
Opponent Modeling in Poker

Darse Billings, Denis Papp, Jonathan Schaeffer, Duane Szafron
Department of Computing Science

University of Alberta
Edmonton, Alberta Canada T6G 2H1

{darse, dpapp, jonathan, duane}@cs.ualberta.ca

Abstract
Poker is an interesting test-bed for artificial
intelligence research. It is a game of imperfect
knowledge, where multiple competing agents must
deal with risk management, agent modeling,
unreliable information and deception, much like
decision-making applications in the real world. Agent
modeling is one of the most difficult problems in
decision-making applications and in poker it is
essential to achieving high performance. This paper
describes and evaluates Loki, a poker program capable
of observing its opponents, constructing opponent
models and dynamically adapting its play to best
exploit patterns in the opponents’ play.

Introduction
The artificial intelligence community has recently
benefited from the tremendous publicity generated by the
development of chess, checkers and Othello programs that
are capable of defeating the best human players. However,
there is an important difference between these board games
and popular card games like bridge and poker. In the board
games, players always have complete knowledge of the
entire game state since it is visible to both participants.
This property allows high performance to be achieved by
brute-force search of the game trees. Bridge and poker
involve imperfect information since the other players’
cards are not known; search alone is insufficient to play
these games well. Dealing with imperfect information is
the main reason why research about bridge and poker has
lagged behind other games. However, it is also the reason
why they promise higher potential research benefits.

Until recently, poker has been largely ignored by the
computing science community. However, poker has a
number of attributes that make it an interesting domain for
mainstream AI research. These include imperfect
knowledge (the opponent’s hands are hidden), multiple
competing agents (more than two players), risk
management (betting strategies and their consequences),
agent modeling (identifying patterns in the opponent’s
strategy and exploiting them), deception (bluffing and
varying your style of play), and dealing with unreliable
information (taking into account your opponent’s deceptive
plays). All of these are challenging dimensions to a
difficult problem.

 Copyright © (1998) American Association of Artificial Intelligence
(www.aaai.org). All rights reserved.

There are two main approaches to poker research. One
approach is to use simplified variants that are easier to
analyze. However, one must be careful that the
simplification does not remove challenging components of
the problem. For example, Findler (1977) worked on and
off for 20 years on a poker-playing program for 5-card
draw poker. His approach was to model human cognitive
processes and build a program that could learn, ignoring
many of the interesting complexities of the game.

The other approach is to pick a real variant, and
investigate it using mathematical analysis, simulation,
and/or ad-hoc expert experience. Expert players with a
penchant for mathematics are usually involved in this
approach (Sklansky and Malmuth 1994, for example).

Recently, Koller and Pfeffer (1997) have been
investigating poker from a theoretical point of view. They
implemented the first practical algorithm for finding
optimal randomized strategies in two-player imperfect
information competitive games. This is done in their Gala
system, a tool for specifying and solving problems of
imperfect information. Their system builds trees to find the
optimal game-theoretic strategy. However the tree sizes
prompted the authors to state that “...we are nowhere close
to being able to solve huge games such as full-scale poker,
and it is unlikely that we will ever be able to do so.”

We are attempting to build a program that is capable of
beating the best human poker players. We have chosen to
study the game of Texas Hold'em, the poker variation used
to determine the world champion in the annual World
Series of Poker. Hold’em is considered to be the most
strategically complex poker variant that is widely played.

Our initial experience with a poker-playing program was
positive (Billings et al. 1997). However, we quickly
discovered how adaptive human players were. In games
played over the Internet, our program, Loki, would perform
quite well initially. Some opponents would detect patterns
and weaknesses in the program’s play, and they would alter
their strategy to exploit them. One cannot be a strong poker
player without modeling your opponent’s play and
adjusting to it.

Although opponent modeling has been studied before in
the context of games (for example: Carmel and Markovitch
1995; Iida et al. 1995; Jansen 1992), it has not yet
produced tangible improvements in practice. Part of the
reason for this is that in games such as chess, opponent
modeling is not critical to achieving high performance. In
poker, however, opponent modeling is essential to success.

This paper describes and evaluates opponent modeling
in Loki. The first sections describe the rules of Texas

From: AAAI-98 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Hold’em and the requirements of a strong Hold’em
program as it relates to opponent modeling. We then
describe how Loki evaluates poker hands, followed by a
discussion of how opponents are modeled and how this
information is used to alter the assessment of our hands.
The next section gives some experimental results. The final
section discusses ongoing work on this project. The major
research contribution of this paper is that it is the first
successful demonstration of using opponent modeling to
improve performance in a realistic game-playing program.

Texas Hold’em
A hand of Texas Hold’em begins with the pre-flop, where
each player is dealt two hole cards face down, followed by
the first round of betting. Three community cards are then
dealt face up on the table, called the flop, and the second
round of betting occurs. On the turn, a fourth community
card is dealt face up and another round of betting ensues.
Finally, on the river, a fifth community card is dealt face
up and the final round of betting occurs. All players still in
the game turn over their two hidden cards for the
showdown. The best five card poker hand formed from the
two hole cards and the five community cards wins the pot.
If a tie occurs, the pot is split. Texas Hold’em is typically
played with 8 to 10 players.

Limit Texas Hold’em uses a structured betting system,
where the order and amount of betting is strictly controlled
on each betting round.1 There are two denominations of
bets, called the small bet and the big bet ($2 and $4 in this
paper). In the first two betting rounds, all bets and raises
are $2, while in the last two rounds, they are $4. In general,
when it is a player’s turn to act, one of five betting options
is available: fold, call/check, or raise/bet. There is normally
a maximum of three raises allowed per betting round. The
betting option rotates clockwise until each player has
matched the current bet or folded. If there is only one
player remaining (all others having folded) that player is
the winner and is awarded the pot without having to reveal
their cards.

Requirements for a World-Class Poker Player
We have identified several key components that address
some of the required activities of a strong poker player.
However, these components are not independent. They
must be continually refined as new capabilities are added
to the program. Each of them is either directly or indirectly
influenced by the introduction of opponent modeling.

Hand strength assesses how strong your hand is in
relation to the other hands. At a minimum, it is a function
of your cards and the current community cards. A better
hand strength computation takes into account the number
of players still in the game, position at the table, and the
history of betting for the hand. An even more accurate
calculation considers the probabilities for each possible

1 In No-limit Texas Hold’em, there are no restrictions on the size of bets.

opponent hand, based on the likelihood of each hand being
played to the current point in the game.

Hand potential assesses the probability of a hand
improving (or being overtaken) as additional community
cards appear. For example, a hand that contains four cards
in the same suit may have a low hand strength, but has
good potential to win with a flush as more community
cards are dealt. At a minimum, hand potential is a function
of your cards and the current community cards. However, a
better calculation could use all of the additional factors
described in the hand strength computation.

Betting strategy determines whether to fold, call/check,
or bet/raise in any given situation. A minimum model is
based on hand strength. Refinements consider hand
potential, pot odds (your winning chances compared to the
expected return from the pot), bluffing, opponent modeling
and trying to play unpredictably.

Bluffing allows you to make a profit from weak hands,2

and can be used to create a false impression about your
play to improve the profitability of subsequent hands.
Bluffing is essential for successful play. Game theory can
be used to compute a theoretically optimal bluffing
frequency in certain situations. A minimal bluffing system
merely bluffs this percentage of hands indiscriminately. In
practice, you should also consider other factors (such as
hand potential) and be able to predict the probability that
your opponent will fold in order to identify profitable
bluffing opportunities.

Unpredictability makes it difficult for opponents to
form an accurate model of your strategy. By varying your
playing strategy over time, opponents may be induced to
make mistakes based on an incorrect model.

Opponent modeling allows you to determine a likely
probability distribution for your opponent’s hidden cards.
A minimal opponent model might use a single model for
all opponents in a given hand. Opponent modeling may be
improved by modifying those probabilities based on
collected statistics and betting history of each opponent.

There are several other identifiable characteristics which
may not be necessary to play reasonably strong poker, but
may eventually be required for world-class play.

The preceding discussion is intended to show how
integral opponent modeling is to successful poker play.
Koller and Pfeffer (1997) have proposed a system for
constructing a game-theoretic optimal player. It is
important to differentiate an optimal strategy from a
maximizing strategy. The optimal player makes its
decisions based on game-theoretic probabilities, without
regard to specific context. The maximizing player takes
into account the opponent’s sub-optimal tendencies and
adjusts its play to exploit these weaknesses.

In poker, a player that detects and adjusts to opponent
weaknesses will win more than a player who does not. For
example, against a strong conservative player, it would be
correct to fold the probable second-best hand. However,
against a weaker player who bluffs too much, it would be

2 Other forms of deception (such as calling with a strong hand) are not
considered here.

an error to fold that same hand. In real poker it is very
common for opponents to play sub-optimally. A player
who fails to detect and exploit these weaknesses will not
win as much as a better player who does. Thus, a
maximizing program will out-perform an optimal program
against sub-optimal players because the maximizing
program will do a better job of exploiting the sub-optimal
players.

Although a game-theoretic optimal solution for Hold'em
would be interesting, it would in no way “solve the game”.
To produce a world-class poker program, strong opponent
modeling is essential.

Hand Assessment
Loki handles its play differently at the pre-flop, flop, turn
and river. The play is controlled by two components: a
hand evaluator and a betting strategy. This section
describes how hand strength and potential are calculated
and used to evaluate a hand.

Pre-flop Evaluation
Pre-flop play in Hold’em has been extensively studied in
the poker literature (Sklansky and Malmuth 1994). These
works attempt to explain the play in human understandable
terms by classifying all the initial two-card pre-flop
combinations into a number of categories. For each class of
hands a suggested betting strategy is given, based on the
category, number of players, position at the table, and type
of opponents. These ideas could be implemented as an
expert system, but a more systematic approach would be
preferable, since it could be more easily modified and the
ideas could be generalized to post-flop play.

For the initial two cards, there are {52 choose 2} = 1326
possible combinations, but only 169 distinct hand types.
For each one of the 169 possible hand types, a simulation
of 1,000,000 poker games was done against nine random
hands. This produced a statistical measure of the
approximate income rate (profit expectation) for each
starting hand. A pair of aces had the highest income rate; a
2 and 7 of different suits had the lowest. There is a strong
correlation between our simulation results and the pre-flop
categorization given in Sklansky and Malmuth (1994).

Hand Strength
An assessment of the strength of a hand is critical to the
program’s performance on the flop, turn and river. The
probability of holding the best hand at any time can be
accurately estimated using enumeration techniques.

Suppose our hand is A♦ -Q♣ and the flop is 3♥ -4♣-
J♥ . There are 47 remaining unknown cards and therefore
{47 choose 2} = 1,081 possible hands an opponent might
hold. To estimate hand strength, we developed an
enumeration algorithm that gives a percentile ranking of
our hand (Figure 1). With no opponent modeling, we
simply count the number of possible hands that are better
than, equal to, and worse than ours. In this example, any
three of a kind, two pair, one pair, or A-K is better (444
cases), the remaining A-Q combinations are equal (9

cases), and the rest of the hands are worse (628 cases).
Counting ties as half, this corresponds to a percentile
ranking, or hand strength (HS), of 0.585. In other words,
there is a 58.5% chance that our hand is better than a
random hand.

HandStrength(ourcards,boardcards)
{ ahead = tied = behind = 0
 ourrank = Rank(ourcards,boardcards)
 /* Consider all two card combinations of */
 /* the remaining cards. */
 for each case(oppcards)
 { opprank = Rank(oppcards,boardcards)
 if(ourrank>opprank) ahead += 1
 else if(ourrank=opprank) tied += 1
 else /* < */ behind += 1
 }
 handstrength = (ahead+tied/2)
 / (ahead+tied+behind)
 return(handstrength)
}

Figure 1. HandStrength calculation

The hand strength calculation is with respect to one
opponent but can be extrapolated to multiple opponents by
raising it to the power of the number of active opponents.
Against five opponents with random hands, the adjusted
hand strength (HS5) is .5855 = .069. Hence, the presence of
additional opponents has reduced the likelihood of our
having the best hand to only 6.9%.

Hand Potential
In practice, hand strength alone is insufficient to assess the
quality of a hand. Consider the hand 5♥ -2♥ with the flop
of 3♥ -4♣ -J♥ . This is currently a very weak hand, but
there is tremendous potential for improvement. With two
cards yet to come, any heart, Ace, or 6 will give us a flush
or straight. There is a high probability (over 50%) that this
hand will improve to become the winning hand, so it has a
lot of value. In general, we need to be aware of how the
potential of a hand affects the effective hand strength.

We can use enumeration to compute this positive
potential (Ppot), the probability of improving to the best
hand when we are behind. Similarly, we can also compute
the negative potential (Npot) of falling behind when we are
ahead. For each of the possible 1,081 opposing hands, we
consider the {45 choose 2} = 990 combinations of the next
two community cards. For each subcase we count how
many outcomes result in us being ahead, behind or tied
(Figure 2).

The results for the example hand A♦ -Q♣ / 3♥ -4♣-J♥
versus a single opponent are shown in Table 1. The rows
are labeled by the status on the flop. The columns are
labeled with the final state after the last two community
cards are dealt. For example, there are 91,981 ways we
could be ahead on the river after being behind on the flop.
Of the remaining outcomes, 1,036 leave us tied with the
best hand, and we stay behind in 346,543 cases. In other
words, if we are behind a random hand on the flop we have
roughly a 21% chance of winning the showdown.

In Figure 2 and Table 1, we compute the potential based
on two additional cards. This technique is called two-card

lookahead and it produces a Ppot2 of 0.208 and an Npot2 of
0.274. We can do a similar calculation based on one-card
lookahead (Ppot1) where there are only 45 possible
upcoming cards (44 if we are on the turn) instead of 990
outcomes. With respect to one-card lookahead on the flop,
Ppot1 is 0.108 and Npot1 is 0.145.

HandPotential(ourcards,boardcards)
{ /* Hand potential array, each index repre- */
 /* sents ahead, tied, and behind. */
 integer array HP[3][3] /* initialize to 0 */
 integer array HPTotal[3] /* initialize to 0 */

 ourrank = Rank(ourcards,boardcards)
 /* Consider all two card combinations of */

/* the remaining cards for the opponent. */
 for each case(oppcards)
 { opprank = Rank(oppcards,boardcards)
 if(ourrank>opprank) index = ahead
 else if(ourrank=opprank) index = tied
 else /* < */ index = behind
 HPTotal[index] += 1

 /* All possible board cards to come. */
 for each case(turn,river)
 { /* Final 5-card board */
 board = [boardcards,turn,river]
 ourbest = Rank(ourcards,board)
 oppbest = Rank(oppcards,board)
 if(ourbest>oppbest) HP[index][ahead]+=1
 else if(ourbest=oppbest) HP[index][tied]+=1
 else /* < */ HP[index][behind]+=1
 }
 }
 /* Ppot: were behind but moved ahead. */
 Ppot = (HP[behind][ahead]+HP[behind][tied]/2

 +HP[tied][ahead]/2)
 / (HPTotal[behind]+HPTotal[tied])
 /* Npot: were ahead but fell behind. */
 Npot = (HP[ahead][behind]+HP[tied][behind]/2
 +HP[ahead][tied]/2)

/ (HPTotal[ahead]+HPTotal[tied])
 return(Ppot,Npot)
}

Figure 2. HandPotential calculation

5 Cards 7 Cards
Ahead Tied Behind Sum

Ahead 449005 3211 169504 621720 = 628x990
Tied 0 8370 540 8910 = 9x990

Behind 91981 1036 346543 439560 = 444x990
Sum 540986 12617 516587 1070190 = 1081x990

Table 1. A♦ -Q♣ / 3♥ -4♣ -J♥ potential

These calculations provide accurate probabilities that
take every possible scenario into account, giving smooth,
robust results. However, the assumption that all two-card
opponent hands are equally likely is false, and the
computations must be modified to reflect this.

Betting Strategy
When it is our turn to act, how do we use hand strength and
hand potential to select a betting action? What other
information is useful and how should it be used? The
answers to these questions are not trivial and this is one of
the reasons that poker is a good test-bed for artificial
intelligence. The current betting strategy in Loki is
unsophisticated and can be improved (Billings et al. 1997).

It is sufficient to know that betting strategy is based
primarily on two things:
1. Effective hand strength (EHS) includes hands where

we are ahead, and those where we have a Ppot chance
that we can pull ahead:

EHS = HSn + (1 - HSn) x Ppot
2. Pot odds are your winning chances compared to the

expected return from the pot. If you assess your
chance of winning to be 25%, you would call a $4 bet
to win a $16 pot (4/(16+4) = 0.20) because the pot
odds are in your favor (0.25 > = 0.20).

Opponent Modeling
In strategic games like chess, the performance loss by
ignoring opponent modeling is small, and hence it is
usually ignored. In contrast, not only does opponent
modeling have tremendous value in poker, it can be the
distinguishing feature between players at different skill
levels. If a set of players all have a comparable knowledge
of poker fundamentals, the ability to alter decisions based
on an accurate model of the opponent may have a greater
impact on success than any other strategic principle.

Having argued that some form of opponent modeling is
indispensable, the actual method of gathering information
and using it for betting decisions is a complex and
interesting problem. Not only is it difficult to make
appropriate inferences from certain observations and then
apply them in practice, it is not even clear how statistics
should be collected or categorized.

Weighting the Enumeration
Many weak hands that probably would have been folded
before the flop, such as 4♥ -J♣, may form a very strong
hand with the example flop of 3♥ -4♣-J♥ . Giving equal
probabilities to all starting hands skews the hand
evaluations compared to more realistic assumptions.
Therefore, for each starting hand, we need to define a
probability that our opponent would have played that hand
in the observed manner. We call the probabilities for each
of these 1,081 subcases weights since they act as
multipliers in the enumeration computations.1

The use of these weights is the first step towards
opponent modeling since we are changing our
computations based on the relative probabilities of
different cards that our opponents may hold. The simplest
approach to determining these weights is to treat all
opponents the same, calculating a single set of weights to
reflect “reasonable” behavior, and use them for all
opponents. An initial set of weights was determined by
ranking the 169 distinct starting hands and assigning a
probability commensurate with the strength (income rate)
of each hand (as determined by simulations).

There are two distinct ways to improve the accuracy of
the calculations based on these weights. First, an
opponent’s betting actions can be used to adjust the

1 The probability that an opponent holds a particular hand is the weight of
that subcase divided by the sum of the weights for all the subcases.

weights. For example, if an opponent raises on the flop, the
weights for stronger hands should be increased and the
weights for weaker hands should be decreased. We call this
generic modeling since the model is identical for all
opponents in the same situation. Second, we can maintain a
separate set of weights for each opponent, based on their
betting history. We call this technique specific modeling,
because it differentiates between opponents.

Each opponent is assigned an array of weights indexed
by the two-card starting hands. Each time an opponent
makes a betting action, the weights for that opponent are
modified to account for the action. For example, a raise
increases the weights for the strongest hands likely to be
held by the opponent given the flop cards, and decreases
the weights for the weaker hands. This means that at any
point during the hand, the weight reflects the relative
probability that the opponent has that particular hand.

If these weights are used for opponent modeling, the
algorithms of Figures 1 and 2 are only slightly modified.
Each of the increments (“+= 1”) is replaced with the code
“+= Weight[oppcards]”. There are two problems that must
be solved to make this form of opponent modeling work.
First, what should the initial weights be? Second, what
transformation functions should be applied to the weights
to account for a particular opponent action?

Computing Initial Weights
The initial weights are based on the starting hands each
opponent will play. The most important observed
information is the frequency of folding, calling and raising
before the flop. We deduce the mean (µ, representing the
median hand) and variance (σ, for uncertainty) of the
threshold needed for each player’s observed action. These
are interpreted in terms of income rate values, and mapped
onto a set of initial weights for the opponent model.

Suppose an opponent calls 30% of all hands, and this
translates to a median hand whose income rate is +200
(roughly corresponding to an average of 0.2 bets won per
hand played). If we assume a σ that translates to an income
rate of +/-100, then we would assign a weight of 1.0 to all
hands above +300, a weight of 0.01 to all hands below
+100, and a proportional weight for values between +100
and +300. The median hand at +200 is thus given a 0.50
weight in the model. A weight of 0.01 is used for “low”
probabilities to avoid labeling any hand as “impossible”.
While this approach will not reveal certain opponent-
specific tendencies, it does provide reasonable estimates
for the probability of each possible starting hand.

To classify the opponent’s observed actions, we consider
the action (fold, check/call, bet/raise) taken by the
opponent, how much the action cost (bets of 0, 1, or > 1)
and the betting round in which it occurred (pre-flop, flop,
turn, river). This yields 36 different categories. Some of
these actions do not normally occur (e.g. folding to no bet)
and others are rare. Each betting action an opponent makes
results in one of these categories being incremented. These
statistics are then used to calculate the relevant frequencies.

Re-weighting
Each time an opponent makes a betting action, we modify
the weights by applying a transformation function. For
simplicity we do not do any re-weighting on the pre-flop,
preferring to translate income rates into weights. For the
betting rounds after the flop, we infer a mean and variance
(µ and σ) of the threshold for the opponent’s observed
action. However, we can no longer map our µ and σ to a
list of ranked starting hands. Instead, we must rank all of
the five card hands that are formed from each starting hand
and the three community cards. To do this, we use EHS.

For example, based on observed frequencies, we may
deduce that an opponent needs a median hand value of 0.6
to call a bet, with a lower bound of 0.4 and an upper bound
of 0.8. In this case, all hands with an EHS greater than 0.8
are given re-weighting factors of 1.0. Any hand with a
value less than 0.4 is assigned a re-weighting factor of
0.01, and a linear interpolation is performed for values
between 0.4 and 0.8. Figure 3 shows the algorithm used for
computing the re-weighting factors for a given µ and σ.

Recall that EHS is a function of both HS and Ppot. Since
Ppot2 is expensive to compute, we currently use a crude but
fast function for estimating potential, which produces
values within 5% of Ppot2, 95% of the time. Since these
values are amortized over the 1,081 five-card hands, the
overall effect of this approximation is small.

For each five-card hand, the computed re-weighting
factor is multiplied by the initial weight to produce the
updated weight. The process is repeated for each observed
betting decision during the hand. By the last round of
betting, a certain opponent may have only a small number
of hands that have relatively high weights, meaning that the
program has zeroed in on a narrow range of possible hands.

Table 2 illustrates how the re-weighting is performed on
some selected examples for a flop of 3♥ -4♣ -J♥ , with
µ=0.60 and σ=0.20. The context considers an opponent
who called a bet before the flop and then bet after the flop.
For each possible hand we note the initial weight (Weight),
unweighted hand rank (HR), hand strength (HS1),
approximate Ppot2 (~PP2), effective hand strength (EHS),
the re-weighting factor based on µ = 0.6 and σ = 0.2 (Rwt),
and the new overall weight (Nwt).

constant low_wt 0.01
constant high_wt 1.00

Reweight(µ,σ,weight,boardcards)
{ /* interpolate in the range µ +- σ. */
 for each case(oppcards)
 { EHS=EffectiveHandStrength(oppcards,boardcards)
 reweight = (EHS-µ+σ)/(2*σ)
 /* Assign low weights below (µ-σ). */
 if(reweight<low_wt) reweight = low_wt
 /* Assign high weights above (µ+σ). */
 if(reweight>high_wt) reweight = high_wt

 weight[subcase] = weight[subcase]*reweight
 }
}

Figure 3. Computing the re-weighting factors

Hand Weight HR HS1 ~PP2 EHS Rwt Nwt Comment

J♣ 4♥ 0.01 0.993 0.990 0.04 0.99 1.00 0.01 very strong, but unlikely
A♣ J♣ 1.00 0.956 0.931 0.09 0.94 1.00 1.00 strong, very likely
5♥ 2♥ 0.20 0.004 0.001 0.35 0.91 1.00 0.20 weak, but very high potential
6♠ 5♠ 0.60 0.026 0.006 0.21 0.76 0.90 0.54 weak, good potential
5♠ 5♥ 0.70 0.816 0.736 0.04 0.74 0.85 0.60 moderate, low potential
5♠ 3♠ 0.40 0.648 0.671 0.10 0.70 0.75 0.30 mediocre, moderate potential
A♣ Q♦ 1.00 0.585 0.584 0.11 0.64 0.60 0.60 mediocre, moderate potential
7♠ 5♠ 0.60 0.052 0.012 0.12 0.48 0.20 0.12 weak, moderate potential
Q♠ T♠ 0.90 0.359 0.189 0.07 0.22 0.01 0.01 weak, little potential

Table 2. Re-weighting various hands after a 3♥ -4♣ -J♥ flop (µ = 0.6, σ = 0.2)

Consider the case of Q♠ T♠ . In the pre-flop this is a
fairly strong hand, as reflected by its income rate of +359
and weighting of 0.90. However, these cards do not mesh
well with the flop cards, resulting in low hand strength
(0.189) and low potential (0.07). This translates to an
effective hand strength of 0.22. Given that observations of
the opponent show that they will only bet with hands of
strength µ=0.60 (+/-σ=0.20), we assign this a re-weighting
of 0.01 (since 0.22<µ-σ). Hence, we will consider this
hand to be unlikely for this opponent from this point on.

The opponent’s decisions may actually be based on a
different metric than EHS, resulting in an imperfect model.
New techniques can improve the results, but the current
method does capture much of the information conveyed by
the opponent’s actions.

In competitive poker, opponent modeling is more
complex than portrayed here. One also wants to fool the
opponent into constructing a poor model. For example,
early in a session a strong poker player may try to create
the impression of being very conservative, only to exploit
that image later when the opponents are using incorrect
assumptions. In two-player games, the M* algorithm
allows for recursive definitions of opponent models, but it
has not been demonstrated to improve performance in
practice (Carmel and Markovitch 1995).

Experiments
Self-play simulations offer a convenient method for the
comparison of two or more versions of the program. Our
simulations use a duplicate tournament system, based on
the same principle as duplicate bridge. Since each hand can
be played with no memory of preceding hands, it is
possible to replay the same deal, but with the participants
holding a different set of hole cards each time. Our
tournament system simulates a ten-player game, where
each deal is replayed ten times, shuffling the seating
arrangement so that every participant has the opportunity to
play each set of hole cards once. This arrangement greatly
reduces the “luck element” of the game, since each player
will have the same number of good and bad hands. The
differences in the performance of players will therefore be
based more strongly on the quality of the decisions made in
each situation. This large reduction in natural variance
means that meaningful results can be obtained with a much

smaller number of trials than in a typical game setting.
Nevertheless, it is important to not over-interpret the
results of one simulation.

Figure 4 shows the results of self-play simulations
between several versions of Loki playing $2/$4 Hold’em.
Two copies of five different programs played 100,000
hands. The average profit is plotted against the number of
hands played. Each data point is the average of the two
programs of that type.

We started with our previous best version of Lok i,
representing a basic player (BPM). BPM uses a crude
system for assigning initial weights, so some generic
modeling is done for the pre-flop hand selection1 but there
is no re-weighting. To add diversity to the simulated game,
the betting parameters of Loki were modified to include
two additional styles of play (BPT and BPL). BPT is a
“tight” (conservative) player, while BPL is a “loose” (more
liberal) player, but are otherwise identical to BPM. Two
opponent modeling variations of BPM were then added
(GOM and SOM). GOM uses generic opponent modeling
with re-weighting, and the default models for the opponent
are based on how GOM itself plays. SOM uses specific
opponent modeling with re-weighting, starting with the
GOM defaults but basing its decisions entirely on observed
behavior after 20 data points have been collected.

Very quickly, the two opponent modeling programs
asserted their superiority over the non-modeling versions.
GOM is able to exploit the basic players, as expected,
because its model of how they play is accurate, and is used
to make better decisions. GOM might not perform as well
against players with very different styles of play, because
its model would be less accurate, but it would be better
than using no modeling at all.

SOM is more successful using observed frequencies
rather than a good default model. Against players with very
different styles of play, as typically seen in human
competition, SOM’s advantage over GOM will be
magnified.

Another experiment was performed with a single copy of
SOM against nine copies of BPM. After 100,000 hands the
SOM version was ahead roughly $5,000, while the BPM
player had lost more than $550 on average. The advantage

1 This feature was not removed because having no information at all
would be a large handicap.

of good opponent modeling is clear – Loki with opponent
modeling is a stronger program than without it.

Loki has also been tested in more realistic games against
human opposition. For this purpose, the program
participates in an on-line poker game, running on the
Internet Relay Chat (IRC). Human players connect to IRC
and participate in games conducted by dedicated server
programs. No real money is at stake, but bankroll statistics
on each player are maintained. Both the new opponent
modeling versions of Loki and the previous versions with
no re-weighting win consistently when playing on the IRC
server. The natural variance in these games is very high,
and the results depend strongly on which players happen to
be playing. Consequently, not enough information has been
gathered to safely conclude that the opponent modeling
versions of Loki are outperforming the previous best
program in these games.

Figure 4. Experiments with different versions of Loki.

Conclusions and Work in Progress
Loki successfully uses opponent modeling to improve its
play. This is the first demonstration of beneficial opponent
modeling in a high-performance game-playing program.

However, it does not necessarily follow that opponent
modeling will be just as successful in games against human
players as it was in the closed experiments. Humans are
also very good at opponent modeling, and can be less

predictable than the players in these simulations. We have
not yet investigated modeling opponents who vary their
strategy over time.

Specific opponent modeling was hampered by the crude
method used for collecting and applying observed
statistics. Much of the relevant context was ignored for
simplicity, such as combinations of actions within the same
betting round. A more sophisticated method for observing
and utilizing opponent behavior would allow for a more
flexible and accurate opponent model.

Poker is a complex game. Strong play requires the player
to excel in all aspects of the game. Developing Loki seems
to be a cyclic process. We improve one aspect of the
program until it becomes apparent that another aspect is the
performance bottleneck. That problem is then tackled until
it is no longer the limiting factor, and a new weakness in
the program’s play is revealed. We have made our initial
foray into opponent modeling and are pleased with the
results, although it is far from a completed subject. It is
now apparent that the program’s betting strategy is the
major cause for concern. Hence we will now focus our
efforts on that topic, and opponent modeling will be
revisited in the future.

Acknowledgments
We gratefully thank the referees for their insightful
comments. Regretfully, some of their excellent suggestions
were omitted due to space constraints.

This research was supported by the Natural Sciences and
Engineering Council of Canada.

References

Billings, D., Papp, D., Schaeffer, J. and Szafron, D. 1997.
Poker as a Testbed for AI Research, AI’98. To appear.

Carmel, D. and Markovitch, S. 1995. Incorporating
Opponent Models into Adversary Search. AAAI, 120-125.

Findler, N. 1977. Studies in Machine Cognition Using the
Game of Poker. CACM 20(4):230-245.

Iida, H. , Uiterwijk, J. , van den Herik, J. and Herschberg,
I. 1995. Thoughts on the Application of Opponent-Model
Search. In Advances in Computer Chess 7, University of
Maastricht, 61-78.

Jansen, P. 1992. Using Knowledge about the Opponent in
Game-Tree Search. Ph.D. diss., Dept. of Computer
Science, Carnegie-Mellon University.

Koller, D. and Pfeffer, A. 1997. Representations and
Solutions for Game-Theoretic Problems. Artificial
Intelligence 94(1-2), 167-215.

Sklansky, D. and Malmuth, M. 1994. Hold’em Poker for
Advanced Players. Two Plus Two Publishing.

