
A New Algorithm for Optimal Bin Packing

Richard E. Korf
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095

korf@cs.ucla.edu

Abstract

We consider the NP-complete problem of bin packing. Given
a set of numbers, and a set of bins of fixed capacity, find the
minimum number of bins needed to contain all the numbers,
such that the sum of the numbers assigned to each bin does
not exceed the bin capacity. We present a new algorithm for
optimal bin packing. Rather than considering the different
bins that each number can be placed into, we consider the dif-
ferent ways in which each bin can be packed. Our algorithm
appears to be asymptotically faster than the best existing op-
timal algorithm, and runs more that a thousand times faster
on problems with 60 numbers.

Introduction and Overview
Given a set of numbers, and a fixed bin capacity, the bin-
packing problem is to assign each number to a bin so that the
sum of all numbers assigned to each bin does not exceed the
bin capacity. An optimal solution to a bin-packing problem
uses the fewest number of bins possible. For example, given
the set of elements 6, 12, 15, 40, 43, 82, and a bin capacity
of 100, we can assign 6, 12, and 82 to one bin, and 15, 40,
and 43 to another, for a total of two bins. This is an optimal
solution to this problem instance, since the sum of all the
elements (198) is greater than 100, and hence at least two
bins are required.

Optimal bin packing one of the classic NP-complete prob-
lems (Garey & Johnson 1979). The vast majority of the liter-
ature on this problem concerns polynomial-time approxima-
tion algorithms, such as first-fit and best-fit decreasing, and
the quality of the solutions they compute, rather than opti-
mal solutions. We discuss these approximation algorithms
in the next section.

The best existing algorithm for optimal bin packing is due
to Martello and Toth (Martello & Toth 1990a; 1990b). We
present a new algorithm for optimal bin packing, which we
call bin completion, that explores a different problem space,
and appears to be asymptotically faster than the Martello and
Toth algorithm. On problems of size 60, bin completion runs
more than a thousand times faster than Martello and Toth’s
algorithm. We are able to optimally solve problems with 90
elements in an average of 2.5 seconds per problem.

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Approximation Algorithms
A simple approximation algorithm is called first-fit decreas-
ing (FFD). The elements are sorted in decreasing order of
size, and the bins are kept in a fixed order. Each element
is placed into the first bin that it fits into, without exceeding
the bin capacity. For example, given the elements 82, 43, 40,
15, 12, 6, and a bin capacity of 100, first-fit decreasing will
place 82 in the first bin, 43 in a second bin, 40 in the second
bin, 15 in the first bin, 12 in the second bin, and 6 in a third
bin, for a total of three bins, which is one more than optimal.

A slightly better approximation algorithm is known as
best-fit decreasing (BFD). It also sorts the elements in de-
creasing order of size, but puts each element into the fullest
bin in which is fits. It can be implemented by keeping the
bins sorted in increasing order of their remaining capacity,
and placing each element into the first bin in which it fits.
For example, given the set of elements 82, 43, 40, 15, 12, 6,
best-fit decreasing will place 82 in bin a, 43 in bin b, 40 in
bin b, 15 in bin b, because it is fuller than bin a, 12 in bin a,
and 6 in bin a, for a total of two bins, which is optimal.

Both FFD and BFD can be implemented in O(n log n)
time, but are not guaranteed to return optimal solutions.
However, either algorithm is guaranteed to return a solution
that uses no more than 11/9 of the optimal number of bins
(Johnson 1973). On average, BFD performs slightly better
than FFD. For example, on problems of 90 elements, where
the elements are uniformly distributed from zero to one mil-
lion, and the bin capacity is one million, BFD uses an av-
erage of 47.732 bins, while FFD uses an average of 47.733
bins. On these same problem instances, the optimal solution
averages 47.680 bins. The FFD solution is optimal 94.694%
of the time, and the BFD solution is optimal 94.832% of the
time on these problem instances.

Optimal Solutions
Given the high quality solutions returned by these approxi-
mation algorithms, why bother trying to find optimal solu-
tions? There are at least four reasons. In some applications,
it may be important to have optimal solutions. In particular,
with small numbers of bins, even a single extra bin is rel-
atively expensive. In addition, being able to determine the
optimal solutions to problem instances allows us to more ac-
curately gauge the quality of approximate solutions. For ex-
ample, the above comparisons of FFD and BFD solutions to

AAAI-02 731

From: AAAI-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved.

optimal solutions were only possible because we could com-
pute the optimal solutions. Another reason is that an any-
time algorithm for finding optimal solutions, such as those
presented in this paper, can make use of any additional time
available to find better solutions than those returned by BFD
or FFD, which run very fast in practice. Finally, optimal bin
packing is an interesting computational challenge, and may
lead to insights applicable to other problems.

Estimated Wasted Space or L2 Lower Bound
A lower bound function for bin packing takes a problem in-
stance, and efficiently computes a lower bound on the mini-
mum number of bins needed. If we find a solution that uses
the same number of bins as a lower bound, then we know
that solution is optimal, and we can terminate the search.

An obvious lower bound is to sum all the elements, divide
by the bin capacity, and round up to the next larger integer.
A better bound starts with the sum of the elements, and adds
an estimate of the total bin capacity that must be wasted in
any solution, before dividing by the bin capacity. This is
the L2 bound of Martello and Toth (Martello & Toth 1990a;
1990b), but we give a simpler and more intuitive algorithm
for computing it below.

For example, consider the set of elements 99, 97, 94, 93,
8, 5, 4, 2, with a bin capacity of 100. There is no element
small enough to go in the same bin as the 99, so that bin
will have one unit of wasted space in any solution. The only
element small enough to go in the same bin as the 97 is the
2, so the 2 can be placed with the 97 without sacrificing
optimality, leaving a second unit of wasted space.

There are two remaining elements that could be placed
with the 94, the 5 or the 4. In reality, only one of these el-
ements could be placed with the 94, but to make our lower-
bound calculation efficient and avoid any branching, we as-
sume that we can place as much of their sum (9) as will fit in
the bin with the 94, or 6 units. Thus, we assume there is no
wasted space in this bin, and 3 units are carried over to the
next bin, which contains the 93. The sum of all elements less
than or equal to the residual capacity of this bin (7) is just
the 3 units carried over from the previous bin. Therefore,
at least 7 − 3 = 4 additional units will be wasted between
this bin and the previous one. Finally, there are no remain-
ing elements to be placed with the 8, so 92 units must be
wasted in this bin. Thus, the total wasted space will be at
least 1 + 1 + 4 + 92 = 98 units, which is added to the sum
of all the elements before dividing by the bin capacity.

This estimated wasted-space calculation proceeds as fol-
lows. We consider the elements in decreasing order of size.
Given an element x, the residual capacity r of the bin con-
taining x is r = c − x, where c is the bin capacity. We
then consider the sum s of all elements less than or equal to
r, which have not already been assigned to a previous bin.
There are three possible cases. The first is that r equals s.
In that case, there is no estimated waste, and no carry over
to the next bin. If s < r, then r − s is added to the esti-
mated waste, and again there is no carryover to the next bin.
Finally, if r < s, then there is no waste added, and s − r
is carried over to the next bin. Once the estimated waste is

computed, it is added to the sum of the elements, which is
divided by the bin capacity, and then rounded up.

This estimated wasted space adds significantly to the sum
of the elements. For example, on problems with 90 ele-
ments, uniformly distributed from zero to one million, with
a bin capacity of one million, the estimated wasted-space
lower bound averages 47.428 bins, while the simple sum
lower bound averages only 45.497. For comparison, the av-
erage optimal solution for these problem instances is 47.680.

Martello and Toth Algorithm
The best existing algorithm for finding optimal solutions to
bin-packing problems is due to Martello and Toth (Martello
& Toth 1990a; 1990b). Their branch-and-bound algorithm is
complex, and we describe here only the main features. Their
basic problem space takes the elements in decreasing order
of size, and places each element in turn into each partially-
filled bin that it fits in, and into a new bin, branching on
these different alternatives. This results in a problem space
bounded by n!, where n is the number of elements, but this is
a very pessimistic upper bound, since many elements won’t
fit in the same bins as other elements.

At each node of the search tree, Martello and Toth com-
pute the first-fit, best-fit, and worst-fit decreasing completion
of the corresponding partial solution. A partial solution to a
bin-packing problem is one where some but not all elements
have already been assigned to bins. A completion of a partial
solution takes the current partially-filled bins, and assigns
the remaining unassigned elements to bins. The worst-fit
decreasing algorithm places each successive element in the
partially-filled bin with the largest residual capacity that will
accommodate that value.

Each of these approximate solutions is compared to a
lower bound on the remaining solution that they call L3. The
L3 bound is computed by successively relaxing the remain-
ing subproblem by removing the smallest element, and then
applying the L2 bound to each of the relaxed instances, re-
turning the largest such lower bound. Martello and Toth’s L2
bound equals the estimated wasted-space bound described
above, but they use a more complex algorithm to compute
it. If the number of bins used by any of the approximate
completions equals the lower bound for completing the cor-
responding partial solution, no further search is performed
below that node. If the number of bins in any approximate
solution equals the lower bound on the original problem, the
algorithm terminates, returning that solution as optimal.

The main source of efficiency of the Martello and Toth al-
gorithm is a method to reduce the size of the remaining sub-
problems, which we will discuss below under “Dominance
Relations”. First, however, we very briefly discuss another
optimal bin-packing program due to Fekete and Schepers.

Fekete and Schepers Lower Bound
Fekete and Schepers (Fekete & Schepers 1998) use the same
algorithm as Martello and Toth, but with a more accurate
lower-bound function. They claim that the resulting algo-
rithm outperforms Martello and Toth’s algorithm, based on

732 AAAI-02

solving more problems with the same number of node gen-
erations, but didn’t report running times. We implemented
both algorithms, but found that the Fekete and Schepers al-
gorithm was slower than that of Martello and Toth, because
their lower bound function took longer to compute, and this
wasn’t compensated for by the reduced node generations.

Dominance Relations
Some sets of elements assigned to a bin are guaranteed to
lead to solutions that are at least as good as those achiev-
able by assigning other sets of elements to the same bin. We
begin with some simple examples of these dominance rela-
tions, and then consider the general formulation.

First, consider two elements x and y, such that x+ y = c,
where c is the bin capacity. Assume that in an optimal solu-
tion, x and y are in different bins. In that case, we can swap
y with all other elements in the bin containing x, without
increasing the number of bins. This gives us a new optimal
solution with x and y in the same bin. Thus, given a problem
with two values x and y such that x + y = c, we can always
put x and y in the same bin, resulting in a smaller problem
(Gent 1998). Unfortunately, this does not extend to three or
more elements that sum to exactly the bin capacity.

As another example, consider an element x such that the
smallest two remaining elements added to x will exceed c.
In other words, at most one additional element can be added
to the bin containing x. Let y be the largest remaining ele-
ment such that x + y ≤ c. Then, we can place y in the same
bin as x without sacrificing solution quality. The reason is
that if we placed any other single element z with x, then we
could swap y with z, since z ≤ y and x + y ≤ c.

As a final example, assume that y is the largest remaining
element that can be added to x such that x+y ≤ c, and that y
equals or exceeds the sum of any set of remaining elements
that can be added to x without exceeding c. In that case, we
can again put x and y in the same bin, without sacrificing
solution quality. The reason is that any other set of elements
that were placed in the same bin as x could be swapped with
y without increasing the number of bins.

The general form of this dominance relation is due to
Martello and Toth (Martello & Toth 1990a; 1990b). Define
a feasible set as any set of elements whose sum doesn’t ex-
ceed the bin capacity. Let A and B be two feasible sets. If
all the elements of B can be packed into a set of bins whose
capacities are the elements of A, then set A dominates set
B. Given all the feasible sets that contain a common ele-
ment x, only the undominated sets need be considered for
assignment to the bin containing x.

Martello and Toth use this dominance relation to reduce
the size of subproblems generated by their search. Given
a partially-solved problem where some elements have al-
ready been assigned to bins, Martello and Toth first convert
the partially-solved problem to an equivalent initial problem,
where no elements have been assigned to bins, in two steps.
First, any element that is unassigned, or assigned to a bin
with no other elements, is left unchanged. Second, for each
bin that contains more than one element, all the elements as-
signed to that bin are replaced with a single element equal

to their sum, guaranteeing that any elements assigned to the
same bin will stay together.

To reduce the size of such a problem, Martello and Toth
take each element x in turn, starting with the largest element,
and check to see if there is a single set of three or fewer ele-
ments, including x, that dominates all feasible sets contain-
ing x. If so, they place x with those elements in the same
bin, and recursively apply the same reduction algorithm to
the resulting reduced problem. They also use dominance re-
lations to prune some placements of elements into bins.

Bin-Completion Algorithm
Our optimal bin-packing algorithm, which we call bin com-
pletion, makes more effective use of these dominance rela-
tions. Like the Martello and Toth algorithm, bin completion
is also a branch-and-bound algorithm, but searches a differ-
ent problem space. Rather than considering each element
in turn, and deciding which bin to place it in, we consider
each bin in turn, and consider the undominated feasible sets
of elements that could be used to complete that bin. We
sort the elements in decreasing order of size, and consider
the bins containing each element in turn, enumerating all
the undominated completions of that bin, and branching if
there are more than one. In other words, we first complete
the bin containing the largest element, then complete the bin
containing the second largest element, etc.

Example Problem
To illustrate our algorithm, consider an example problem
consisting of the elements {100, 98, 96, 93, 91, 87, 81, 59,
58, 55, 50, 43, 22, 21, 20, 15, 14, 10, 8, 6, 5, 4, 3, 1, 0},
with a bin capacity of 100. The 100 completely occupies a
bin, and the 0 takes no space, resulting in the problem {98,
96, 93, 91, 87, 81, 59, 58, 55, 50, 43, 22, 21, 20, 15, 14,
10, 8, 6, 5, 4, 3, 1}. The only element that can go with 98
is 1, so we put them together, leaving {96, 93, 91, 87, 81,
59, 58, 55, 50, 43, 22, 21, 20, 15, 14, 10, 8, 6, 5, 4, 3}. We
place 96 and 4 together, since they sum to exactly the bin
capacity, leaving {93, 91, 87, 81, 59, 58, 55, 50, 43, 22, 21,
20, 15, 14, 10, 8, 6, 5, 3}. Since the sum of the two smallest
remaining elements, 5 and 3, exceeds the residual capacity
of the bin containing 93, we can’t place more than one el-
ement in that bin, and choose the largest such element 6 to
go with 93,, leaving {91, 87, 81, 59, 58, 55, 50, 43, 22, 21,
20, 15, 14, 10, 8, 5, 3}. We can complete the bin containing
91 with 8, 5, 3, or 5 + 3. Since the 8 dominates the other
single elements, and also the set 5 + 3, we place 8 with 91,
leaving {87, 81, 59, 58, 55, 50, 43, 22, 21, 20, 15, 14, 10, 5,
3}. The bin containing 87 can be completed with 10, 5, 3,
10+3 or 5+3. All of these are dominated by 10+3, so we
place 10+3 with 87, resulting in {81, 59, 58, 55, 50, 43, 22,
21, 20, 15, 14, 5}. Up to this point, no branching is needed,
since there is only one undominated choice for completing
each of the bins considered so far.

The bin containing 81 can be completed with 15, 14, 5, or
14 + 5. Both 15 and 14 + 5 dominate both 14 and 5 individ-
ually. However, neither 15 nor 14 + 5 dominate each other,
so both must be considered, producing a two-way branch in

AAAI-02 733

the search. Heuristically, we choose to explore the comple-
tion with the largest sum first, adding 14 + 5 to the bin with
81, leaving {59, 58, 55, 50, 43, 22, 21, 20, 15}. We can
complete the bin containing 59 with 22, 21, 20, 15, 22 + 15,
21 + 20, 21 + 15, or 20 + 15. Of these, only 22 + 15 and
21+20 are undominated by any of the others. This produces
another two-way branch in the search, and we choose the al-
ternative with the greater sum, 21 + 20, to place first with
59, leaving {58, 55, 50, 43, 22, 15}. To complete the bin
with 58, there is only one undominated choice, 22 + 15, so
we put these three elements together, leaving {55, 50, 43}.

Note that the only elements which could possibly be
placed in the same bin with an element of size 58 or larger
are those of size 42 or smaller. At this point, all elements of
size 42 or smaller have already been placed in a bin with an
element of size 58 or larger. While we could rearrange some
of the smaller elements in those bins, no such rearrangement
could possibly reduce the number of such bins, because each
element of size 58 or larger requires its own bin. Thus, there
is no need to backtrack to either of the branch points we en-
countered, and we can continue the search as if all the pre-
vious decisions were forced. The general form of this rule is
the following: If x > c/2, where c is the bin capacity, and
all elements ≤ c− x have been placed in bins containing el-
ements ≥ x, then any branch points generated in filling bins
with elements ≥ x can be ignored.

The remaining problem of {55, 50, 43} requires two more
bins, yielding an optimal solution of eleven bins, as follows:
{100}, {98, 1}, {96, 4}, {93, 6}, {91, 8}, {87, 10, 3}, {81,
14, 5}, {59, 21, 20}, {58, 22, 15}, {55, 43}, {50}.

General Algorithm
Our overall bin-completion algorithm is as follows. First
we compute the best-fit decreasing (BFD) solution. Next,
we compute a lower bound on the entire problem using the
wasted-space bound described above. If the lower bound
equals the number of bins in the BFD solution, it is returned
as the optimal solution. Otherwise we initialize the best so-
lution so far to the BFD solution, and start a branch-and-
bound search for strictly better solutions. Once a partial so-
lution uses as many bins as the best complete solution found
so far, we prune that branch of the search. Experimentally,
it was not worthwhile to also compute the first-fit decreas-
ing (FFD) solution, since the FFD solution very rarely uses
fewer bins than the BFD solution.

We consider the elements in decreasing order of size, and
generate all the undominated completions of the bin con-
taining the current element. If there are no completions or
only one undominated completion, we complete the bin in
that way and go on to the bin containing the next largest el-
ement. If there is more than one undominated completion,
we order them in decreasing order of total sum, and consider
the largest first, leaving the others as potential future branch
points. Whenever we find a complete solution that is better
than the best so far, we update the best solution found so far.

For a lower bound on a partial solution, we use the sum of
all the elements, plus the actual space remaining in the bins
completed so far, divided by the bin capacity and rounded
up to the next larger integer. Equivalently, we can add the

number of bins completed to the sum of the remaining el-
ements, divided by the bin capacity and rounded up. This
lower bound is more effective than the estimated wasted-
space bound described above, because it includes the actual
wasted space in the completed bins. Furthermore, it is com-
puted in constant time, by just accumulating the amounts of
wasted space in the completed bins. Surprisingly, given this
computation, it doesn’t help to additionally compute the es-
timated wasted space in the remaining bins, for reasons we
don’t have sufficient space to describe here. Thus, we re-
place a linear-time lower-bound function with a more accu-
rate constant-time function, with no loss in pruning power.
If the lower bound on a partial solution equals or exceeds the
number of bins in the best solution so far, we prune consid-
eration of that partial solution.

Most of the time in our algorithm is spent computing the
undominated completions of a bin. Our current implemen-
tation generates a subset of the feasible completions, then
tests these for dominance. Given a particular element x, we
first find the largest element y for which x + y ≤ c.

We then compute all feasible pairs w and z, such that
x + w + z ≤ c, which are undominated by the single el-
ement y, i.e. w + z > y, and such that no pair domi-
nates any other pair. Given two pairs of elements, d + e
and f + g, all four elements must be distinct, or the pair
with the larger sum will dominate the other. Assume with-
out loss of generality that d > f . In that case, g must be
greater than e, or d + e will dominate f + g. Thus, given
any two pairs of elements, neither of which dominates the
other, one must be completely “nested” inside the other in
sorted order. We can generate all such undominated pairs in
linear time by keeping the remaining elements sorted, and
maintaining two pointers into the list, a pointer to a larger
element and a pointer to a smaller element. If the sum of the
two elements pointed to exceeds the bin capacity, we bump
the larger pointer down to the next smaller element. If the
sum of the two elements pointed to is less than or equal to y,
we bump the smaller pointer up to the next larger element. If
neither of these cases occur, we have an undominated pair,
and we bump the larger pointer down and the smaller pointer
up. We stop when the pointers reach each other.

After computing all undominated completion pairs, we
then compute all triples d, e, and f , such that x+d+e+f ≤
c and d + e + f > y, then all quadruples, etc. To compute
all triples, we choose each feasible first element, and then
use our undominated pairs algorithm for the remaining two
elements. For all quadruples, we choose all possible feasi-
ble pairs, then use our undominated pairs algorithm for the
remaining two elements, etc. These larger feasible sets will
in general include dominated sets.

Given two feasible sets, determining if the one with the
larger sum dominates the other is another bin-packing prob-
lem. This problem is typically so small that we solve it di-
rectly with brute-force search. We believe that we can signif-
icantly improve our implementation, by directly generating
all and only undominated completions, eliminating the need
to test for dominance.

734 AAAI-02

N Optimal L2 bound % Optimal Martello + Toth Bin Completion Ratio
FFD BFD Nodes Time Nodes Time Time

5 3.215 3.208 100.000% 100.000% 0.000 7 .013 6 1.17
10 5.966 5.937 99.515% 99.541% .034 15 .158 13 1.15
15 8.659 8.609 99.004% 99.051% .120 25 .440 19 1.32
20 11.321 11.252 98.570% 98.626% .304 37 .869 27 1.37
25 13.966 13.878 98.157% 98.227% .741 55 1.500 36 1.53
30 16.593 16.489 97.790% 97.867% 2.146 87 2.501 44 1.98
35 19.212 19.092 97.478% 97.561% 7.456 185 4.349 55 3.36
40 21.823 21.689 97.153% 97.241% 39.837 927 8.576 73 12.70
45 24.427 24.278 96.848% 96.946% 272.418 6821 20.183 103 66.22
50 27.026 26.864 96.553% 96.653% 852.956 20799 57.678 189 110.05
55 29.620 29.445 96.304% 96.414% 6963.377 200998 210.520 609 330.05
60 32.210 32.023 96.036% 96.184% 58359.543 2153256 765.398 2059 1045.78
65 34.796 34.598 95.780% 95.893% 11758.522 28216
70 37.378 37.167 95.556% 95.684% 16228.245 41560
75 39.957 39.736 95.322% 95.447% 90200.736 194851
80 42.534 42.302 95.112% 95.248% 188121.626 408580
85 45.108 44.866 94.854% 94.985% 206777.680 412576
90 47.680 47.428 94.694% 94.832% 1111759.333 2522993

Table 1: Experimental Results

Experimental Results
Martello and Toth tested their algorithm on only twenty in-
stances each of sizes 50, 100, 200, 500, and 1000 elements.
They ran each problem instance for up to 100 seconds, and
reported how many were optimally solved in that time, and
the average times for those problems. Fekete and Schep-
ers ran 1000 problem instances each, of size 100, 500, and
1000. They ran each instance for 100,000 search nodes, and
reported the number of instances solved optimally. Both sets
of authors used a bin capacity of 100, and chose their values
from three distributions: uniform from 1 to 100, uniform
from 20 to 100, and uniform from 35 to 100.

We found these experiment unsatisfactory for several rea-
sons. The first is that we observed over eleven orders of
magnitude variation in the difficulty of individual problem
instances. For most problems, the number of bins in the
BFD solution equals the lower bound, requiring no search
at all. The hardest problems we solved required over 100
billion node generations, however. Performance on a large
set of problems is determined primarily by these hard prob-
lems. A problem set of only 20 or even 1000 problems is
unlikely to include really hard problems, and furthermore,
they terminated the processing of their hard problems when
a certain computational budget was exhausted.

Another difficulty with this approach is the use of integer
values no larger than 100. Problems with such low precision
values are significantly easier than problems with high pre-
cision values. For example, the simple preprocessing step
of removing all pairs of elements that sum to exactly the bin
capacity will eliminate most elements from a problem with
500 or 1000 elements up to 100. In contrast, with real num-
bers, we would expect no such reduction in problem size.

Finally, two of the distributions used by Martello and Toth
and Fekete and Schepers eliminate small values, namely 20
to 100 and 35 to 100. As their data show, these problems are

significantly easier than problems in which the values are
chosen uniformly from one to the bin capacity. The reason
is that all elements greater than one-half the bin capacity get
their own bins, and no bins can contain very many elements.

For these reasons, we performed a different set of exper-
iments. To include hard problems, we completed the opti-
mal solution of all problem instances. Given the enormous
variation in individual problem difficulty, one must address
considerably larger problem sets in order to get meaning-
ful averages. We solved ten million problem instances of
each size from 5 to 50, and one million problem instances
of each larger size. To avoid easy problems resulting from
low precision values, we chose our values uniformly from
zero to one million, with a bin capacity of one million. This
simulates real numbers, but allows integer arithmetic for ef-
ficiency. This also avoids the easier truncated distributions
described above. Table 1 above shows our results.

The first column is the problem size, or the number of el-
ements. The second column is the average number of bins
used in the optimal solution. As expected, it is slightly more
than half the number of elements, with the difference due
to wasted space in the bins. The third column is the aver-
age value of the L2 or wasted-space lower bound. The next
two columns show the percentage of problem instances in
which the first-fit decreasing (FFD) and best-fit decreasing
(BFD) heuristics return the optimal solution. Note that these
are not all easy problems, since verifying that the heuristic
solution is optimal can be very expensive. For example, in
94.832% of problems of size 90 the BFD solution was op-
timal, but in only 69.733% of problems of this size was the
L2 lower bound equal to the number of bins in the BFD so-
lution, meaning that the BFD solution could be returned as
the optimal solution with no search. All these percentages
decrease monotonically with increasing problem size.

The sixth column is the average number of nodes gener-

AAAI-02 735

ated by the Martello and Toth algorithm, and the seventh col-
umn is the average running time in microseconds per prob-
lem. The eighth column is the average number of nodes gen-
erated by our bin-completion algorithm, and the ninth col-
umn is the average running time in microseconds per prob-
lem on the same problem instances. The last column gives
the running time of the Martello and Toth algorithm divided
by the running time of our bin-completion algorithm. Both
programs were implemented in C, and run on a 440 mega-
hertz Sun Ultra 10 workstation.

It is clear that our bin-completion algorithm dramatically
outperforms the Martello and Toth algorithm on the larger
problems. The ratio of the running times of the two algo-
rithms appears to increase without bound, strongly suggest-
ing that our algorithm is asymptotically faster. On problems
of size 60, which were the largest for which we could solve
a million instances using the Martello and Toth algorithm,
their algorithm took almost 25 days, while our algorithm
took less than 35 minutes, which is over a thousand times
faster. We were able to run the Martello and Toth algorithm
on 10,000 problem instances of size 65, in a total of 614,857
seconds, which is over a week. Our bin completion algo-
rithm took 19 seconds to solve the same instances, which is
32,360 times faster. Another view of this data is that we
were able to increase the size of problems for which we
could solve a million instances from 60 elements with the
Martello and Toth algorithm, to 90 elements with our bin
completion algorithm, an increase of 50% in problem size.

Some problems were hard for both algorithms, and oth-
ers were hard for one algorithm were easy for the other. In
general, the difficult problems required significantly fewer
bins than average problems of the same size, or equivalently,
packed more elements per bin. For example, on 60 problems
of size 90, the bin-completion algorithm generated more
than a billion nodes. The average number of bins used by
the optimal solutions to these problems was 38.4, compared
to 47.68 bins for an average problem of this size.

Conclusions and Discussion
We have presented a new algorithm for optimal bin pack-
ing. Rather than branching on the number of different pos-
sible bins that an element can be assigned to, we branch
on the number of undominated ways in which a bin can
be completed. Our bin-completion algorithm appears to
be asymptotically faster than the best existing algorithm,
and runs more than a thousand times faster on problems
of 60 elements. We also presented a simpler derivation of
Martello and Toth’s L2 lower bound, and an efficient algo-
rithm for computing it. An additional advantage of our bin-
completion algorithm is that it is much simpler and easier to
implement than the Martello and Toth algorithm.

Since both algorithms use depth-first branch-and-bound,
they are anytime algorithms, meaning that they can be run
for as long as time allows, and then return the best solu-
tion found at that point. For large problems where solution
quality is important, it may be worthwhile to spend more
time than is required to run an O(n log n) approximation al-
gorithm such as best-fit or first-fit decreasing. In that case,
either the Martello and Toth or bin completion algorithms

could be run as an anytime algorithm, but the above data
suggest that bin completion will find better solutions faster.

Many hard combinatorial problems involve packing ele-
ments of one set into another. For example, floor planning,
cutting stock, and VLSI layout problems involve packing el-
ements of various shapes and sizes into a single region of
minimum size. The usual approach to optimally solve these
problems involves considering the elements one at time, in
decreasing order of size, and deciding where to place them
in the overall region. The analog of our bin-completion al-
gorithm would be to consider the most constrained regions
of the space, and determine which elements can be placed in
those regions. A clear example of the virtue of this approach
is solving a jigsaw puzzle. Rather than individually consid-
ering each piece and where it might go, it’s much more ef-
ficient to consider the most constraining regions of a partial
solution, and find the pieces that can go into that region.

This duality between pieces and spaces has been exploited
by Knuth in exact covering problems, such as polyominoe
puzzles (Knuth 2000). We have shown that this alternative
problem space can also be very useful in non-exact covering
problems such as bin packing. Since many other packing
problems have similar features, we believe that our general
approach will be applicable to other problems as well.

Acknowledgements
Thanks to Russell Knight for helpful discussions concerning
this research, and to Victoria Cortessis for a careful reading
of the manuscript. This research was supported by NSF un-
der grant No. IIS-9619447, and by NASA and JPL under
contract No. 1229784.

References
Fekete, S., and Schepers, J. 1998. New classes of lower
bounds for bin packing problems. In Bixby, R.; Boyd,
E.; and Rios-Mercado, R., eds., Integer Programming and
Combinatorial Optimization: Proceedings of the 6th In-
ternational IPCO Conference, 257–270. Houston, TX:
Springer.
Garey, M., and Johnson, D. 1979. Computers and In-
tractability: A Guide to the Theory of NP-Completeness.
San Francisco: W.H. Freeman.
Gent, I. 1998. Heuristic solution of open bin packing prob-
lems. Journal of Heuristics 3:299–304.
Johnson, D. 1973. Near-Optimal Bin Packing Algorithms.
Ph.D. Dissertation, Dept. of Mathematics, M.I.T., Cam-
bridge, MA.
Knuth, D. 2000. Dancing links. In Davies, J.; Roscoe,
B.; and Woodcock, J., eds., Millenial Perspectives in
Computer Science. Palgrave: Houndmills, Bashingstake,
Hampshire. 187–214.
Martello, S., and Toth, P. 1990a. Bin-packing problem. In
Knapsack Problems: Algorithms and Computer Implemen-
tations. Wiley. chapter 8, 221–245.
Martello, S., and Toth, P. 1990b. Lower bounds and re-
duction procedures for the bin packing problem. Discrete
Applied Mathematics 28:59–70.

736 AAAI-02

