in G (pa(Xi) is the set of Xi’s par- 
ents). In addition, I E pa(Xi) and ~a E pa(Xr) 
in G. The conditional probability distributions for 
the Bayesian network are generated from the causal 
theory : 

P(xi Ipax (xi), fi) 1 = if xi = fi(pa,(xi), Q) 
0 otherwise 

where pax(xi) is the set of values of the variables in 
X I7 pa(xi). 

P(xa* IpaX* (x:i*), Q) = P(xi Ipax (xi), I) 

whenever xi = xi* and pax*(xr) = pax(xi). P(Q) is 
the same as specified by the functional causal theory 
T. 

Observed evidence. The observed evidence obs is in- 
stantiated on the real world variables X correspond- 
ing to obs. 

Counterfactual antecedent. For every forced value in 
the counterfactual antecedent specification St E ii*, 
apply the action-based semantics of set(Xf = 2:) 
(see (Pearl 199313; Spirtes, Glymour, & Scheines 
1993)), which amounts to severing all the causal 
edges from pa(X,*) to X,* for all x;;* E &* and in- 
stantiating X8? to the value specified in it*. 
Belief propagation. After instantiating the observa- 
tions and actions in the network, evaluate the belief 
in c* using the standard belief update methods for 
Bayesian networks (Pearl 1988). The result is the 
solution to the counterfactual query. 
In the last section, we noted that the conditional 

distribution P(xklpa(Xk)) for each variable Xk E X 
constrains, but does not uniquely determine, the prior 
distribution P(Q) of each disturbance variable. Al- 
though the composition of the external causal influ- 
ences are often not precisely known, a subjective dis- 
tribution over response functions may be assessable. If 
a reasonable distribution can be selected for each rel- 
evant disturbance variable, the implementation of the 
above algorithm is straightforward and the solution is 
unique; otherwise, bounds on the solution can be ob- 
tained using convex optimization techniques. (Balke 
& Pearl 1993) demonstrates this optimization task in 



deriving bounds on causal effects from partially con- 
trolled experiments. 

A network generated by the above algorithm may 
often be simplified. If a variable X* in the counter- 
factual world is not a causal descendant of any of the 
variables mentioned in the counterfactual antecedent 
&*, then Xj and XT will always have identical distri- 
butions, because the causal influences that functionally 
determine Xj and X.J are identical. Xj and XT may 
therefore be treated as the same variable. In this case, 
the conditional distribution P(xj Ipa( is sufficient, 
and the disturbance variable ej and its prior distribu- 
tion need not be specified. 

Party again 
Let us revisit the party example. Assuming we have 
observed that Bob is not at the party (6 = bo), we want 
to know whether Bob and Carl would have scuffled if 
Bob were at the party (i.e., “What is P(si l&i, bo)?“). 

Suppose that we are supplied with the following 
causal theory for the model in Figure 1: 

where 

a= fa @a) = ha,raO 
b= fb (a, rb) = hb,Pb(a) 

c = f&v,) = h,,.,(a) 
s= fs (b, c, 4 = hs,rs (h c) 

P(ra) 0.40 if ra = 0 = 
0.60 if ra = 1 
0.07 if rb = 0 

p(rb) = 
0.90 if r1, = I 
0.03 if rb = 2 
0 if rb = 3 

( 0.05 if rc = 0 

( 0.10 if rc = 3 

0.05 if rs = 0 
P(5) 0.90 = = 

0.05 
if rs = 8 
if rs 9 

0 otherwise 

and 

ha,o() = a0 

ha,l() = al 

hs,o(h c) = so 

h,,s(h c) = 

h&b, c) = 

SO if (b, c) # (h, cl) 

~1 if (b, c) = @I, cl) 

SO if (b, c) E {(h, CO), (bo, ~1)) 
~1 if (b, c) E {(h co), (h,cl)l 

The response functions for B and C (ha,,, and hC,Tc 
both take the same form as that given in Eq. (5). 

Figure 2: Bayesian model for evaluating counterfactual 
queries in the party example. The variables marked 
with * make up the counterfactual world, while those 
without *, the factual world. The r variables index the 
response functions. 

Figure 3: To evaluate the query P(si I&i, bo), the net- 
work of Figure 2 is instantiated with observation bo 
and action &; (links pointing to bi are severed). 

These numbers reflect the authors’ understanding of 
the characters involved. For example, the choice for 
P(rb) represents our belief that Bob usually is at the 
party if and only if Ann is there (rb = 1). However, 
we believe that Bob is sometimes (- 7% of the time) 
unable to go to the party (e.g., sick or grounded by his 
parents); this exception is represented by rb = 0. In 
addition, Bob would sometimes (- 3% of the time) go 
to the party if and only if Ann is not there (e.g., Bob 
is in a spiteful mood); this exception is represented by 
rb = 2. Finally, P(rs) represents our understanding 
that there is a slight chance (5%) that Bob and Carl 
would not scuffle regardless of attendance (rs = 0), 
and the same chance (P(rs=9) = 5%) that a scuffle 
would take place either outside or inside the party (but 
not if only one of then shows up). 

Figure 2 shows the Bayesian network generated from 
step 1 of the algorithm. After instantiating the real 
world observations (bo) and the actions (ii) specified 
by the counterfactual antecedent in accordance with 
steps 2 and 3, the network takes on the configuration 
shown in Figure 3. 

If we propagate the evidence through this Bayesian 
network, we will arrive at the solution 

P(s$;, bo) = 0.79. 
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which is consistent with Laura’s assertion that Bob and 
Carl would have scuffled if Bob were at the party, given 
that Bob actually was not at the party. Compare this 
to the solution to the indicative query that Scott was 
thinking of: 

P(slIh) = 0.11. 

that is, if we had observed that Bob was at the party, 
then Bob and Carl would probably not have scuffled. 
This emphasizes the difference between counterfactual 
and indicative queries and their solutions. 

Special Case: Linear-Gaussian Models 
Assume that knowledge 
equation model 

is specified by the structural 

ii! = BZ+Z 

where B is a triangular matrix (corresponding to a 
causal model that is a DAG), and we are given the 
mean i& and covariance C E,E of the disturbances ?(as- 
sumed to be Gaussian). The mean and covariance of 
the observable variables Z are then given by: 

FX = S& 
c x,x = S&,3 

where S = (I - B)-l. 

(6) 
(7) 

Under such a model, there are well-known formulas 
(Whittaker 1990, p. 163) f or evaluating the conditional 
mean and covariance of 3c under some observations 0’: 

-+ 
Pxlo = Fx + ~,,oz$(~- PO) (8) 

c x,x10 = c x,x - ~x,oq$~o,, (9) 
where, for every pair of sub-vectors, z’and 6, of d, CZ,w 
is the sub-matrix of Cx,x with entries corresponding to 
the components of Z’ and 5. Singularities of C terms 
are handled by appropriate means. 

Similar formulas apply for the mean and covariance 
of ac’ under an action z. B is replaced by the action- 
pruned matrix B = [6ij] defined by: 

&ij = i 

ifXiEg 
ij otherwise 

The mean and covariance of 3 under g is evaluated 
using Eqs. (6) and (7), where B is replaced by &: 

FX = Lq!& (11) 
2x,x = ~c~,bgt (12) 

where 3 = (I - B)-l. We can then evaluate the distri- 
bution of Z under the action z by conditioning on the 
value of the action z according to Eqs. (8) and (9): 

-a A 2 
PXlii = Pxla = ix + YiI,,a2,l,(ii - 5,) (13) 

c x,x)& g YiIx,xla = 2x,1 - ilz,aC,l,Ca,x (14) 

To evaluate the counterfactual query P(x*lii*o) we 
first update the prior distribution of the disturbances 
by the observations 0’: 

-0 PE g /&lo = /& + C,,3(S~,,3y(o’- Go) 

q, e &lo = &,C - C,,,St(SC,,,St)-lSC,,, 
c 

We then evaluate the means &la.o and variances 
x+ ,xLl~oO of the variables in the counterfactual world 

(x*) under the action k* using Eqs. (13) and (14), with 
Co and p” replacing C and p. 

c A x*,x*pi*0 = c;,,,, = IQ, - Q,(Q a)-12; x , t 

where, from Eqs. (11) and (12), 3: = SFz and Y&,, = 
Pq E& 

It’is clear that this procedure can be applied to non- 
triangular matrices, as long as S is non-singular. In 
fact, the response-function formulation opens the way 
to incorporate feedback loops within the Bayesian net- 
work framework. 

Conclusion 
The evaluation of counterfactual queries is applicable 
to many tasks. For example, determining liability of 
actions (e.g., “If you had not pushed the table, the 
glass would not have broken; therefore, you are li- 
able”). In diagnostic tasks, counterfactual queries can 
be used to determine which tests to perform in order 
to increase the probability that faulty components are 
identified. In planning, counterfactuals can be used 
for goal regression or for determining which actions, 
if performed, could have avoided an observed, unex- 
pected failure. Thus, counterfactual reasoning is an 
essential component in plan repairing, plan compila- 
tion and explanation-based learning. 

In this paper we have presented formal notation, 
semantics, representation scheme, and inference al- 
gorithms that facilitate the probabilistic evaluation 
of counterfactual queries. World knowledge is repre- 
sented in the language of modified causal networks, 
whose root nodes are unobserved, and correspond to 
possible functional mechanisms operating among fami- 
lies of observables. The prior probabilities of these root 
nodes are updated by the factual information transmit- 
ted with the query, and remain fixed thereafter. The 
antecedent of the query is interpreted as a proposition 
that is established by an external action, thus prun- 
ing the corresponding links from the network and fa- 
cilitating standard Bayesian-network computation to 
determine the probability of the consequent. 

At this time the algorithm has not been implemented 
but, given a subjective prior distribution over the re- 
sponse variables, there are no new computational tasks 
introduced by this formalism, and the inference process 
follows the standard techniques for computing beliefs 
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in Bayesian networks (Pearl 1988). If prior distribu- 
tions over the relevant response-function variables can- 
not be assessed, we have developed methods of using 
the standard conditional-probability specification of 
Bayesian networks to compute upper and lower bounds 
on counterfactual probabilities (Balke & Pearl 1994). 

The semantics and methodology introduced in this 
paper can be adopted to nonprobabilistic formalisms 
as well, as long as they support two essential compo- 
nents: abduction (to abduce plausible functional mech- 
anisms from the factual observations) and causal pro- 
jection (to infer the consequences of the action-like an- 
tecedent). We should note, though, that the license 
to keep the response-function variables constant stems 
from a unique feature of counterfactual queries, where 
the factual observations are presumed to occur not ear- 
lier than the counterfactual action. In general, when 
an observation takes place before an action, constancy 
of response functions would be justified if the environ- 
ment remains relatively static between the observation 
and the action (e.g., if the disturbance terms ei) rep- 
resent unknown pre-action conditions). However, in 
a dynamic environment subject to stochastic shocks 
a full temporal analysis using temporally-indexed net- 
works may be warranted or, alternatively, a canonical 
model of persistence should be invoked (Pearl 1993c). 
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