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Abstract

As ontology development becomes a more ubiquitous and
collaborative process, the developers face the problem of
maintaining versions of ontologies akin to maintaining ver-
sions of software code in large software projects. Versioning
systems for software code provide mechanisms for tracking
versions, checking out versions for editing, comparing dif-
ferent versions, and so on. We can directly reuse many of
these mechanisms for ontology versioning. However, version
comparison for code is based on comparing text files—an ap-
proach that does not work for comparing ontologies. Two
ontologies can be identical but have different text representa-
tion. We have developed the PROMPTDIFF algorithm, which
integrates different heuristic matchers for comparing ontol-
ogy versions. We combine these matchers in a fixed-point
manner, using the results of one matcher as an input for others
until the matchers produce no more changes. The current im-
plementation includes ten matchers but the approach is easily
extendable to an arbitrary number of matchers. Our evalu-
ation showed that PROMPTDIFF correctly identified 96% of
the matches in ontology versions from large projects.

Structural Diffs Between Ontologies
Several recent developments have made ontologies—
explicit formal specifications of concepts and relations in a
domain—almost ubiquitous. Examples include the emer-
gence of the Semantic Web with formal ontologies as its
backbone and the development of easy-to-use tools, which
significantly lowered the barrier for ontology development.
With tools such as Protéǵe-2000 (2002) for example, ontol-
ogy development is no longer an enterprise available only to
researchers with graduate degrees in AI. In a sense, ontology
development in the worlds of e-commerce and the Semantic
Web is becoming a counterpart to conventional software en-
gineering.

As a result, ontology developers now face the same prob-
lem that software engineers began to encounter long ago:
versioning and evolution. Tools for managing versions of
software code, such as CVS (Fogel & Bar 2001), have be-
come indispensable for software engineers participating in
dynamic collaborative projects. These tools provide a uni-
form storage mechanism for versions, the ability to check
out a particular piece of code for editing, an archive of ear-
lier versions, and mechanisms for comparing versions and
merging changes and updates.

Ontologies change just as the software code does. These
changes are caused by changes in the domain itself (our
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knowledge about the domain changes or the domain itself
changes) or in the conceptualization of the domain (we may
introduce new distinctions or eliminate old ones). Further-
more, ontology development in large projects is a dynamic
process in which multiple developers participate, releasing
subsequent versions of an ontology. Naturally, collaborative
development of dynamic ontologies requires tools that are
similar to software-versioning tools. In fact, ontology de-
velopers can use the storage, archival, and check-out mech-
anisms of tools like CVS with very little change. There
are two areas, however, that require new techniques to man-
age versions of ontologies: (1) representation formalisms to
store ontologies and (2) version comparison based onstruc-
ture of the data. To address the first issue, researchers are
actively developing representation formalisms, such as RDF
and RDF Schema (W3C 2000), OIL (Fenselet al. 2000),
DAML+OIL (Hendler & McGuinness 2000), and so on. The
work we are presenting in this paper addresses the second is-
sue: structure-based comparison of ontologies.

Comparison of versions of software code entails a com-
parison of text files. Code is a set of text documents and the
result of comparing the documents—the process is called a
diff —is a list of lines that differ in the two versions. This
approach does not work for comparing ontologies: two on-
tologies can be exactly the same conceptually but have very
different text representations. For example, their storage
syntax may be different. The order in which definitions are
introduced in the text file may be different. A representation
language may have several mechanisms to express the same
thing. Therefore, text-file comparison is largely useless in
comparing versions of ontologies. The PROMPTDIFF algo-
rithm, which we describe in this paper, compares thestruc-
tureof ontology versions and not their text serialization.

We use a knowledge model compatible with the Open
Knowledge Base Connectivity (OKBC) protocol (Chaudhri
et al. 1998): an ontology has classes, class hierarchy, in-
stances of classes, slots as first-class objects, slot attach-
ments to class to specify class properties, and facets to spec-
ify constraints on slot values.1 All these elements are also
present in other representation formalisms such as RDFS
and DAML+OIL (sometimes in a slightly different form).
Therefore, our results apply to ontologies defined in these
languages as well.

Suppose that we are developing an ontology of wines. In
the first version (Figure 1a), there is a classWine with three
subclasses,Red wine, White wine, andBlush wine. The

1OKBC also allows procedural attachments and specialized ax-
ioms, which we do not consider.
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Figure 1:Two versions of a wine ontology (a and b) and the PROMPTDIFF table showing the difference between the versions

classWine has a slotmaker whose values are instances
of classWinery. The classRed wine has two subclasses,
Chianti andMerlot. Figure 1b shows a later version of the
same ontology fragment. Note the changes: we changed the
name of themaker slot toproduced by and the name of the
Blush wine class toRosé wine; we added atannin level
slot to theRed wine class; and we discovered thatMerlot
can be white and added another superclass to theMerlot
class. Figure 1c shows the differences between the two ver-
sions in a table produced automatically by PROMPTDIFF.
The first two columns are pairs of matching frames from the
two ontologies. Informally, given two versions of an ontol-
ogy O, V1 andV2, two framesF1 fromV1 andF2 fromV2

match if F1 becameF2. Other columns in the table provide
more information about the match. The third column identi-
fies whether or not the frame has been renamed. The last two
columns specify how much the frame has changed, if at all
(see the next section). Similar to the diff between text files,
the table in Figure 1c presents anontology diff. We give a
formal definition of the ontology diff in the next section.

The PROMPTDIFF algorithm consists of two parts: (1) an
extensible set of heuristic matchers and (2) a fixed-point al-
gorithm to combine the results of the matchers to produce a
structural diff between two versions. Each matcher employs
a small number of structural properties of the ontologies to
produce matches. The fixed-point step invokes the matchers
repeatedly, feeding the results of one matcher into the others,
until they produce no more changes in the diff.

Our approach to automating the comparison is based on
two observations: (1) When we compare two versions of the
same ontology, a large fraction of frames remains unchanged
(in fact, in our experiments, 97.9% of frames remained un-
changed) and (2) If two frames have the same type (i.e., they
are both classes, both slots, etc.) and have the same or very
similar name, one is almost certainly an image of the other.
Both of these observations are not true if we are compar-
ing twodifferentontologies that came from different sources
rather than two versions of thesameontology. Consider a
classUniversity for example. In two different ontologies,
the class may represent either a university campus, or a uni-
versity as an organization, with its departments, faculty, and
so on. If we encounter a classUniversity in two versions
of the same ontology, we can be almost certain that it rep-
resents exactly the same concept (and because we have a
human looking at the results in the end, we can tolerate the
”almost” adverb in that sentence).

At the same time, the tasks of comparing different ontolo-
gies (for example, for the purposes of ontology merging or

integration) and comparing versions of the same ontology
are closely related. In both cases, we have two overlapping
ontologies and we need to determine a mapping between
their elements. When we compare ontologies from differ-
ent sources, we concentrate onsimilarities, whereas in ver-
sion comparison we need to highlight thedifferences, which
can be a complementary process. We used heuristics that
are similar to the ones we present in this paper to provide
suggestions in interactive ontology merging (Noy & Musen
2000). However, because in PROMPTDIFF we are dealing
with two versions of the same ontology, we can be much
more certain about the results the heuristics produce and re-
quire significantly less input and verification from the user.

The process of comparing versions of ontologies would
have been greatly simplified if we had logs of changes be-
tween versions. However, given the de-centralized envi-
ronment of ontology development today, it is unrealistic to
expect that such logs will be available. Many ontology-
development tools do not provide any logging capability.
Ontology libraries are set up to publish versions of ontolo-
gies but not the logs of changes. Representation formats
address representation of the ontologies themselves but not
changes in ontologies. Therefore, we can expect that the
need for comparing versions when a log of changes between
them is not available will continue to grow.

In the rest of this paper we describe different heuristic
matchers that we used, and the way we combined them in
the PROMPTDIFF algorithm. Specifically, this paper makes
the following contributions:
• We define the notion of a structural diff between ontology

versions.
• We present a set of heuristic matchers for finding a struc-

tural diff automatically.
• We present an efficient and extendable fixed-point algo-

rithm that combines the matchers to produce the diff.
• We evaluate the algorithm’s performance using versions

of large real-world ontologies.

Structural Diff and PROMPTDIFF Table
We define astructural diff between two ontology versions.
Definition 1 (Structural diff) Given two versions of an on-
tologyO, V1 andV2, a structural diff betweenV1 andV2,
D(V1, V2), is a set of frame pairs〈F1, F2〉 where:
• F1 ∈ V1 or F1 = null; F2 ∈ V2 or F2 = null
• F2 is an image of F1 (matchesF1), that is,F1 became

F2. If F1 or F2 is null, then we say thatF2 or F1 respec-
tively does not have a match.

• Each frame fromV1 andV2 appears in at least one pair.

AAAI-02    745



• For any frameF1, if there is at least one pair containing
F1, whereF2 6= null, then there is no pair containingF1

whereF2 = null (if we found at least one match forF1,
we do not have a pair that says thatF1 is unmatched).
The same is true forF2.

Note that the definition implies that for any pair of frames
F1 andF2, there is at most one entry〈F1, F2〉.

The structural diff describes which frames have changed
from one version to another. However, for a diff to be
more useful to the user, it should include not onlywhat
has changed but also some information onhow the frames
have changed. A PROMPTDIFF table, which results from
the PROMPTDIFF algorithm, provides this more detailed in-
formation (Figure 1c).
Definition 2 (PROMPTDIFF table) Given two versions of
an ontologyO, V1 and V2, the PROMPTDIFF table is a
set of tuples〈F1, F2, rename value, operation value,
mapping level〉 where:
• There is a tuple 〈F1, F2, rename value,

operation value, mapping level〉 in the table iff
there is a pair〈F1, F2〉 in the structural diffD(V1, V2).

• rename value is true if frame names forF1 andF2 are
the same;rename value is false otherwise.

• operation value ∈ OpS, whereOpS = {add, delete,
split, merge, map}

• mapping level ∈ MapS, where MapS =
{unchanged, isomorphic, changed}
The operations in the operation setOpS indicate to the

user how a frame has changed from one version to the other:
whether it was added or deleted, whether it was split in two
frames, or whether two frames were merged. We assign
a map operation to a pair of frames if none of the other
operations applies. Themapping level indicates whether
the matching frames are different enough from each other
to warrant the user’s attention. If themapping level is
unchanged, then the user can safely ignore the frames—
nothing has changed in their definitions. If two frames are
isomorphic, then their corresponding slots and facet val-
ues are images of each other, but not necessarily identical
images. Themapping level is changed if the frames have
slots or facet values that are not images of each other. In Fig-
ure 1c, theRed wine class has changed: It got a new slot.
The pair of theChianti classes is marked asisomorphic:
Even though the frames themselves have not changed, the
frames that they directly reference (Red wine) have. Our
implementation of PROMPTDIFF also provides the informa-
tion to the user explaining why the table row contains a par-
ticular operation or mapping level (not shown in Figure 1c).

PROMPTDIFF Heuristic Matchers
The PROMPTDIFF algorithm combines an arbitrary number
of heuristic matchers, each of which looks for a particular
property in the unmatched frames. Before describing some
of the matchers that we used, we define amonotonicity
principle , a principle to which all the matchers in PROMPT-
DIFF must conform.
Definition 3 (Monotonicity principle) Let M be a match-
ing algorithm andT1 and T2 be thePROMPTDIFF tables

before and after execution ofM . Then for every two frames
F1 andF2, such thatF1 ∈ V1 andF2 ∈ V2, if the pair 〈F1,
F2〉 is present inT1, then〈F1, F2〉 is present inT2.

A matcher conforms to the monotonicity principle iff it
does not retract any matches already in the table. It may
delete the rows where one of the frames isnull by creating
new matches. But it must keep all the existing matches.

We now describe some of the heuristic matchers that we
used. Note that each of the matchers is fairly simple and
the strength of our approach lies in the combination of these
matchers. Also, each of the matchers looks at a particular
part of the ontology structure:is−a hierarchy, slots attached
to a class, and so on.

Each of the matchers in the list is aheuristic matcher.
Therefore, there can always be an example when the result
produced by the matcher is wrong. However, we have ex-
amined ontology versions in several large projects, and we
have not come across such examples. Therefore, we believe
that most of the time the matchers would produce correct re-
sults. Furthermore, PROMPTDIFF presents the matching re-
sults to a human expert for analysis, highlighting the frames
that have changed. The expert can examine the matches for
these changed frames to see if they are correct. These frames
usually constitute only a small fraction of all the frames in an
ontology. Therefore, even for very large ontologies, human
experts need to examine only a small number of frames.

In the following descriptions of matchers,Fn denotes a
frame of any type, class, slot, facet, or instance;Cn denotes
a class;Sn denotes a slot. The heuristic matchers compare
two ontology versions looking for the following situations:
1. Frames of the same type with the same name.In Fig-

ure 1, both ontology versions,V1 andV2, have a frame
Wine, and in both versions this frame is a class. In this
situation, the matcher declares that the two frames match.
In general, ifF1 ∈ V1 andF2 ∈ V2 andF1 andF2 have
the same name and type, thenF1 andF2 match. Frames
can be of type class, slot, facet, or instance. In our exper-
iments, this matcher produced an average of 97.9% of all
the matches since ontologies usually do not change a lot
from one version to the next.

2. Single unmatched sibling. In the example in Figure 1,
suppose we matched the classesWine, Red wine, and
White wine from V1 to their counterparts with the same
names inV2. Then theWine class in both versions has
exactly one unmatched subclass:Blush wine in V1 and
Rosé wine in V2. In this situation, we conclude that the
Rosé wine class is the image of theBlush wine class. In
general, ifC1 ∈ V1 andC2 ∈ V2, C1 andC2 match, and
each of the classes has exactly one unmatched subclass,
subC1 andsubC2, respectively, thensubC1 andsubC2

match. We have a similar matcher for multiple unmatched
siblings that can be distinguished by their sets of slots.

3. Siblings with the same suffixes or prefixes.Taking the
example in 1 further, suppose we remove ”wine” from
the class name for subclasses of theWine class (Fig-
ure 2a). Therefore, all the names for those subclasses
have changed. However, if we observe that they have
all changed in the same way—the same suffix has been
removed—we can create the corresponding matches any-
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Figure 2: (a) Class names for subclasses ofWine are the same
as in Figure 1b except for the ”wine” suffix; (b) slotsmaker and
makes are inverse slots in one version; slotsproduced by and
produces are inverse slots in another version.

way. In general, ifC1 ∈ V1 andC2 ∈ V2, C1 andC2

match, and the names of all subclasses ofC1 are the same
as the names of all subclasses ofC2 except for a constant
suffix or prefix, then the subclasses match.

4. Single unmatched slot.In the example in Figure 1, sup-
pose we matched the classWine from the first version
to its counterpart in the second version. Each of the two
classes has a single slot that is so far unmatched:maker
andproduced by, respectively. Not only is each of these
slots the only unmatched slot attached to its respective
class, but also the range restriction for the slot is the same:
the classWinery. Therefore, we can match the slots
maker and produced by. In general, ifC1 ∈ V1 and
C2 ∈ V2, C1 andC2 match, and each of the classes has
exactly one unmatched slot,S1 andS2 respectively, and
S1 andS2 have the same facets, thenS1 andS2 match.

5. Unmatched inverse slots.If a knowledge model allows
definition of inverse relationships, we can take advantage
of such relationships to create matches as well. Suppose
we have a slotmaker in V1 (at theWine class in Fig-
ure 1), which has an inverse slotmakes at theWinery
class (Figure 2b); and a slotproduced by in V2, which
has an inverse slotproduces. Once we match the slots
maker andproduced by, we can match the slotsmakes
andproduces because they are inverses of the slots that
match. In general, ifS1 ∈ V1 andS2 ∈ V2, S1 andS2

match,invS1 andinvS2 are inverse slots forS1 andS2

respectively, andinvS1 and invS2 are unmatched, then
invS1 andinvS2 match.

6. Split classes.Suppose that an early definition of our wine
ontology included only white and red wines and we sim-
ply defined all rośe wines as instances ofWhite wine.
In the next version, we introduced aRosé wine class and
moved all instances corresponding to rosé wines to this
new class. In other words, the classWhite wine was
split into two classes:White wine andRosé wine. In
general, ifC0 ∈ V1 and C1 ∈ V2 and C2 ∈ V2, and
for each instance ofC0, its image is an instance of either
C1 or C2, thenC0 was split intoC1 andC2. A similar
matcher identifies classes that were merged.

Note that each of the matchers in the list considers only
the frames that have not yet been matched. Thus, even
though potentially each of the matchers will need to exam-
ine every tuple in the current PROMPTDIFF table, in prac-
tice, each matcher, except for the first one, examines only a
very small number of tuples (the ones that have null values
either forF1 or F2).

The PROMPTDIFF Algorithm
We combine all the available heuristic matchers (such as the
ones we described in the previous section as well as any
other available matchers) in the PROMPTDIFF algorithm, a
fixed-point algorithm that produces the complete PROMPT-
DIFF table for two ontology versions. PROMPTDIFF runs all
the matchers until they produce no new changes in the table.
Because no matcher retracts the results of previous match-
ers or its own results from previous runs (the monotonicity
principle), the algorithm always converges.

Dependency Among Matchers
A simple-minded implementation of such a fixed-point al-
gorithm will run a set of all matchers in sequence until the
whole set produces no more changes. However, we can
greatly improve the efficiency of the algorithm using the
following observations. First, not all matchers use all the
information available in the table. For instance, thesingle
unmatched siblingsmatcher never considers matches be-
tween slots. Theinverse slotsmatcher does not care about
the class-matching information. Second, the type of infor-
mation in the table that each matcher can modify is lim-
ited. Thesingle unmatched siblingmatcher can create new
matches between classes but never between slots. Thein-
verse slotmatcher can create new matches between slots
but never between classes. Therefore, if each matcher de-
clares what type of matching information it uses and what
type of matching information it modifies, we can create a
dependency table among the matchers and use this table to
make the implementation more efficient.

Table 1 shows a dependency table for the matchers we
described. For each matcher, we specify what type of
information—matches between classes or slots—it uses and
modifies (we omit facets and instances due to lack of
space). Based on this specification, we determine depen-
dency among the matchers (the last column in Table 1).
Notice that none of the matchers affects the first matcher,
which compares names and types of frames. After we run
it once, we do not need to run it again: the results of other
matchers will not change its results. Conversely, thesin-
gle unmatched slotsmatcher uses existing matches between
classes and slots and therefore all the matchers that modify
this information affect this matcher (in our example, this list
includes all matchers). Thus, if any of the matchers changes
the PROMPTDIFF table, we need to run this matcher again.

PROMPTDIFF uses the dependency table to determine the
order in which it executes the matchers. It keeps a stack of
matchers it still needs to run. It starts by putting the matchers
that do not affect any other matchers at the bottom of the
stack and matchers that are not affected by other matchers
at the top. Then it executes matcherM at the top of the
stack. If M produced changes in the PROMPTDIFF table,
the algorithm adds to the stack all the matchers that depend
onM , removing duplicates. It runs until the stack is empty.

Performance Analysis
Given two versions of an ontology,V1 andV2, with n and
m frames, respectively, we show that PROMPTDIFF con-
verges after a linear number of steps and its running time
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Matcher Uses infoModifies info Affects
about about matchers

classesslotsclassesslots
1. Same type same name – – + + 2, 3, 4, 5
2. Single unmatched sibling + – + – 2, 3, 4
3. Siblings with same suffixes + – + – 2, 3, 4
4. Single unmatched slot + + – + 4, 5
5. Unmatched inverse slot – + – + 4, 5
6. Split classes + – + – 2, 3, 4

Table 1:Dependency table for the matchers in the paper

is TmaxO(max(n, m)), whereTmax is the running time for
the least efficient of the matchers.

We first estimate the size of the PROMPTDIFF table. With-
out the split and merge operations, there is at most one tuple
for each frame inV1 andV2. Thus, the number of tuples is
O(n + m) = O(M), whereM = max(n, m). We allow
splits only of one class into two classes and merges of only
two classes into one class. Therefore, even if every frame in
V1 were split into two frames inV2, the size of the table is
still O(n). Similarly, even if every frame inV2 resulted from
a merge of two frames inV1, the size of the table isO(m).
Thus, the table size isO(M) and is linear in the size of the
ontologies. When PROMPTDIFF runs, it starts with the table
where all the frames fromV1 andV2 are unmatched. The
table containsn + m rows. Performing a similar analysis,
we can show that the maximum number of possible mono-
tonic changes to the table is finite and it is limited byO(M).
If a matcher produced a change in the table, we will have
to run at mostc more matchers wherec is the total number
of matchers in the system, a constant. Therefore, the run-
ning time of PROMPTDIFF is TmaxO(M), whereTmax is
the running time for the least efficient algorithm.

All the matchers that we presented in the previous section,
except the first one, are linear in the size of the ontologies.
The first matcher runs inO(M)log(M) time but it is exe-
cuted only once. Therefore, given this set of matchers, the
running time isO(M)log(M) + O(M)O(M) = O(M2).

Evaluation
Empirical evaluation is particularly important for heuristic
algorithms, because there is no provable way to verify their
correctness. We implemented PROMPTDIFF as a plugin for
the Prot́eǵe-2000 ontology-editing environment (2002). We
then evaluated PROMPTDIFF using ontology versions in two
large projects at our department: the EON project,2 and the
PharmGKB project.3 Both projects rely heavily on ontolo-
gies, both use Protéǵe-2000 for ontology development, and
both keep records of different versions of their ontologies.
We compared consecutive versions of the ontologies, as well
as versions that were farther apart. For each pair of versions,
we created the PROMPTDIFF table manually (given that the
ontologies contained between 300 and 1900 concepts, it was
a onerous process) and compared this manually generated
table with the one that PROMPTDIFF produced.

Table 2 presents characteristics of the source ontologies

2http://www.smi.stanford.edu/projects/eon
3http://www.pharmgkb.org

and the results of our evaluation. Experiments 1, 2 and 3
used the ontologies form the EON project, which had be-
tween 314 and 320 frames in each version. Experiments 1
and 2 compared consecutive versions, whereas experiment
3 compared non-consecutive versions: the first version from
experiment 1 and the second version from experiment 2.
Experiments 4, 5 and 6 used the ontologies from the Phar-
mGKB project, which had between 1886 and 1895 frames
in each version. We compared consecutive versions and then
the versions that were farther apart. On average, 97.9% of
frames in each version remained unchanged. To evaluate the
accuracy of our algorithm, we considered the frames that
had changed (the remaining 2.1%)—exactly the frames that
a user would need to look at. On average, PROMPTDIFF
identified 96% of matches between those frames (this mea-
sure is similar torecall in information retrieval). 93% of
the matches that PROMPTDIFF identified were correct (pre-
cision in information-retrieval terms).4 More important,all
the discrepancies between the manual and the automatic re-
sults were confined to the rows that hadnull in one of the
first two columns. In other words, when PROMPTDIFF did
find a match for a frame, it was always correct. Sometimes,
the algorithm failed to find a match when a human expert
could find one. A human expert can determine that two
frames are similar even if a rule that he applied in a specific
case is not sufficiently general to apply in all cases. It can be
a significant overlap in a class name (e.g.,Finding versus
Physical F inding), similarity in the slot range (e.g., two
slots at matching frames that have the same range), and so
on. At the same time, the matchers have to use rules that are
sufficiently general to apply them to any ontology.

Let us interpret these numbers from the user’s point of
view. In the last experiment, for example (row 6 in Table
2), 83 frames fromV1 have changed (in fact, names of 67
of those frames were replaced with system-generated names
by accident). The PROMPTDIFF result contained 19 un-
matched frames. Given that we can trust the matches that
PROMPTDIFF generated, we need to examine only these 19
unmatched frames instead of examining all 1886 inV1, a sig-
nificantly simpler task (it turned out that 14 of those frames
did not have any matches). As a result, even for very large
ontologies, users need to examine manually only a tiny frac-
tion of frames—the ones for which PROMPTDIFF did not
find any matches. And PROMPTDIFF conveniently shows
these frames first in the PROMPTDIFF table.

Note that the performance of the algorithm did not deteri-
orate when we considered versions that were farther apart.
In fact, both recall and precision were better than in the
worst of the two cases for consecutive versions: because
there were more changed frames, PROMPTDIFF identified
a larger fraction of the frames correctly.

We used ten matchers in the experiments. On average,
each matcher was executed 2.3 times in each experiment.
Each matcher produced a new result at least once.

We have also experimented with executing matches in dif-
ferent order (still subject to the constraints that the depen-
dency table imposes). We could not find cases where the

4We use the termsprecision andrecall in Table 2
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Ontologies # frames # frames % frames # frames # of matches # of correct Recall Precision
in V1 in V2 changed unchanged for changed matches for

from V1 from V1 frames that changed frames
PROMPTDIFF that PROMPTDIFF

identified identified
1 EON1 and EON2 314 320 5 98.4% 15 13 93% 87%
2 EON2 and EON3 320 319 1 99.7% 1 1 100% 100%
3 EON1 and EON3 314 319 6 98.1% 16 14 93% 87%
4 Pharm1 and Pharm2 1886 1891 11 99.4% 18 16 94% 89%
5 Pharm2 and Pharm3 1891 1895 71 96.2% 382 372 99% 97%
6 Pharm1 and Pharm3 1886 1895 83 95.6% 400 389 98% 97%
average 97.9% 96% 93%

Table 2:PROMPTDIFF evaluation results

final set of matches would be different depending on the or-
der in which the matchers were executed. A particular match
may be identified by a different matcher, but the final set of
matches itself remained unchanged. It is likely that as we
extend the set of matchers, we will find cases where the ex-
ecution order of matchers indeed makes a difference.

Related Work
Current research inontology versioninghas addressed two
issues: (1) identifying ontology versions in a distributed en-
vironments such as the Semantic Web (Klein & Fensel 2001)
and (2) specifying explicitly logs of changes between ver-
sions (Oliveret al. 1999; Heflin & Hendler 2000). However,
given the de-centralized nature of ontology development,
logs of changes may not always be available. Our research
complements these efforts by providing an automatic way to
compare different versions based on the semantics encoded
in their structure when logs of changes are not available.

The main thrust of research indatabase-schema version-
ing also uses the assumption that a record of changes be-
tween versions is readily available (Roddick 1995). Usually,
researchers identify a canonical set of schema-change oper-
ations and consider effects of these operations on instance
data as it migrates from one version to another (Banerjeeet
al. 1987). Lerner (2000) addresses automatic methods for
comparing schema versions. She identifies complex opera-
tions such as grouping slots of a class into a different class,
which is referenced by the original class and so on. As we
try to perform more fine-grained comparison between ontol-
ogy versions, we will no doubt draw upon her work.

Unlike in the schema-evolution research where the as-
sumption that we have a log of changes is almost univer-
sal, the research indatabase-schema integrationautomates
comparison between schemas that originated from differ-
ent sources. Rahm and Bernstein (2001) survey the ap-
proaches that use linguistic techniques to look for synonyms,
machine-learning techniques to propose matches based on
instance data, information-retrieval techniques to compare
information about attributes, and so on. Cupid (Madhavan,
Bernstein, & Rahm 2001), for example, integrates many of
these approaches in an algorithm that starts by matching leaf
concepts in the hierarchy and then proceeding up the hier-
archy trees to generate new matches based on matches of
the subtrees. In fact, this field can potentially supply many
heuristic matchers to integrate in the PROMPTDIFF algo-
rithm. However, none of these algorithms was designed to

compare versions of the same schema, but rather different
schemas. It would be interesting to see how well they per-
form in our case. There is one schema-integration algorithm
that does rely on source schemas being similar. In design-
ing the TranScm system for data translation, Milo and Zohar
(1998) observe that when we need to translate data from an
XML document to an object-oriented database, for example,
the underlying schemas are often very similar since they de-
scribe the same type of data. Therefore, a small number
of explicit rules can account for a large number of transfor-
mations. TranScm could benefit from many of the simple
heuristics we described in this paper, whereas PROMPTDIFF
could use some of the TranScm rules as its matchers.

There is a number of largetaxonomies for natural-
language processing, and researchers in that field developed
semi-automated techniques for creating mappings between
these resources. O’Hara and colleagues (1998) present a
heuristic-based approach for finding correspondences be-
tween synsets in WordNet (Miller 1995) and concepts in the
Mikrokosmos ontology (Mahesh & Nirenburg 1995). The
heuristics compare the English representation of terms in
both hierarchies, similarity of this representation for ances-
tors in the hierarchy, overlap in the definition of siblings and
children. Daud́e and colleagues (2001) used relaxation la-
beling to map between two versions of WordNet. The au-
thors mainly use the hypernym–hyponym relationships, in-
creasing the weight for a connection if it includes nodes
whose hypernym or hyponyms are also connected. They ex-
perimented with using both direct and indirect hypernyms
and hyponyms. Unlike these approaches, PROMPTDIFF ex-
amines not only hierarchical relations but also other rela-
tions, such as slot attachment, inverse slots, and instances.

Even though researchers onsemi-automated ontology
mappingalso compare disparate ontologies rather than ver-
sions of the same ontology, the tools may provide another set
of useful extensions for PROMPTDIFF. Ontology-merging
tools, such as PROMPT (Noy & Musen 2000), use seman-
tics of links between frames and user’s action to produce
hypotheses on matching frames. FCA-Merge (Stumme &
Mädche 2001) uses a set of shared instances between two
ontologies to find candidate matching classes and hierarchi-
cal links between them. AnchorPROMPT (Noy & Musen
2001), the articulation engine of the SKAT tool (Mitra,
Wiederhold, & Kersten 2000), and Similarity-Flooding al-
gorithm (Melnik, Garcia-Molina, & Rahm 2002) use simi-
larities in the ontology graph structure to suggest candidate
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matches. Because they use different ontologies, all these al-
gorithms have to be much more ”conservative” in their com-
parisons requiring much more than a simple name and type
match between frames to declare that they are similar. How-
ever, because the PROMPTDIFF framework is so easily ex-
tensible, we can incorporate these algorithms as new match-
ers in the fixed-point stage and integrate the results. Further-
more, most of the algorithms that we have mentioned either
do not use the semantics of links at all or treat only is-a links
in a special way. In the matchers that we described in this
paper, we have used the semantics ofis-a links, instance-of,
slot attachment, slot range, and facet attachment links.

Future Work
In addition to incorporating other comparison algorithms
to improve further the accuracy of PROMPTDIFF there are
other possible directions to explore.

We can use features present in other formalisms, such as
DAML+OIL, in the matchers. For example, we can consider
if definitions of disjointness, necessary and sufficient condi-
tions, subproperties, and so on can provide useful clues in
the mappings.

We can use the information in the PROMPTDIFF table to
generate transformation scripts from one version to another.
Computer programs can then use these scripts to migrate in-
stance data (as in schema versioning) or to query one ver-
sion using another version. Minimizing the number of lossy
transformations, which cause values to be lost at intermedi-
ate steps, is the main challenge in this task.

In our implementation, we used Java to define matchers.
We could use a declarative language like the one described
by Abiteboul and colleagues (2001) instead. Declarative
specification could enable logic-based inference on rule def-
initions and their properties.

Another promising extension is assigning an uncertainty
factor to the results of different matchers (i.e., a probability
that the result is correct) and integrating the results taking
into account these probabilities. Doan and colleagues (2001)
use a similar approach to integrate results of machine learn-
ers for mapping between ontologies.
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