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Abstract or untagged treebanks. ’ When trained on an untagged 

This paper presents a method for constructing de- 
terministic Prolog parsers from corpora of parsed 
sentences. Our approach uses recent machine 
learning methods for inducing Prolog rules from 
examples (inductive logic programming). We dis- 
cuss several advantages of this method compared 
to recent statistical methods and present results 
on learning complete parsers from portions of the 
ATIS corpus. 

Introduction 

corpus, it constructs it’s own syntactic and/or seman- 
tic classes of words and phrases that allow it to deter- 
ministically parse the corpus. It can also learn to pro- 
duce case-role assignments instead of syntactic parse 
trees and can use learned lexical and semantic classes 
to resolve ambiguities such as prepositional phrase at- 
tachment and lexical ambiguity (Zelle and Mooney, 
1993b). Fourth, it uses a single, uniform parsing frame- 
work to perform all of these tasks and a single, general 
learning method that has also been used to induce a 
range of diverse logic programs from examples (Zelle 
and Mooney, 1994). 

Recent approaches to constructing robust parsers 
from corpora primarily use statistical and probabilis- 
tic methods such as stochastic context-free grammars 
(Black et al., 1992; P ereira and Schabes, 1992). Al- 
though several current methods learn some symbolic 
structures such as decision trees (Black et al., 1993) 
and transformations (Brill, 1993), statistical methods 
still dominate. In this paper, we present a method that 
uses recent techniques in machine learning to construct 
symbolic, deterministic parsers from parsed corpora 
(treebanks). Specifically, our approach is implemented 
in a program called CHILL (Zelle and Mooney, 1993b) 
that uses inductive logic programming (ILP) (Muggle- 
ton, 1992) to learn heuristic rules for controlling a de- 
terministic shift-reduce parser written in Prolog. 

The remainder of the paper is organized as follows. 
In section 2, we summarize our ILP method for learn- 
ing deterministic parsers, and how this method was 
tailored to work with existing treebanks. In section 3, 
we present and discuss experimental results on learn- 
ing parsers from the ATIS corpus of the Penn Treebank 
(Marcus et al., 1993). Section 4 covers related work, 
and section 5 presents our conclusions. 

The Chill System 
Overview 

We believe our approach offers several potential 
advantages compared to current methods. First, it 
constructs deterministic shift-reduce parsers, which 
are very powerful and efficient (Tomita, 1986) and 
arguably more cognitively plausible (Marcus, 1980; 
Berwick, 1985). Second, it constructs complete parsers 
from scratch that produce full parse trees, as opposed 
to producing only bracketings (Pereira and Schabes, 
1992; Brill, 1993) or requiring an existing, complex 
parser that over-generates (Black et al., 1992; Black 
et al., 1993). Third, the approach is more flexible in 
several ways. It can produce parsers from either tagged 

Our system, CHILL, (Constructive Heuristics Induc- 
tion for Language Learning) is an approach to parser 
acquisition which utilizes a general learning mecha- 
nism. The input to the system is a set of training 
instances consisting of sentences paired with the de- 
sired parses. The output is a shift-reduce parser (in 
Prolog) which maps sentences into parse trees. 

The CHILL algorithm consists of two distinct tasks. 
First, the training instances are used to formulate an 
overly-general shift-reduce parser that is capable of 
producing parses from sentences. The initial parser is 
overly-general in that it produces a great many spuri- 
ous analyses for any given input sentence. The parser is 
then specialized by introducing search-control heuris- 
tics. These control heuristics limit the contexts in 

*This research was partially supported by the NSF un- 
der grant IRI-9102926 and the Texas Advanced Research 
Program under grant 003658114. 

lIn an untagged treebank, parses are represented as 
phrase-level word groupings without lexical categories dom- 
inating the words (e.g. parsed text from Penn Treebank 
(Marcus et al., 1993)) 
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which certain operations 
the spurious analyses. 

are performed, eliminating 

Constructing the Overly-General Parser 
The syntactic parse of a sentence is a labeled bracket- 
ing of the words in the sentence. For example, the noun 
phrase, “a trip to Dallas”, might be decomposed into 
component noun and prepositional phrases as: [np[npa 
trip] Lpto [np dallas]]]. We represent such an analy- 
sis as a Prolog term of the form: np: Cnp: Ca, trip1 , 
pp: [to, np: [dallas]]]. 

A shift-reduce parser to produce such analyses is eas- 
ily implemented as a logic program. The state of the 
parse is reflected by the contents of the stack and input 
buffer. A new state is produced by either removing a 
single word from the buffer and pushing it onto the 
stack (a shift operation), or by popping the top one 
or two stack elements and combining them into a new 
constituent which is then pushed back onto the stack 
(a reduce operation). 

Each operation can be represented by a single pro- 
gram clause with two arguments representing the cur- 
rent stack and input buffer, and two arguments to rep- 
resent their state after applying the operator. For ex- 
ample, the operations and associated clauses required 
to parse the above example phrase are as follows (the 
notation, reduce(N) Cat, indicates that the top N 
stack elements are combined to form a constituent with 
label, Cat): 
reduce( 2) pp: 

op ( [Sl , S2 I Ssl , Words, Cpp:CS1,S21ISsl, Words). 
reduce(2) np: 

op([Sl,S2ISsl, Words, Cnp:CSl,S21 ISsl, Words). 
reduce(l) np: 

op(CSlI Ssl, Words, 
shft: op(Stack, 

[np:CSll I Ssl, Words). 
[WordlWordsl, CWordlStackl, Words). 

Building an overly-general parser from a set of train- 
ing examples is accomplished by constructing clauses 
for the op predicate. Each clause is a direct trans- 
lation of a required parsing action; there must be a 
reduce operation for each constituent structure as well 
as the general shift operator illustrated above. If the 
sentence analyses include empty categories (detectable 
as lexical tokens that appear in the analyses, but not 
in the sentence), each empty marker is introduced via 
its own shift operator which does not consume a word 
from the input buffer. 

The first step in the CHILL system is to analyze the 
training examples to produce the set of general oper- 
ators that will be used in the overly-general parser. 
Once the necessary operators have been inferred, they 
are ordered according to their frequency of occurrence 
in the training set. 

Parser Specialization 
The overly-general parser produces a great many spu- 
rious analyses for the training sentences because there 
are no conditions specifying when it is appropriate to 

use the various operators. The program must be spe- 
cialized by including control heuristics that guide the 
application of operator clauses. This section outlines 
the basic approach used in CHILL. More detail on in- 
corporating clause selection information in Prolog pro- 
grams can be found in (Zelle and Mooney, 1993a). 

Program specialization occurs in three phases. First, 
the training examples are analyzed to construct pos- 
itive and negative control examples for each operator 
clause. Examples of correct operator applications are 
generated by finding the first correct parsing of each 
training pair with the overly-general parser; any sub- 
goal to which an operator is applied in a successful 
parse becomes a positive control example for that op- 
erator. A positive control example for any operator is 
considered a negative example for all previous opera- 
tors that do not have it as a positive example. Note 
that this assumes a deterministic framework in which 
each sentence will have a single preferred parsing. Once 
an operator is found to be applicable to a particular 
parser state, subsequent operators will not be tried. 
For example, in parsing the above phrase, when the re- 
duce(2) NP operator is first applied, the call to op ap- 
pears as: op( [trip,al , [to,dallas] , A, B) where A 
and B are as yet uninstantiated output variables. This 
subgoal would be stored as a positive control example 
for the reduce(2) NP operator, and as a negative con- 
trol example for reduce(2) PP, assuming the order 
of operator clauses shown above. 

In the second phase, a general first-order induction 
algorithm is employed to learn a control rule for each 
operator. This control rule comprises a Horn-clause 
definition that covers the positive control examples for 
the operator but not the negative. There is a growing 
body of research in inductive logic programming which 
addresses this problem. CHILL combines elements from 
bottom-up techniques found in systems such as CIGOL 
(Muggleton and Buntine, 1988) and GOLEM (Muggle- 
ton and Feng, 1992) and top-down methods from sys- 
tems like FOIL (Quinlan, 1990), and is able to invent 
new predicates in a manner analogous to CHAMP (Ki- 
jsirikul et al., 1992). Details of the CHILL induction 
algorithm can be found in (Zelle and Mooney, 1993b; 
Zelle and Mooney, 1994). 

The final step in program specialization is to “fold” 
the control information back into the overly-general 
parser. A control rule is easily incorporated into the 
overly-general program by unifying the head of an op- 
erator clause with the head of the control rule for the 
clause and adding the induced conditions to the clause 
body. The definitions of any invented predicates are 
simply appended to the program. As an example, the 
reduce(2) pp clause might be modified as: 

op([np:A,BISsl, Words, [pp:[np:A,B] ISsl,Words) :- 
preposition(B). 

preposition(of). preposition(t.0). . . . 

Here, the induction algorithm invented a new predicate 
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representing the category “preposition.“2 This new bank (specifically, the sentences in the file ti-tb). We 
predicate has been incorporated to form the rule which chose this particular data because it represents realistic 
may be roughly interpreted as stating: “If the stack input from human-computer interaction, and because 
contains an NP followed by a preposition, then reduce it has been used in a number of other studies on au- 
this pair to a PP.” The actual control rule learned for tomated grammar acquisition (Brill, 1993; Pereira and 
this operator is more complex, but this simple example Schabes, 1992) that can serve as a basis for comparison 
illustrates the basic process. to CHILL. 

Parsing the Treebank 
Training a program to do accurate parsing requires 
large corpora of parsed text for training. Fortunately, 
such treebanks are being compiled and becoming avail- 
able. For the current experiments, we have used parsed 
text from a preliminary version of the Penn Treebank 
(Marcus et al., 1993). One complication in using this 
data is that sentences are parsed only to the “phrase 
level”, leaving the internal structure of NPs unana- 
lyzed and allowing arbitrary-arity constituents. Rather 
than forcing the parser to learn reductions for arbitrary 
length constituents, CHILL was restricted to learning 
binary-branching structures. This simplifies the parser 
and allows for a more direct comparison to previous 
bracketing experiments (e.g. (Brill, 1993; Pereira and 
Schabes, 1992)) which use binary bracketings. 

Making the treebank analyses compatible with the 
binary parser required “completion” of the parses into 
binary-branching structures. This “binarization” was 
accomplished automatically by introducing special in- 
ternal nodes in a right-linear fashion. For example, 
the noun-phrase, np : [the, big, orange, cat], would 
be binarized to create: np: [the) int (np) : [big, 
int (np) : [orange, cat] 11. The special labeling 
(int(np) for noun phrases, int(s) for sentences, etc.) 
permits restoration of the original structure by merg- 
ing internal nodes. Using this technique, the re- 
sulting parses can be compared directly with tree- 
bank parses. All of the experiments reported below 
were done with automatically binarized training ex- 
amples; control rules for the artificial internal nodes 
were learned in exactly the same way as for the origi- 
nal constituents. 

Experimental Results 
The Data 
The purpose of our experiments was to investigate 
whether the mechanisms in CHILL are sufficiently ro- 
bust for application to real-world parsing problems. 
There are two facets to this question, the first is 
whether the parsers learned by CHILL generalize well 
to new text. An additional issue is whether the in- 
duction mechanism can handle the large numbers of 
examples that would be necessary to achieve adequate 
performance on relatively large corpora. 

We selected as our test corpus a portion of the ATIS 
dataset from a preliminary version of the Penn Tree- 

21nvented predicates actually have system 
names. They are renamed here for clarity. 

generated 

Experiments were actually carried out on four dif- 
ferent variations of the corpus. A subset of the cor- 
pus comprising sentences of length less than 13 words 
was used to form a more tractable corpus for system- 
atic evaluation and to test the effect of sentence length 
on performance. The entire corpus contained 729 sen- 
tences with an average length of 10.3 words. The re- 
stricted set contains 536 sentences averaging 7.9 words 
in length. A second dimension of variation is the form 
of the input sentences and analyses. Since CHILL has 
the ability to create its own categories, it can use un- 
tagged parse trees. In order to test the advantage 
gained by tagging, we also ran experiments using lexi- 
cal tags instead of words on both the full and restricted 
corpus. 

Experimental Met hod 
Training and testing followed the standard paradigm 
of first choosing a random set of test examples and 
then creating parsers using increasingly larger subsets 
of the remaining examples. The performance of these 
parsers was then determined by parsing the test exam- 
ples. Obviously, the most stringent measure of accu- 
racy is the proportion of test sentences for which the 
produced parse tree exactly matches the treebanked 
parse for the sentence. Sometimes, however, a parse 
can be useful even if it is not perfectly accurate; the 
treebank itself is not entirely consistent in the handling 
of various structures. 

To better gauge the partial accuracy of the parser, 
we adopted a procedure for returning and scoring par- 
tial parses. If the parser runs into a “dead-end” while 
parsing a test sentence, the contents of the stack at the 
time of impasse is returned as a single, flat constituent 
labeled S. Since the parsing operators are ordered and 
the shift operator is invariably the most frequently 
used operator in the training set, shift serves as a sort 
of default when no reduction action applies. Therefore, 
at the time of impasse, all of the words of the sentence 
will be on the stack, and partial constituents will have 
been built. The contents of stack reflect the partial 
progress of the parser in finding constituents. 

Partial scoring of trees is computed by determin- 
ing the extent of overlap between the computed parse 
and the correct parse as recorded in the treebank. 
Two constituents are said to match if they span ex- 
actly the same words in the sentence. If constituents 
match and have the same label, then they are iden- 
tical. The overlap between the computed parse and 
the correct parse is computed by trying to match 
each constituent of the computed parse with some 
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Table la: Lexical Tags Table lb: Raw Text 

Table 1: Results for restricted length corpus 

constituent in the correct parse. If an identical con- 
stituent is found, the score is 1.0, a matching con- 
stituent with an incorrect label scores 0.5. The sum 
of the scores for all constituents is the overlap score 
for the parse. The accuracy of the parse is then com- 
puted as Accuracy = (& + &)/2 where 0 is 
the overlap score, Found is the number of constituents 
in the computed’parse, and Correct is the number of 
constituents in the correct tree. The result is an av- 
erage of the proportion of the computed parse that is 
correct and the proportion of the correct parse that 
was actually found. 

Another accuracy measure, which has been used 
in evaluating systems that bracket the input sentence 
into unlabeled constituents, is the proportion of con- 
stituents in the parse that do not cross any constituent 
boundaries in the correct tree (Black, 1991). Of course, 
this measure only allows for direct comparison of sys- 
tems that generate binary-branching parse trees3 By 
binarizing the output of the parser in a manner anal- 
ogous to that described above, we can compute the 
number of sentences with parses containing no crossing 
constituents, as well as the proportion of constituents 
which are non-crossing over all test sentences. This 
gives a basis of comparison with previous bracketing 
results, although it should be emphasized that CHILL 
is designed for the harder task of actually producing 
labeled parses, and is not directly optimized for the 
bracketing task. 

Results 

The results of these experiments are summarized in 
Tables 1 and 2. The figures for the restricted length 
corpus in Table 1 reflect averages of three trials, while 
the results on the full corpus are averaged over two tri- 
als. The first column shows the size of the training set 
from which the parsers were derived, while the remain- 
ing columns present results for each of the four metrics 
outlined above. Correct is the percentage of test sen- 
tences with parses that matched the treebanked parse 

. exactly. Partial is partial correctness using the over- 
lap metric. The remaining columns reflect measures 
based on re-binarizing the parser output. O-Cross is 

3A tree containing a single, flat constituent covering 
the entire sentence always produces a perfect (non)crossing 
score. 

the proportion of test sentences having no constituents 
that cross constituents in the correct parsing. The re- 
maining column reports the percentage of (binarized) 
constituents that are consistent with the treebank (i.e. 
cross no constituents in the correct parse). 

The results for the restricted corpus in Table 1 are 
encouraging. While we know of no other results for 
parsing accuracy of automatically constructed parsers 
on this corpus, the figures of 33% completely correct 
using the tagged input and 17% on the raw text seem 
quite good for a relatively modest training set of 300 
sentences. The figures for O-cross and crossing% are 
about the same as those reported in studies of au- 
tomated bracketing for the unrestricted ATIS corpus 
(Brill (1993) reports 60% and 91.12%, respectively). 
However, our bracketing results for the unrestricted 
corpus are not as good. 

A comparison of Tables la and lb show that con- 
siderable advantage is gained by using word-class tags, 
rather than the actual words. This is to be expected 
as tagging significantly reduces the variety in the in- 
put. The results for raw-text use no special mechanism 
for handling previously unseen words occurring in the 
testing examples. Achieving 70% (partial) accuracy 
under these conditions seems quite good. Statistical 
approaches relying on n-grams or probabilistic context- 
free grammars would have difficulty due to the large 
number of terminal symbols (around 400) appearing in 
the modest-sized training corpus. The data for lexical 
selection would be too sparse to adequately train the 
pre-defined models. Likewise, the transformational ap- 
proach of (Brill, 1993) is limited to bracketing strings 
of lexical classes, not words. A major advantage of 
our approach is the ability of the learning mechanism 
to automatically construct and attend to just those 
features of the input that are most useful in guiding 
parsing. 

It should also be noted that the system created 
new categories in both situations. In the raw text 
experiments, CHILL regularly created categories for 
preposition, verb, form-of-to-be, etc.. With 
tagged input, various tags were grouped into classes 
such as the verb and noun forms. In both cases, the 
system also formed numerous categories and relations 
that seemed to defy any simple linguistic explanation. 
Nevertheless, these categories were helpful in parsing 
of new text. These results support our view that any 
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Table 2a: Lexical Tags 

Size Correct Partial O-Cross Crossing % 
50 6.2 54.0 33.1 68.9 
100 4.7 54.9 41.2 72.0 
150 8.5 59.6 39.7 71.5 

Table 2: Results for full corpus 

Table 2b: Raw Text 

practical acquisition system should be able to create 
its own categories, as it is unlikely that independently- 
crafted feature systems will capture all of the nuances 
necessary to do accurate parsing in a reasonably com- 
plex domain. 

Table 2 shows results for the full corpus. As one 
might expect, the results are not as good as for the re- 
stricted set. There are a number of factors that could 
lead to diminishing performance as a function of in- 
creasing sentence length. One explanation might be 
that the longer sentences are simply more complicated 
and, thus harder to parse accurately. If the difficulty 
is inherent in the sentences, the only solution is larger 
training sets. 

Another possible problem is the compounding of er- 
rors. If an operator is chosen incorrectly early in the 
parse, it might lead the parser into states that have not 
been encountered in training, leading to subsequent er- 
rors in the application of other operators. This factor 
might be mitigated by developing more robust training 
procedures. By providing control examples from erro- 
neous states as well as correct ones, the parser might be 
trained to be somewhat self-correcting, choosing cor- 
rect operators later on even in the face of previous 
errors. 

A third possibility is that the additional sentence 
length is “swamping” the induction algorithm. In- 
creasing the average sentence length significantly in- 
creases the number of control examples that must be 
handled by the induction mechanism. Training sizes of 
several hundred sentences give rise to induction over 
thousands of control examples. Additionally, longer 
sentences lend themselves to more conflicting analyses 
and may increase the amount of noise in the control 
data making it more difficult to spot useful generaliza- 
tions. Additional progress here would require further 
improvement in the efficiency and noise-handling ca- 
pabilities of the induction algorithm. 

Clearly further experimentation is needed to pin 
down where the most improvement can be made. The 
results so far do indicate that the approach has poten- 
tial. The current Prolog implementation running on a 
SPARC 2 was able to induce parsers from several hun- 
dred sentences in a few hours, producing over 700 lines 
of Prolog code. One trial was run using 400 tagged 
sentences from the full corpus; the resulting parser 
achieved 29.4% absolute accuracy and a partial scor- 
ing of 82%. Further improvements in efficiency may 
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make it feasible to 
training sentences. 

produce parsers from thousands of 

Related Work 
As mentioned above, most recent work on automati- 
cally constructing parsers from corpora has focused on 
acquiring stochastic grammars rather than symbolic 
parsers. When learning in this framework, “one sim- 
ply gathers statistics” to set the parameters of a pre- 
defined model (Charniak, 1993). However, there is a 
long tradition of research in AI and Machine Learn- 
ing suggesting the utility of techniques that extract 
underlying structural models from the data. Earlier 
work in learning symbolic parsers (Anderson, 1977; 
Berwick, 1985) used fairly weak learning methods spe- 
cific to language acquisition and were not tested on 
real corpora. CHILL represents the first serious appli- 
cation of modern, machine-learning methods to acquir- 
ing parsers from corpora. 

Brill (1993), p resents a technique for acquiring 
parsers that produce binary-branching syntax trees 
with unlabeled nonterminals. The technique, utilizing 
structural transformation rules based on lexical cate- 
gory information, has proven quite successful on real 
corpora. CHILL, which creates fully labeled parses, has 
a more general learning mechanism allowing it to make 
distinctions based on more subtle structural and lexical 
cues (e.g. creating semantic word classes for resolving 
attachment) . 

Our framework for learning deterministic, context- 
dependent parsers is very similar to that of (Simmons 
and Yu, 1992); h owever, there are two advantages of 
our ILP method compared to their exemplar matching 
method. First, ILP methods can handle unbounded, 
structured data so that the context does not need to 
be fixed to a limited window of the stack and the 
remaining sentence. The entire stack and remaining 
sentence is available as potential context for deciding 
which parsing operator to apply at each step. Second, 
the system is capable of creating its own syntactic and 
semantic word and phrase classes instead of relying on 
the user to provide part-of-speech tagging. 

CHILL's ability to invent new classes of words and 
phrases specifically for resolving ambiguities such as 
prepositional phrase attachment makes it particularly 
interesting. There is some existing work on learning 
lexical classes from corpora (Schiitze, 1992); however, 
the classes are based on word co-occurrence rather than 



the specific needs of parsing. There are also meth- 
ods for learning to resolve attachments using lexical 
information (Hindle and Rooth, 1993); however, they 
do not create new lexical classes. CHILL uses a single 
learning algorithm to perform both of these tasks. 

Conclusion 
This paper has demonstrated that modern machine- 
learning methods are capable of inducing traditional 
shift-reduce parsers from corpora, complementing the 
results of recent statistical methods. We believe that 
the primary strength of corpus-based methods is not 
the particular approach or type of parser employed 
(e.g. statistical, connectionist, or symbolic), but the 
fact that large amounts of real data are used to au- 
tomatically construct complex parsers that are in- 
tractable to build manually. However, we believe 
our approach based on a very general inductive-logic- 
programming method has several advantages such as 
efficient, deterministic parsing; production of complete 
labeled parse trees; and an ability to use untagged 
text and automatically create new, useful lexical and 
phrasal categories based directly on the needs of pars- 
ing. 

References 
Anderson, J. R. (1977). Induction of augmented tran- 

sition networks. Cognitive Science, 1:125-157. 
Berwick, B. (1985). The Acquisition of Syntactic 

Knowledge. Cambridge, MA: MIT Press. 

Black, E., Jelineck, F., Lafferty, J., Magerman, D., 
Mercer , R., and Roukos, S. (1993). Towards 
history-based grammars: Using richer models for 
probabilistic parsing. In Proceedings of the 31st 
Annual Meeting of the Association for Computa- 
tional Linguistics, pages 31-37. Columbus, Ohio. 

Black, E., Lafferty, J., and Roukaos, S. (1992). Devel- 
opment and evaluation of a broad-coverage prob- 
abilistic grammar of English-language computer 
manuals. In Proceedings of the 30th Annual Meet- 
ing of the Association for Computational Linguis- 
tics, pages 185-192. Newark, Delaware. 

Black, E. et. al. (1991). A procedure for quantitatively 
comparing the syntactic coverage of English gram- 
mars. In Proceedings of the Fourth DARPA Speech 
and Natural Language Workshop, pages 306-311. 

Brill, E. (1993). A t u omatic grammar induction and 
parsing free text: A transformation-based ap- 
proach. In Proceedings of the 31st Annual Meeting 
of the Association for Computational Linguistics, 
pages 259-265. Columbus, Ohio. 

Charniak, E. (1993). Statistical Language Learning. 
MIT Press. 

Hindle, D. and Rooth, M. (1993). Structural ambiguity 
and lexical relations. Computational Linguistics, 
19(1):103-120. 

Kijsirikul, B., Numao, M., and Shimura, M. (1992). 
Discrimination-based constructive induction of 
logic programs. In Proceedings of the Tenth Na- 
tional Conference on Artificial Intelligence, pages 
44-49. San Jose, CA. 

Marcus, M. (1980). A Theory of Syntactic Recogni- 
tion for Natural Language. Cambridge, MA: MIT 
Press. 

Marcus, M., Santorini, B., and Marcinkiewicz, M. 
(1993). Building a large annotated corpus of en- 
glish: The Penn treebank. Computationad Lin- 
guistics, 19(2):313-330. 

Muggleton, S. and Buntine, W. (1988). Machine in- 
vention of first-order predicates by inverting res- 
olution. In Proceedings of the Fifth International 
Conference on Machine Learning, pages 339-352. 
Ann Arbor, MI. 

Muggleton, S. and Feng, C. (1992). Efficient induction 
of logic programs. In Muggleton, S., editor, In- 
ductive Logic Programming, pages 281-297. New 
York: Academic Press. 

Muggleton, S. H., editor (1992). Inductive Logic Pro- 
gramming. New York, NY: Academic Press. 

Pereira, F. and Schabes, Y. (1992). Inside-outside rees- 
timation from partially bracketed corpora. In Pro- 
ceedings of the 30th Annual Meeting of the Asso- 
ciation for Computationad Linguistics, pages I28- 
135. Newark, Delaware. 

Quinlan, J. (1990). L earning logical definitions from 
relations. Machine Learning, 5(3):239-266. 

Schiitze, H. (1992). Context space. In Working 
Notes, AAAI Fadl Symposium Series, pages 113- 
120. AAAI-Press. 

Simmons, R. F. and Yu, Y. (1992). The acquisition and 
use of context dependent grammars for English. 
Computational Linguistics, 18(4):391-418. 

Tomita, M. (1986). Eficient Parsing for Natural Lan- 
guage. Boston: Kluwer Academic Publishers. 

Zelle, J. M. and Mooney, R. J. (1993a). Combining 
FOIL and EBG to speed-up logic programs. In 
Proceedings of the Thirteenth International Joint 
conference on Artificial intelligence, pages 1106- 
1111. Chambery, France. 

Zelle, J. M. and Mooney, R. J. (199313). Learn- 
ing semantic grammars with constructive induc- 
tive logic programming. In Proceedings of the 
Eleventh National Conference on Artificial Intel- 
ligence, pages 817-822. Washington, D.C. 

Zelle, J. M. and Mooney, R. J. (1994). Combining top- 
down and bottom-up methods in inductive logic 
programming. In Proceedings of the Eleventh In- 
ternational Conference on Machine Learning. New 
Brunswick, NJ. 

Corpus-Based 753 


