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Abstract
The game of Hex is a two-player game with simple rules, a
deep underlying mathematical beauty, and a strategic
complexity comparable to that of Chess and Go. The
massive game-tree search techniques developed mostly for
Chess, and successfully used for Checkers, Othello, and a
number of other games, become less useful for games with
large branching factors like Go and Hex. We offer a new
approach, which results in superior playing strength. This
approach emphasizes deep analysis of relatively few game
positions. In order to reach this goal, we develop an
automatic theorem proving technique for topological
analysis of Hex positions. We also discuss in detail an idea
of modeling Hex positions with electrical resistor circuits.
We explain how this approach is implemented in Hexy - the
strongest known Hex-playing computer program, able to
compete with best human players.

1. Introduction    

The rules of Hex are extremely simple. Nevertheless,
experienced players recognize that Hex requires both deep
strategic understanding and sharp tactical skills. Multiple
attempts to build a strong Hex-playing program show that
it is a difficult task. One of the major reasons is the large
branching factor. For a classic 11×11 Hex board the
average number of legal moves is about 100 (compare with
40 for Chess and 8 for Checkers). The massive game-tree
search techniques developed over the last 30-40 years
mostly for Chess (Marsland, 1986), and successfully used
for Checkers (Schaeffer et al. 1996), and a number of other
games, become less useful for games with large branching
factors like Hex. On the other hand, many experienced
game players believe that in most positions, intelligent
decisions can be made without a massive game-tree search.
Instead, the emphasis can be on a deep strategic analysis of
a relatively small number of game positions.

In this paper we concentrate on building a far-sighted
evaluation function, which is capable of foreseeing future
development of Hex positions. We believe that if such a
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function is built, it could be used for highly selective
game-tree search. In order to reach this goal, we identify
topological objects, called virtual connections, which
contain information about the potential of Hex positions,
and develop an automatic theorem proving technique for
their calculations. The construction of virtual connections
can be thought of as a very narrow search, which focuses
on relevant paths. As a result, this approach is much more
efficient than a brute-force search.

There are also other games (Chess and Sokoban), where
important game-specific properties were identified, and
real time proofs of necessary conditions were successfully
used (Adelson-Velskiy, Arlazarov, and Donskoy 1975;
Junghanns and Schaeffer 1998). In both cases it has
resulted in significant reduction in the size of the search
tree.

In section 2 we introduce the game of Hex and its
history. In section 3 we present a model for evaluating Hex
positions based on electrical resistor circuits. In section 4
we discuss the concept of a virtual connection, and define
contributions of virtual connections to the evaluation
function. In section 5 we introduce the algebra of virtual
connections as a tool for their calculation. In section 6 we
explain how this approach is implemented in Hexy - the
strongest known Hex-playing computer program, able to
compete with best human players. A Windows 95/98/NT
version of the program (165KB) is publicly available at the
website: http://home.earthlink.net/~vanshel.

2. Hex and Its History
The game of Hex was presented to the general public in
Scientific American by Martin Gardner (Gardner 1959).

Hex is a two-player game played on a rhombic board
with hexagonal cells (see Figure 1). The classic board is
11×11, but it can be any size. The 10×10 and 14×14 board
sizes are also popular. The players, Black and White, take
turns putting pieces of their color on empty cells of the
board. Black's objective is to connect the two opposite
black sides of the board with a chain of black pieces.
White's objective is to connect the two opposite white sides
of the board with a chain of white pieces (see Figure 1). In
practice, players often employ "one move equalization",
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where the second player has the option of taking the first
player's opening move (also known as the swap rule).

Fig. 1. The chain of white pieces connects white
boundaries. White has won the game.

Despite the simplicity of the rules, the game has a
complexity comparable to Chess, in both strategy and
tactics.

Hex was invented by a Danish poet and mathematician
Piet Hein in 1942 at the Niels Bohr Institute for Theoretical
Physics, and became popular under the name of Polygon. It
was re-discovered in 1948 by John Nash, when he was a
graduate student at Princeton. At that time, this game was
commonly called John, referring mainly to the fact that it
was often played on the hexagonal tiles of bathroom floors.
Parker Brothers marketed a version of the game in 1952
under the name Hex.

The game of Hex can never end in a draw. This follows
from the fact that if all cells of the board are occupied then
a winning chain for Black or White must necessarily exist.
While this two-dimensional topological fact may seem
obvious, it is not at all trivial. In fact, David Gale
demonstrated that this result is equivalent to the Brouwer
fixed-point theorem for 2-dimensional squares (Gale
1979). It follows that there exists a winning strategy either
for the first or second player. Using a "strategy stealing"
argument (Berlekamp, Conway, and Guy 1982), John Nash
showed that a winning strategy exists for the first player.
However, this is only a proof of existence, and the winning
strategy is not known for boards larger than 7×7.

A Hex-playing machine was built by Claude Shannon
and E. F. Moore (Shannon 1953). Shannon associated a
two-dimensional electrical charge distribution with any
given Hex position. His machine made decisions based on
properties of the corresponding potential field. In the next
section we introduce another way to model Hex positions.
Nevertheless, we gratefully acknowledge that our work
was inspired by Shannon's original idea.

3. Using Electrical Circuits and Resistance for
a Hex Evaluation Function

A reasonable evaluation function for Hex should estimate
how much closer Black is to building a winning black
chain than White is to building a winning white chain. A

popular way to measure how close a player is to building
his chain is to calculate the minimal number of pieces he
needs to add to connect his two sides of the board.
Unfortunately, this type of approach does not take into
account the number of potential chains. We attempt to fix
this flaw with an electrical circuit representation of Hex
positions.

Consider the four polygonal boundary bands as
additional cells (see Figure 1). We assume that black
boundary cells are permanently occupied by black pieces,
and white boundary cells are permanently occupied by
white pieces.

With every Hex position we associate two electrical
circuits. The first one characterizes the position from
Black's point of view (Black's circuit), and the second one
from White's point of view (White's circuit). To every cell
c of the board we assign a resistance r in the following
way:

rB(c) = 1, if c is empty,
rB(c) = 0, if c is occupied by a black piece,
rB(c) = +∞, if c is occupied by a white piece,

for Black's circuit, and
rW(c) = 1, if c is empty,
rW(c) = 0, if c is occupied by a white piece,
rW(c) = +∞, if c is occupied by a black piece,

for White's circuit.

For each pair of neighboring cells, (c1, c2), we associate an
electrical link with resistance:

rB(c1, c2) = rB(c1) + rB(c2), for Black's circuit,
rW(c1, c2) = rW(c1) + rW(c2), for White's circuit.

We now apply an electrical voltage to the opposite
boundary cells and measure the total resistance between
them, RB for Black's circuit, and RW for White's circuit (see
Figure 2).

Fig. 2. Black's and White's circuits.

According to the Kirchhoff electrical current laws, the
total resistance estimates both the number of pieces that
need to be added to the board in order to connect the
opposite sides of the board, and the number of ways it can
be done.

Now we define an evaluation function:

E = RB /RW,

It is clear that:



•  E = 0, iff there exists a winning black chain,
•  E = +∞, iff there exists a winning white chain,
•  The smaller E is, the better this position is for Black, and

the worse it is for White.

4. Virtual Connections
In this section we work with Black's circuits only. White's
circuits can be dealt with in a similar way.

Consider the two positions in Figure 3. In both positions
White cannot prevent Black from connecting the two
groups of black pieces, x and y, even if White moves first,
because there are two empty cells a and b adjacent to both
x and y. If White occupies one of those empty cells, then
Black can move to the other. As a result, White should
resign immediately in the right position. Note that the
black connection between groups x and y is secured while
two cells a and b stay empty. Black can postpone moving
to either a or b and can use his precious moves for other
purposes. In this type of situation we say that the groups of
black pieces x and y form a two-bridge.

Fig. 3. Groups of black pieces, x and y, form two-
bridges. In the position on the right, those groups are
connected to the black boundaries.

We are now going to enhance our evaluation function to
reflect this local Black advantage. One natural way of
doing this is to add a link with zero resistance between
groups x and y to Black's circuit. Then the virtual
connection would be treated as an actual connection.
However, virtual connections are weaker than actual ones,
so our evaluation function should reflect this. Instead of
connecting black groups x and y with a shortcut, we add
other links to Black's circuit in the following way. If an
empty cell c is a neighbor of the black group x, then we
also treat this cell as a neighbor of group y (and vice
versa). This means that we connect cell c and group y with
an additional link in the same way as we do with actual
neighbors.

Black's new circuit serves as a better model for the Hex
position than the original one, and the enhanced evaluation
function E = RB /RW provides a better estimation of the
value of the position. This estimate now includes
information about the potential of the position two moves
ahead.

Our intention is to further modify the electrical circuits
in order to build a more far-sighted evaluation function,
which takes into account the distant potential of positions.
The following definition generalizes the two-bridge

concept. First we need to clarify some terms. We say that a
cell is black iff it is occupied by a black piece, and we say
that a set of black cells forms a group iff it is connected.

Definition. Two groups of black cells x and y, or a group
of black cells x and an empty cell y, or two empty cells x
and y, form virtual connection iff White cannot prevent
Black from connecting them, even if White moves first.

Any set A of empty cells that guarantees that the given
pair x and y form a virtual connection is called a carrier of
that virtual connection. We will describe a virtual
connection V as a triplet (x, A, y), where groups or cells x
and y are ends of the virtual connection V, and A is its
carrier.

We represent virtual connections with diagrams as in
Figure 4.

Fig. 4. Diagrams of three types of virtual
connections: black-black, black-empty, and empty-
empty.

Let us assume that in a given position with a virtual
connection, White moves first. The number of moves
which must be made in order to realize this virtual
connection (i.e. to convert the virtual connection into an
actual one, under the condition that Black does his best to
minimize this number, and White does his best to
maximize it) characterizes the depth of the virtual
connection. In other words, the depth of the virtual
connection is the depth of a game-tree search required to
discover this virtual connection.

A special role is played by a winning virtual connection
formed by the additional boundary cells. If it exists, then
there exists a winning strategy for Black, even if White
moves first.

Let us now make several remarks:

•  Any pair of neighboring cells forms a virtual connection
with an empty carrier. The depth of these virtual
connections is equal to zero.

•  Two-bridges, described previously, form virtual
connections with a depth of two.

•  The ends x and y can form a virtual connection with
several different carriers. The virtual connection V =  (x,
A, y) is minimal iff there does not exist a virtual
connection  (x, B, y) such that B ⊂  A and B ≠ A. We will
be primarily interested in minimal virtual connections.

In Figure 5 you can see four samples of virtual
connections.



Fig. 5. Black groups x and y form virtual connections.
In each diagram the group y is formed by the black
pieces connected to the bottom right black boundary.
1. An "edge connection" from the fourth row.

Depth = 10.
2. A "ladder". Depth = 14.
3. A chain of two-bridges. Depth = 12.
4. A tactical virtual connection. Depth = 6. This

position will be analyzed in the next section.

We can deal with all virtual connections in the same
way we did with two-bridges. Let black groups x and y
form a virtual connection. If an empty cell c is a neighbor
of one of the ends of this virtual connection, say x, then we
also treat this cell c as a neighbor of the other end y. This
means that we connect cells c and y with an additional link
in the same way as actual neighbors.

Virtual connections with the depth d contain information
about development of Hex position d moves ahead. The
more virtual connections we include, and the larger their
depths, the more reliable and far-sighted the evaluation
function becomes.

5. Algebra of Virtual Connections
In this section we will explain how to detect virtual
connections without searching the game-tree. We will
define deduction rules (operators), which will allow us to
build complex virtual connections starting with simple
ones. We will again consider only Black's circuits.

The AND Deduction Rule. Let (x, A, u) and (u, B, y) be
two virtual connections, where the group u is black, and is
a common end for both. If  x ∩ B = ∅ ,   y ∩ A = ∅ ,  and
A ∩ B = ∅ , then the triplet (x, A ∪  B, y) also forms a
virtual connection.

Diagram 1 in Figure 6 shows a graphical representation
of this deduction rule.

We can explain this deduction rule in the following way.
Since A ∩ B = ∅ , White cannot attack both virtual
connections simultaneously. Let us suppose that White
occupies a cell a∈ A. Since the triplet (x, A, u) forms a
virtual connection, then there exists a cell b∈ A where

Black can play to create a new virtual connection (x, A1, u).
The new carrier A1 is obtained from A by removing two
cells a and b. In short, if White occupies a cell from A, then
Black can restore the first virtual connection by moving to
an appropriate cell of A. The same is true for B, and thus
every threat can be answered, until an actual connection is
obtained.

Fig. 6. Deduction rules.
1. The AND deduction rule.
2. The OR(3) deduction rule.

The OR(n) Deduction Rule. Let (x, Ak , uk) and (uk , Bk ,
y), (k = 1,2,...,n, for n > 1) be virtual connections, where
the cells x and y are black or empty, and all cells uk are
empty. Let the following conditions be true:

x ∩ Bk= ∅ , and y ∩ Ak = ∅ , for all k = 1,2,...,n,

Ak ∩ Bk = ∅ , for all k = 1,2,...,n,

where Ck = Ak  ∪  uk ∪  Bk , for all k = 1,2,...,n. Then the
triplet (x, D, y) also forms virtual connection with the
carrier:

Diagram 2 in Figure 6 graphically represents this
deduction rule (for n = 3).

The explanation of this rule is as follows: If White
occupies a cell from Ci, then there exists a different carrier
Cj, such that Ci ∩ Cj = ∅ . Black can move to uj, to form a
new virtual connection (x, Aj ∪  Bj , y), since (x, Aj , uj) and
(uj , Bj , y) satisfy the conditions of the AND deduction
rule.

Automatic Theorem Proving
Figure 7 demonstrates how the AND and the OR(n)

deduction rules can be used to prove more complex virtual
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connections. Diagram 1 in Figure 7 represents the position
on the board. The sequence of transformations in diagrams
2 through 4 graphically demonstrates the application of the
deduction rules, and proves that Black has a winning
position.

Fig. 7. Automatic theorem proving. Diagram 1
represents the position on the board above. Diagram
2 is obtained from Diagram 1 by applying the OR(2)
deduction rule three times. Diagram 3 results from
the AND rule. The winning virtual connection (x, z)
in Diagram 4 follows from a final application of the
OR(2) rule.

Let us consider the simplest virtual connections, namely
the pairs of neighboring cells, as the set of axioms or in
other words the first generation of virtual connections.
Applying the AND and OR(n) deduction rules to the
appropriate groups of the first generation of virtual
connections we build (prove) the second generation of
virtual connections. Then we apply the deduction rules to
both the first and the second generations of virtual
connections to build (prove) the third generation of virtual
connections, etc.

The goal is not to prove some specific virtual connection
(e.g. a winning one). The goal is to construct a collection
of virtual connections, which belong to the given position.

This iterative algorithm can prove all of the virtual
connections shown in Figures 3, 5, and 7. We would also

like to know whether this system of deduction rules is
complete, i.e. whether this process can build all virtual
connections. The answer is negative. The diagram in
Figure 8 represents a counter-example of a virtual
connection that cannot be proven by this process. The fact
that this is a virtual connection can be verified manually.
For example, if White plays at a, Black can reply with b,
forcing White to occupy c. Then Black plays d securing the
connection. A computer program was used to verify that no
combination of AND and OR(n) rules can establish the
overall connection.

Fig. 8. The two black pieces form a virtual
connection, which cannot be proven using AND and
OR(n) deduction rules.

The system of deduction rules could be expanded to
handle this case, but we are not going to do it in this paper.

6. Hexy Plays Hex
Hexy is a Hex-playing computer program which utilizes
the ideas and algorithms presented in this paper. It runs on
a standard PC with Windows, and can be downloaded from
the website: http://home.earthlink.net/~vanshel. We
consider the Advanced level as a standard. It plays a
complete 10×10 game in about 10 minutes.

Hexy uses the alpha-beta search algorithm, with the
evaluation function described in sections 3 and 4. For
calculation of virtual connections, Hexy uses the automatic
theorem proving algorithm introduced in section 5. This
algorithm must be implemented very carefully. To make
the algorithm efficient, we calculate only minimal
connections, and enforce some reasonable restrictions.

The program has two thresholds, N and D. N is the
maximal number of different virtual connections with the
same ends. This threshold indirectly controls the total
number of virtual connections calculated. The larger N, the
more virtual connections the program builds for every node
of the game-tree, and the more time the program spends on
their calculation. The second parameter, D, is the depth of
the game-tree search. We do not put any limits on the
number of iterations, or the depth of virtual connections.
There is an obvious trade-off between the parameters N
and D, and finding a good compromise is an important
task. The best practical results determined experimentally,



were obtained with values of N =20 and D = 3 (for a 10×10
board). As a result, Hexy performs a very shallow game-
tree search (200-500 nodes per move), but routinely detects
virtual connections with depth 20 or more.

Let E(n) be an evaluation function that takes into
account only those virtual connections which are built in
the first n iterations of the theorem proving algorithm.
Then E(∞) is an evaluation function without limits on the
number of iterations (Iterations stop when no new virtual
connections are discovered). Let Hexy(n) and Hexy(∞) be
corresponding versions of the program. Hexy(0) does not
calculate virtual connections at all, and Hexy(1) takes only
two-bridges into account. Figure 9 shows the dependence
of the ratio T(n)/T(0) on n, where T(n) is the time for the
evaluation of a typical Hex position with E(n). The ratio
T(∞)/T(0) varies for different positions, but typical values
are in the range 5-15. This means that the additional cost of
computing the evaluation function E(∞), relative to that of
the evaluation function E(0), is not greater than the cost of
one or two additional plies of game-tree search. Since E(∞)
routinely finds virtual connections with depth 20 or more,
it is not surprising that Hexy(∞) with D = 3 easily defeats
Hexy(0) and Hexy(1) when they use a deeper 5-ply game-
tree search.

Fig. 9. Ratio T(n)/T(0) versus number of iterations of
the theorem proving algorithm. The dotted horizontal
line shows the ratio T(∞)/T(0).

Hexy demonstrates a clear superiority over all known
Hex-playing computer programs.1,2 Hexy was also tested
against human players on the popular game website,
Playsite (http://www.playsite.com/games/board/hex). After
more than 100 games, the program achieved a rating,
which is within the highest Playsite red rating range.

                                                          
1Chris Lusby Taylor, Hex, 1995.
 Zhiping You, Hex, 1995.
 A. V. Antonov, D. A. Antonov, Logical Game Hex, 1998.
 Bob Kirkland, Hex-7, 1998.
 Jack van Rijswijck, Queenbee, 1999.
2There is also a program Hex 1.0 by Sven Erik Elfgren (1997).
This program plays on a 7×7 board and always moves first. It
seemingly demonstrates perfect play.

7. Conclusion
In this paper we have offered the automatic theorem
proving approach to Hex programming, and explained how
this approach is implemented in Hexy - the strongest
known Hex-playing program able to compete with best
human players. Unlike conventional game-playing
programs, Hexy does not perform massive game-tree
search. Instead, this program spends most of its resources
on deep analysis of a relatively small number of Hex
positions.

Due to the mathematical purity of Hex rules, we have
been able to build a far-sighted evaluation function based
on virtual connections - topological objects, which contain
information about the potential of Hex positions many
moves ahead. We have built the automatic theorem
proving technique for calculation of virtual connections.

The process of building virtual connections has its own
cost. Nevertheless, this approach is much more efficient
than brute-force search because it does not consider
irrelevant paths. Experiments also show that the foreseeing
abilities of this kind of evaluation function greatly
outweigh its cost.
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